
Disentangling Human Dynamics for

Pedestrian Locomotion Forecasting with Noisy Supervision

Karttikeya Mangalam1,3∗, Ehsan Adeli1, Kuan-Hui Lee2, Adrien Gaidon2, Juan Carlos Niebles1

1Stanford University 2Toyota Research Institute 3University of California, Berkeley

mangalam@cs.berkeley.edu {eadeli, jniebles}@cs.stanford.edu

{kuan.lee, adrien.gaidon}@tri.global

Abstract

We tackle the problem of Human Locomotion Forecasting,

a task for jointly predicting the spatial positions of several

keypoints on human body in the near future under an ego-

centric setting. In contrast to the previous work that aims to

solve either the task of pose prediction or trajectory forecast-

ing in isolation, we propose a framework to unify these two

problems and address the practically useful task of pedes-

trian locomotion prediction in the wild. Among the major

challenges in solving this task is the scarcity of annotated

egocentric video datasets with dense annotations for pose,

depth, or egomotion. To surmount this difficulty, we use

state-of-the-art models to generate (noisy) annotations and

propose robust forecasting models that can learn from this

noisy supervision. We present a method to disentangle the

overall pedestrian motion into easier to learn subparts by uti-

lizing a pose completion and a decomposition module. The

completion module fills in the missing key-point annotations

and the decomposition module breaks the cleaned locomo-

tion down to global (trajectory) and local (pose keypoint

movements). Further, with Quasi RNN as our backbone, we

propose a novel hierarchical trajectory forecasting network

that utilizes low-level vision domain specific signals like

egomotion and depth to predict the global trajectory. Our

method leads to state-of-the-art results for the prediction of

human locomotion in the egocentric view.

1. Introduction

Pedestrians are one of the most vulnerable and prevalent

entities in self-driving scenarios. The ability to predict their

dynamics in the near future can assist in making proper de-

cisions for immediate next action the vehicle needs to take.

Forecasting human locomotion is useful in several down-

stream tasks for self-driving cars such as reasoning about

pedestrian intent, path planning and reactive control. It is

∗This work was completed while the author was at Stanford University.

Figure 1: Egocentric pedestrian locomotion forecasting. Lo-

comotion is defined as the overall motion of keypoints on

the pedestrian in contrast to predicting just the position (tra-

jectory prediction) or the pose (pose forecasting).

also relevant for social robots that require anticipating future

human movements for collision avoidance and navigation.

Human dynamics or locomotion can be defined in terms of

the joint spatial movement of several keypoints on the hu-

man body. Forecasting future human dynamics can lead to

foretelling certain undesirable activities like falling, which

can then be planned for. It is the final product of a complex

interaction between large scale trajectorial motion and finer

body limb movements. In previous works, often one of these

two critical components is studied. In this work, we propose

to predict human locomotion by disentangling the global and

local components. An additional challenge to this task is

the scarcity of human annotated pedestrian pose datasets in

egocentric view. To this end, we use off-the-shelf estimation

models to generate ‘noisy’ ground-truth to train our model.

Developing computational methods for modeling human

dynamics and forecasting how the pose might change in the

future is itself an extremely challenging task. The first level

of complexity comes from the inherent multimodal nature

of pedestrian locomotion distribution. The space of possi-
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ble future locomotion is both complex and uncertain even

conditioned on the observed history. Furthermore, in real

scenarios, the pedestrians often occlude with each other or

other objects in the scene. Moreover, obtaining full annota-

tions of the dynamics (trajectory and pose) is a very intensive

task. Therefore, in contrast to previous works [1, 2, 3, 4, 5],

applying fully-supervised methods is hardly possible for

real-world in-the-wild applications.

In this work, we address the challenge of predicting hu-

man locomotion in the wild without explicit human labelled

ground-truth supervision. We start with noisy machine gen-

erated supervision for forecasting using off the shelf pose

detectors like OpenPose [6, 7, 8]. We then propose a fore-

casting pipeline (Fig. 1) to complete the missing detections

and somewhat denoise the detected poses. Furthermore, we

identify the complexities associated with learning to forecast

human locomotion in the wild in an end-to-end fashion and

introduce a disentangling method to overcome this problem.

