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Abstract

We address the challenging task of video-based person

re-identification. Recent works have shown that splitting the

video sequences into clips and then aggregating clip-based

similarity is appropriate for the task. We show that using

a learned clip similarity aggregation function allows filter-

ing out hard clip pairs, e.g. where the person is not clearly

visible, is in a challenging pose, or where the poses in the

two clips are too different to be informative. This allows

the method to focus on clip-pairs which are more informa-

tive for the task. We also introduce the use of 3D CNNs

for video-based re-identification and show their effective-

ness by performing equivalent to previous works, which

use optical flow in addition to RGB, while using RGB in-

puts only. We give quantitative results on three challenging

public benchmarks and show better or competitive perfor-

mance. We also validate our method qualitatively.

1. Introduction

Person re-identification is the problem of identifying and

matching persons in videos captured from multiple non-

overlapping cameras. It plays an important role in many

intelligent video surveillance systems and is a challenging

problem due to the variations in camera viewpoint, person

pose and appearance, and challenging illumination along

with various types and degrees of occlusions.

Visual person re-identification involves matching two

images or video sequences (containing persons) to answer

whether the persons in the two videos are the same or not.

The general approach for it includes (a) extraction of fea-

tures that are discriminative wrt. the identity of the persons

while being invariant to changes in pose, viewpoint, and

illumination and (b) estimating a distance metric between

the features. The earlier methods for re-identification used

handcrafted features in conjunction with metric learning to

perform the task [7, 10, 16, 24, 43]. These works mainly

leveraged intuitions for the task, while in recent years, the

use of deep CNNs has become more common owing to their

superior performance [1, 4, 6, 19, 39, 40].

input videos
split into clips

clip-pair importance scores learned for computing similarity

high score pair
(eg. similar pose)

low score pair
(eg. dissimilar pose)

Figure 1: Illustration of the proposed method. We learn

an importance scoring function for aggregating clip pairs

of video sequences, for person re-identification task. The

method learns to weight important clip pairs, which help in

discrimination, higher than those which are not informative.

Many of the previous works on person re-identification

have focused on image-based benchmarks, however, with

the introduction of large-scale video re-identification

benchmarks such as MARS [44], the video-based setting is

becoming popular. Most existing methods on video-based

re-identification extract CNN features of individual frames

and aggregate them using average pooling, max pooling,

temporal attention mechanisms, or RNNs [25, 41, 44, 47].

These methods, thus, represent the video sequence as a sin-

gle feature vector. However, for long sequences that have a

significant amount of variation in pose, illumination, etc., a

single vector might not be enough to represent them.

A recent state-of-the-art video-based method by Chen

et al. [3] address the problem by dividing the sequences

into short clips, and embedding each clip separately using a

CNN and applying a temporal attention based method. To

match two given sequences, they compute similarities be-

tween all pairs of clips and compute the final similarity by

aggregating a fixed percentage of top clip pair similarities.

Thus, the contribution of a clip in a video sequence is dy-

namically determined, based on its similarities to the clips

in the other sequence. Chen et al. [3] assume that the sim-

ilarity between a pair of clips is indicative of the informa-

tiveness of the clip pair. We argue that this assumption is

not necessarily true in practice, e.g., a pair of clips with low
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similarity can be utilized as evidence for the fact that the

persons in the two clips are different. Such clip-pairs get

discarded while computing the final similarity, which may

hurt the re-identification performance. Another shortcom-

ing of the method is that it uses a fixed percentage of the

clip-pairs for all pairs of sequences. This limits the perfor-

mance of the method since for different pairs of sequences,

the number of informative clip-pairs can vary.

We address the above shortcomings of Chen et al. [3],

and propose an end-to-end trainable model to estimate the

similarity between two video sequences. Our model takes

pairs of clips as input in a sequence and predicts an impor-

tance score for each clip pair. It computes the final simi-

larity between the two sequences by taking an average of

the clip-pair similarities weighted by their corresponding

importance scores. Thus, our model allows the filtering

of non-informative or distracting clip-pairs while focusing

only on clip-pairs relevant for estimating the similarities.

While [3] aim to filter non-informative or distracting clip-

pairs, like here, the measure of informativeness is different.

[3] uses clip-level similarity as a proxy for the informative-

ness, while our method uses a learnable scoring function

optimized for the task at the video level. Consider a clip-

pair without any artefact, but with a low clip-similarity due

to different persons being present. While [3] would reject

such a pair despite it being informative, our scoring func-

tion would give it high importance to maintain a low overall

similarity.

As another contribution, we show the effectiveness of 3D

CNNs [36, 2] for obtaining clip features. 3D CNNs, which

have been used for various video-based tasks such as action

recognition in recent years, remain largely unexplored for

the task of video-based person re-identification. We show

their effectiveness on this task, by reporting performances

equivalent to previous works which use optical flow in ad-

dition to RGB, while using RGB inputs only.

We give quantitative results on three video-based person

re-identification benchmarks, MARS [44], DukeMTMC-

VideoReID [28, 38] and PRID2011 [12]. We show that our

trainable similarity estimation model performs better than

the top clip-similarity aggregation proposed by Chen et al.

[3]. To simulate more challenging situations, we also re-

port experiments with partial frame corruption, which could

happen due to motion blur or occlusions, and show that our

method degrades gracefully and performs better than the

competitive baseline. We also provide qualitative results

that verify the intuition of the method.

2. Related Work

Image based Re-Identification. Initial works on person

re-identification focused on designing and extracting dis-

criminative features from the images [10, 7, 24, 16, 43].

These works mainly leveraged intuitions for the task and

proposed hand-designed descriptors that capture the shape,

appearance, texture and other visual aspects of the person.

Other works proposed better metric learning methods for

the task of person reidentification [10, 27, 46, 15, 20, 26].

This line of work mainly worked with standard features

and innovated on the type and better applicability of met-

ric learning algorithms for the task.

More recent methods have started leveraging CNN fea-

tures for the task of person re-identification. These meth-

ods explore various CNN architectures and loss functions.

Li et al. [19] proposed a CNN architecture specifically for

the re-identification task, which