While almost all of the previous work for prediction of hu-

man dynamics [1, 2, 9, 10] target the problem of predicting

global (i.e., trajectories [11, 12, 13]) and local movements

(i.e., human pose and joints motion [1, 3]) separately, we

propose to unify the previous works on future pedestrian

pose and trajectory prediction under the single problem of

locomotion forecasting. To achieve this goal, we propose a

sequence-to-sequence pose forecasting model (see Fig. 2)

that build upon this decomposition. Lastly, we show that

with these advancements our proposed method achieves bet-

ter results than several other previous works and confirm our

hypothesis of disentangling human dynamics for pedestrian

locomotion forecasting in the wild.

In summary, our contributions are two-fold. First, we

propose the pose completion and decomposition modules

that uses disentanglement of global and local motion to re-

duce the overall forecasting complexity and enables learning

under noisy supervision. Second, we present the pose pre-

diction module consisting of a novel egocentric trajectory

prediction network based on the Encoder-recurrent-Decoder

architecture that utilizes domain specific settings of egomo-

tion to forecast these different granularity streams. They are

merged for the final locomotion forecasting.

2. Related Work

Trajectory Prediction: The literature for trajectory predic-

tion can be split into two major categories of work: (1)

works that aim to predict human trajectories from the points

of view of either other humans in the scene (human-human)

[4, 14, 15, 16] or from a top down view [4, 15, 16, 17, 18];

and (2) works that predict the paths of other vehicles on the

road from the viewpoint of a car (car-car) [5, 19].

The previous work on human-human trajectory predic-

tion often solves the problem from a top-down prospective

i.e., bird’s eye view. For instance, Social LSTM [4] jointly

predicted the paths of all the people in a scene by taking

into account the common sense rules and social conventions

that humans typically utilize as they navigate in shared en-

vironments. Social GAN [15] defined a recurrent sequence-

to-sequence model using Generative Adversarial Networks

[20] (GAN) that observes motion histories to predict future

behavior with spatial pooling thereby tackling the multi-

modality associated with motion prediction. In [17], Zou et

al. proposed to infer the latent factors of human decision-

making process in an unsupervised manner by extending

the Generative Adversarial Imitation Learning framework

to anticipate future paths of pedestrians (human-car) from

the top-down view. In [16], SoPhie introduces an attentive

GAN that predicts individuals’ paths by taking into account

physical constraints, i.e., scene context and other peoples’

trajectories. Several work model the human trajectories with

social forces [21] and attraction repulsion models using func-

tional objects [22]. Also, approaches using probabilistic

modelling of trajectories with Gaussian processes [23] and

mixture models [24] have been employed. Among the few

works for trajectory prediction in the human’s egocentric

view, [14] predicted trajectories of other pedestrians in an

egocentric setting with a tri-stream CNN architecture.

Car trajectory prediction from egocentric view were done

by explicitly modeling other agents (cars) along with motion

with respect to the camera. Yao et al. [25] proposed a multi-

stream recurrent neural network (RNN) encoder-decoder

model for predicting vehicle location and scale using pixel-

level observations. DESIRE [19] was proposed to generate

several possible trajectories for vehicles using both scene and

vehicles, which were then ranked in an Inversion of Control

(IOC) framework to choose the most likely one. Similarly,

Huang et al. [5] introduced an uncertainty-aware method for

prediction of self-trajectories.

One of the most crucial tasks for self-driving car or so-

cial robots is to predict future dynamics of pedestrians (i.e.,

car-human task). However, recent work focuses on human-

human or car-car prediction, both of which domains lack

either egocentric cues like monocular depth cue and large

camera motion due to ego-vehicle or pedestrian centered

features like human pose and intention.

Pose Forecasting: A number of recent work predicted 3D

poses using fully annotated data with exact 3D positions.

These works included Structural RNN [3], convolutional

sequence-to-sequence model with encoder-decoder archi-

tecture [26], and human motion prediction with adversarial

geometry-aware based on geodesic loss [27]. Some other

works introduced models that can predict poses in both 2D

and 3D. Triangular-Prisms RNN (TP-RNN) [1] proposed

an action-agnostic pose forecaster, and Matrinez et al. [2]

proposed a method based on residuals and a careful design

of RNNs for human dynamics. These works concluded that

zero-velocity is a very strong baseline for pose forecasting.
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Figure 2: An illustration of the proposed method for human locomotion forecasting with noisy supervision. The “Raw Pose”

plane represents the noisy input pose sequence with missing joint detection (Section 3.1). The “Complete Pose” plane denotes

the output from the pose completion module with filled in joint positions (Section 3.2). The completed pose is then split into

the global and local streams (Section 3.3) which separate concurrent motions. The prediction modules forecast the future

streams as outlined in Section 3.5. Finally, these streams are merged to predict future pedestrian locomotion.

Ghosh et al. [28] introduced LSTM-3LR for long term fore-

casting and Zhai et al. [29] trained a model to forecast videos

of human activities with multiple granularities which they

use to forecast pose for future frame generation.

Denoising or Completing Poses: Chang et al. [30] propose

a Denoising and Reconstruction Networks (DR-Net) for 3D

human pose estimation from monocular RGB videos. Bal-

lard et al. [31] leverage autoencoders for structured predic-

tion of the human pose. Tekin et al. [32] use over complete

autoencoders to account for dependencies between joints

and use a latent space for 3D pose prediction from monoc-

ular images. Trumble et al. [33] introduce a convolutional

symmetric autoencoder with reconstruction loss to encode

skeletal joint positions, which simultaneously learns a deep

representation of volumetric body shape.

In contrast, our method for locomotion forecasting is dif-

ferent in three main aspects. First, we focus on the egocentric

vehicle’s view utilizing domain specific cues whereas the

previous works are either on predicting other vehicle’s move-

ments [5, 19] or for forecasting human trajectories from the

top-down view [4, 16, 18, 15]. Second, all previous works fo-

cus on either predicting the pose [1, 2, 3] in the near future or

on trajectory prediction [4, 14] whereas we propose a method

to unify both for complete human locomotion forecasting.

Third, instead of using clean human annotated ground-truth,

our work uses noisy supervision from off-the-shelf methods

(Section 3.1), transfering the focus from expensive problem

specific annotations to robust learning algorithms.

3. Proposed Method

We frame the task of forecasting human locomotion in

egocentric view (of the vehicle) as a sequence-to-sequence

problem. Suppose pt denotes the human pose at time

t, which contains d two-dimensional joints, i.e., pt =
{(ui, vi)}di=1 = {~ui}

d
i=1. Forecasting human locomotion is

then defined as: given tp previous poses, {pi}
t
i=t−tp+1 ≡

{pt−tp+1, . . . , pt}, predict the position of each of these

joints for tf future frames. In other words, predict the se-

quence {pi}
tf
i=t+1 ≡ {pt+1, . . . , pt+tf }. Our method is

illustrated in Fig. 2. We start with noisy pose estimates gen-

erated using state of the art pretrained models (Section 3.1).

The missing and low confidence joints are filled in using the

pose completion module (Section 3.2). The completed poses

are then split into global and local streams (Section 3.3) that

are forecasted using Quasi Recurrent Neural Networks [34]

(Section 3.4) in an Encoder-Recurrent-Decoder pose predic-

tion module (Section 3.5). These predictions combine to

forecast the future pedestrian locomotion.

3.1. Machine Generated Noisy Supervision

Keypoint Detection We use state-of-the-art models for

multiple-person keypoint detection module to autonomously

generate dense but noisy frame-level supervision for human

poses pt. To the best of our knowledge, there are no existing

datasets with manually annotated pose data that can be used

for the task of human locomotion forecasting in the wild.

So, we use pre-trained models on task-specific datasets to

infer pose and depth on our datasets. For each frame in the

video, we create masked frames where everything except

the pedestrians are masked out using the human labelled

bounding box annotations. These masked frames are then

processed through OpenPose [6, 7, 8], a pre-trained pose de-

tection model to generate pose labels for every pedestrian in

the frame. We notice that using masked full frames for gen-
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Figure 3: Encoder-Recurrent-Decoder architecture for forecasting pglobal. ~uα, dα and cα represent coordinates, estimated

monocular depth and confidence in joint ĩ at frame α. T β
α represents the scene transformation matrix between frames β and α.

The lock denotes the sharing of the frame encoder weights across different time steps of the input sequence. Dotted squares

contain values concerned with the same frame.

erating frame-level pose supervision is faster and requires

significantly lesser storage (upto 100 times lesser) than pro-

cessing each cropped out pedestrian one by one without any

observable decrease in pose detection accuracy. For the ith

joint detected in the tth frame, OpenPose detects the 2D coor-

dinates (ui
t, v

i
t) and provides a confidence scores cit, which

is then used for denoising these detections as described in

Section 3.2. These labelled keypoints form a human pose

with d = 25 joints (Fig. 6).

Monocular Depth Estimation We autonomously estimate

depth in a monocular camera using SuperDepth [35]. Su-

perDepth extends a subpixel convolutional layer for depth

super-resolution, where high-resolution disparities are syn-

thesized from their corresponding low-resolution convolu-

tional features. We train the depth estimation model in a

self supervised fashion as proposed in [35]. Fig. 4 shows

qualitative examples of the depth estimation by SuperDepth.

Egomotion Estimation We use the state-of-the-art-model

unsupervised model [36] for autonomously estimating the

camera motion that occurs between consecutive frames due

to the movement of the egovehicle. However, since the

method proposed in [36] can reliably estimate the scene

transformation matrix T j
i between frames i and j only frame

very close to each other (‖i− j‖ ≤ 5 in a 30 fps video) and

the time horizons relevant for prediction are much larger

(∼ 30 frames), we chain the estimate between different

overlapping short windows to obtain T i
i+k for k > 5.

3.2. Pose Completion

Off-the-shelf pre-trained pose detectors often result in

noisy detection of keypoints. In addition, the small scale

and off co-planar orientation of pedestrians in real-world 2D

videos, the pose detector may miss detecting some keypoints

even for a completely visible occlusion-free pedestrians in

the frame. Hence, we propose a pose completion network

for completing the detected human poses obtained from

OpenPose. This processing has a two-fold benefit. First, it

fills in the joints that are not detected by the pose detection

module and so tackles the missing data problem. It also

suppresses noise by filling in the low confidence output

with better estimates. Second and importantly, it enables

us to decompose the motion (Section 3.3) with noisy data.

Separating uncompleted global and local components of

motion would be perplexing as the joints flicker frequently.

Network Architecture We use an over-complete symmet-

ric auto encoder similar to [33, 32]. The network is only

trained on the subset of the total training data that has

been assigned high confidence scores by Openpose. In

other words, the poses are filtered by thresholding on Open-

Pose confidence scores to only include the examples with

cit > αc, ∀ i ∈ {1, . . . d}. These high confidence exam-

ples are then used to train a symmetric autoencoder with

dropout that embeds the 2d-dimensional vectors pt to the la-

tent dimension dae. Then, it maps them back to the denoised

detections p̂t. Training with dropout in the input layer on

high confidence examples, helps model the effect of missing

data. Furthermore, supervising the loss function with the

ground-truth on these good examples and the information

bottleneck in the form of a narrow layer in the middle of net-

work allows the model to learn to reconstruct the complete

pose even if some of the joints are missing. The training

procedure details are in Section 4.2.

Completion The trained autoencoder is then used to esti-

mate the full pose on all the low confidence noisy detections

Figure 4: Examples of the input (left col.) and the output

(right col.) of the monocular depth estimation module [35].
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Figure 5: Pose completion and disentangling module. The

shades represent the confidence in locating the joint (Black:

highest confidence & white: missing data). Low confidence

estimates are replaced with the autoencoder estimates (sky

blue). It is then split into local & global streams.

Figure 6: Qualitative results showing the results of pose

completion (Section 3.2). From left to right: denoised pose,

cropped version of the same pedestrian with the original

OpenPose output (green), denoised pose (blue).

from the pose detection module. These estimates then fill in

the missing and low confidence joint detections. Mathemati-

cally, (ui
t, v

i
t)← (ûi

t, v̂
i
t) ∀(i, t) such that cit ≤ αc.

3.3. Disentangling Pedestrian Locomotion into
Global and Local Streams

After noise suppression using the autoencoder and fill-

ing in the missing joints, we propose to disentangle the

overall pose locomotion sequence {pj}
t
j=t−tp+1 into two

streams. A global motion stream encodes the overall rigid

body motion of the pedestrian {pglobal
j }tj=t−tp+1 and a local

motion stream encodes the motion of the body with respect

to the global stream {plocal
j }tj=t−tp+1. We hypothesize that

these separate streams capture different granularities of si-

multaneous concurrent motion and need to be modelled and

forecasted separately. The global motion stream pglobal mod-

els large scale movements of the pedestrian position with

respect to the camera, such as those caused by the trajectory

or egocentric motion of the camera mounted on the moving

car etc. The local motion stream captures the effect of depth

change on the overall pose size and the movement of differ-

ent joints of the pedestrian with respect to the global motion

stream such small repetitive motions like swinging of arms.

Our proposal to disentangle global and local motion is

motivated by the relative difference in the nature and mag-

Figure 7: Architecture for forecasting the local stream, plocal.

~wi
α represent the relative coordinates of joint i with respect to

joint ĩ at frame α derived from the pose completion module.

Rest convention is same as Figure 3.

nitude of motion exhibited by these streams. Consider for

example, the actual path {pj}
t+tf
j=t−tp+1 traced by the elbow

though space. In the original formulation this trajectory is

quite complex, consisting of several swirls generated from

gyrating around the shoulder and drifting with the rest of the

body. In addition, this disentangling allows to significantly

reduce the overall complexity, since each of the streams now

model a much simpler and easier to predict motion.

We propose to use the neck joint sequence denoted by

(uĩ
j , v

ĩ
j)

t
j=t−tp+1 as a representation of the global stream,

because the neck is the most widely observed joint in the

dataset. Note that this representation is possible only af-

ter filling in the missing data as discussed in Section 3.2.

The local stream plocal (denoted by ~w) is then derived by

reparameterizing the original stream pt (denoted by ~u) as

~w i
t = (ui

t, v
i
t)− (uĩ

t, v
ĩ
t)

∀i ∈ {1, . . . , d}, i 6= ĩ, t ∈ {t− tp + 1, . . . , t}

3.4. Quasi-RNN Encoder-Decoder

The Quasi-Recurrent Neural Network [34] forms the

backbone of the sequence-to-sequence learning structure

described in Section 3.5. QRNNs consist of alternating con-

volutional and recurrent pooling module and is designed to

parallelize efficiently better than vanilla LSTMs. Similar to

the findings of Bradbury et al. [34], we found that Quasi-

RNN trains faster (825 ms/batch) compared to LSTM (886
ms/batch) on a single GPU under same parameters and yield

faster convergence for similar model capacity.

Network Architecture Our quasi-RNN encoder-decoder

has N layers of alternate convolutions and recurrent pool-

ing, both in the input encoder and the output decoder. As

illustrated in Figs. 3 and 7, the recurrent pooling is a thin

aggregation function applied to the convolutional activations.

The encoder churns through the latent representation of the

tp previous poses and encodes the necessary information

into a context vector. This vector is then consumed by the
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QRNN decoder to forecast the future tf poses mapped back

to the same latent space. The dotted arrow represents the use

of the technique of teacher forcing [37] for training recurrent

networks for motion prediction, as also proposed by [2].

3.5. Forecasting the Future

After being split into separate granularities, the global and

local streams are then forecasted separately with different

prediction modules as described in the following.

Local Stream Forecasting As shown in Fig. 7, the filled in

and decomposed pose {plocal
j }tj=t−tp+1 is used as the input

to the pose prediction module. This module comprises of a

spatial encoder with the latent dimension dae. The weights

of this spatial encoder are separately trained using the autoen-

coder while the complexity of the latent space is similar. The

forecasting is processed in the latent space with Nlocal layers

of the QRNN Encoder Decoder module, briefly described

in Section 3.4. We use the latent space to forecast because

as reported in [32, 10] and also as confirmed by our pose

completion module experiments, the human pose lies on a

low dimensional manifold because of the various kinematic

constraints enforced by the human body. Thus, forecasting

in this lower dimensional denser space makes the prediction

easier for the quasi RNN module. The predicted latent pose

is then mapped back into the image space with the spatial

decoder to forecast {plocal
j }

j=t+tf
t=t+1 .

Global Stream Forecasting As mentioned in Section 3.3,

the global stream captures the effects of camera movement,

perspective distortion from changing depth, and also the

large-scale motion of target itself. Distortions due to the

egocentric view, like perspective effects, can be implicitly

learned using absolute coordinate trajectories while training.

However, such an approach adds unnecessary complexity

to the input distribution and hence is data inefficient. In-

stead, we propose to predict residuals from the first observed

positions instead of forecasting absolute coordinates. In par-

ticular, we learn to predict the global stream from separately

processed low level vision signals (monocular depth, camera

egomotion). Furthermore, since these signals are machine

generated and noisy, instead of using classical computer

vision methods to employ these features like re-projecting

the future positions with estimated camera pose matrices

to cancel out egomotion effects, we propose a frame level

encoder as depicted in Fig.3. The frame-level encoder is

a feedforward neural network, which at sequence frame α

takes as input observed coordinates (~u ĩ
α), estimated monocu-

lar depth dα of joint ĩ, and a flattened 3× 4 transformation

matrix T 1
α estimating the change in the 6D pose between

start of the sequence and frame α. The frame-level encoder

architecture is motivated by the classical computer vision

algorithm of projecting a point (p1, p2, p3) to a new point

(p′1, p
′
2, p

′
3) under a transformation matrix T and hence is

shared across different time steps. The output of encoder is

a 2 dimensional vector ~xα, which is then pooled across time

steps to be fed into the sequence level encoder. The rest of

the architecture is similar to local stream forecasting module

but with Nglobal layers of QRNN.

Loss Metric Both streams are trained with the ℓ1 loss be-

tween the predicted pose and the original pose (before com-

pletion) weighted by the confidence scores cji
t+tf

j=t+1 of Open-

Pose in the original detection.

3.6. Recombining the Streams

These future predictions are finally recombined to fore-

cast the overall human locomotion {pj}
t+tf
j=t as follows:

p̂j =

{

pglobal
j for i = ĩ

pglobal
j + plocal,i

j for i 6= ĩ

∀j ∈ {t+1, . . . , t+tf} and ∀i ∈ {1, . . . , d}. This operation

forms the inverse of the splitting procedure (Section 3.3).

4. Experiments

JAAD Dataset [38]: Joint Attention in Autonomous Driv-

ing is a dataset for modelling attention in the context of au-

tonomous driving scenarios. The dataset contains 346 videos

with 82032 frames, where the videos are the recorded with

front-view camera under various scenes, weathers, and light-

ing conditions. It is also one of the very few autonomous driv-

ing datasets that has temporally dense pedestrian bounding

box annotations. For example, popular egocentric datasets

like KITTI [39], Berkeley DeepDrive [40], and CityScapes

[41] do not contain human bounding boxes in a dense per-

frame fashion. Similarly, PedX [42] and Mapillary [43] has

pedestrian bounding box annotations, but these are separate

images and not videos. The videos in JAAD range from short

5 second clips to longer 15 second videos shot through wide

angle camera mounted inside the car in centre of windshield.

It contains 64 clips of resolution 1920×1080 pixels and rest

293 of resolution 1280× 720 pixels. Employing the proce-

dure mentioned in 3.1, a little under 1500 non-overlapping

30 frame length human locomotion examples are extracted

which are then split into train and test sets while taking care

not to have the same pedestrian’s trajectories in both groups.

4.1. Experimental Settings

We use a d = 25 pose keypoints as extracted from Open-

Pose. Empirically, the value of αc is set to 0.25 for all our

following experiments. The pose completion network is

trained with the ADAM optimizer [44] with learning rate

10−3 and dropout 0.5 applied to the input layer. The lo-

cal stream network is trained with ADAM too with learn-

ing rate of 10−4 and Nlocal = 4. The global stream net-

work is trained on the residuals between consecutive frames

with ADAM at learning rate 0.001 and Nglobal = 2. We
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Table 1: Average KDE for baselines and our proposed

method. Despite their success at modelling other sequence

learning tasks, their direct application in predicting human

locomotion in egocentric view fail due to the complicated

interaction between the local and global structures.

Method Decomposition KDE

Last Observed-Velocity - 195.5

Constant-Velocity - 48.9

Zero-Velocity - 40.4

LSTM-ED [45] ✗ 24.4

TCNN [46] ✗ 31.8

GRU-ED [47] ✗ 23.8

Structural RNN [3] ✗ 31.7

Ours ✓ 10.9

Table 2: Ablation Study on our method showing the relative

importance of different components.

Stream Completion Disentanglement KDE

Global ✗ - 6.8

Global ✓ - 5.6

Local ✗ - 9.5

Local ✓ - 6.3

Both ✗ ✗ 22.1

Both ✓ ✗ 18.2

Both ✗ ✓ 15.4

Both ✓ ✓ 10.9

use Keypoint Displacement Error (KDE) defined as the

average ℓ2 distance between the predicted and the ground

truth keypoints to measure model’s performance, defined as

KDE = (
∑t+tf

j=t+1
||p̂j−pj ||1)/tf . Naturally, Mean KDE mea-

sures the Keypoint displacement error per human joint. For

global stream, we use the same formulation but with d = 1
in contrast to d = 25 for local stream.

4.2. Pose Completion Results

As described in Section 3.2, we use a symmetrical over

complete auto-encoder for pre-processing noisy detections.

Our model comprises of a compressing module that encodes

the 2d = 50 dimensional pose into dae = 10 dimensions, in

three equally proportionate non linear layers. Symmetrically,

the decoder decompresses the latent pose to the original

50 dimensional space. A dropout of 0.5 dropout is applied

to input layer and training is done only on poses with all

keypoints having confidence more than ct. This is trained

as mentioned in Section 4.1 to yield 9.6 unweighed Mean

KDE on high confidence pose detections on JAAD dataset.

In practice, this means that on average the module is able to

predict a missing joint within an ℓ1 ball of radius 10 pixels

centered at the joint’s true location in a frame. Considering

that the average resolution of frames in JAAD is 1408× 790

Table 3: KDE comparison of our method with GRU-ED

(best performing baseline) for different output time horizons

for the global stream with 15 frames input (half a second).

tf 5 10 15 20 25 30

GRU-ED 5.7 6.6 9.7 11.4 14.1 18.3

Our Method 4.3 5.1 5.6 7.8 10.4 11.4

pixels and the pose completion network is not trained to

regress on residuals but instead predicts the absolute co-

ordinates in original frame resolution, this means that the

error is about 1%− 1.5% of the frame dimensions and quite

tolerable for our forecasting task.

4.3. Stream Forecasting

We compare our proposed method with several other

baselines trained from scratch with the same input (i.e. un-

completed pose estimates from Openpose) and output data.

These methods are briefly described below:

Encoder Decoder Architectures : We train the popular En-

coder Decoder architecture for sequence-to-sequence learn-

ing with several backbones like LSTM [48, 45], Gated Re-

current Units [47] and recently introduced Quasi RNN [34].

All the models are trained from scratch on the same input

data and confidence values but without any explicit spatial

encoding. Also, Quasi RNN is the most parallelizable and

train much faster than other recurrent counterparts. Hence,

it forms the backbone of our method.

Temporal Convolutional Neural Networks: Lea et al.

[46] recently proposed Temporal Convolutional Networks

which have also shown promising performance on a vari-

ety of sequence-to-sequence tasks. We found that TCNN

trained with the same input signals, are the fastest to train

and perform the best among deep learning methods with-

out decomposition but are still much worse than the simple

zero-velocity baseline. While TCNN perform well before de-

composition, the future time horizon length tf is constrained

by the input sequence length tp and does not allow flexible

predictions as with other recurrent architectures.

Strutural RNN[3]: SRNN has also achieved state of the

art performance on several sequence prediction tasks includ-

ing pose forecasting. However, we observe that its capacity

is much larger than other sequence-to-sequence models be-

cause of larger number of trainable parameters that does not

generalize well to our task (limited data regime).

Uniform Velocity: We also compare our method with sim-

ple yet powerful baselines [9, 49] based on zero, constant,

and last observed velocity assumptions. In Zero Velocity,

the future is forecasted assuming no movement from the

last observed position. Similarly, in constant-velocity/last-

observed-velocity, the forecasted velocity is assumed to

be identically equal to the average observed velocity/last-
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Figure 8: Qualitative pose prediction results. (A) the tp = 15 length input sequence of poses. (B) and (C) the cropped frames with the

pedestrian and the corresponding filled in pose at the start and end of the input sequence. (D) the prediction pedestrian locomotion for the

next tf = 15 frames. (D), (E), and (F) the predicted poses at the start, intermediate, and end of the output sequence, respectively. Video

visualizations are available at: https://karttikeya.github.io/publication/plf

observed-velocity and this assumption is rolled out in time

to predict future positions.

Results Discussion: Table 1 reports the Average KDE

achieved by these approaches for predicting the pedestrian

locomotion for tf = 15 frames into the future given the

previous tp = 15 frames. Our method performs better than

several widely used sequence-to-sequence models and also

state-of-the-art pose forecasting models like Structural RNN

[3]. Figure 8 shows some qualitative results from our method

for pedestrian locomotion prediction.

Ablation: We perform the ablation study on our proposed

method to investigate the importance of each component. As

Table 2 indicates, both disentanglement and completion are

quite central to our method. Also, the significant increase in

performance conferred by decomposing the streams confirms

our hypothesis that disentangling is essential to locomotion

forecasting and reduces the complication of overlapping

simultaneous movements. Also noteworthy is the decrease

in performance due decomposing without pose completion.

This backs up our proposition that completion is essential to

disentangling and data is subject to severe method-induced

noise without pose completion.

Time Horizon Experiments: We extensively test our novel

egocentric global stream (trajectory) forecasting module for

various time horizons against the best performing baseline

from Table 2. Table 3 shows these trends for time horizons

from 165 ms to 1 second. We observe that as the horizon

increases and the trajectories become longer, our method

outperforms the baseline by an increasing and larger margin.

This is because our model accounts for the camera motion,

which can accumulate over longer time horizons leading to

a large error in egocentric motion agnostic methods.

5. Discussion

Taking into consideration the results discussed in the last

section, we would like to revisit our original hypothesis and

discuss final remarks that also highlight the new findings.

Disentanglement: We hypothesize that disentangling the

human dynamics into overlapping but simpler streams helps

overall prediction. This is corroborated with the results and

ablation experiments discussed before. We further suspect

that disentanglement performed in our proposed manner is

useful in predicting motion dynamics of any object, cog-

nizant or inanimate. The overall prediction difficulty of the

spatially disentangled parts is lesser than that of the whole.

Finetuning Pose Detection: The state of the art pose detec-

tion network is pretrained on general purpose pose datasets

and is not adapted to this setting. The pose completion

network finetunes these detection conditioning on the in-

formation that the majority of human poses for pedestrian

locomotion prediction are upright, as is the case when pedes-

trian is standing, walking or running. Thus, it implicitly also

works as an adaptation step to use pose regularities specific

to the setting of locomotion prediction. Additionally, it fills

in the missing data because as discussed in Section 3.2, it is

the existence of the keypoints and not so much their accuracy

that helps the decomposition.

6. Conclusion

We propose a human locomotion forecasting pipeline that

disentangles the complex pedestrian locomotion into simpler

tasks of global and local motion prediction. We also present a

pose completion module and an Encoder-Recurrent-Decoder

style pose prediction network. The pose completion module

disentangles the overlapping motion and fills in the missing

detected joints. Furthermore, the pose prediction network

forecasts these streams separately which are finally merged

for the final prediction. We demonstrate that our method

improves the overall performance & achieves state-of-the art

short term human locomotion forecasting in egocentric view.
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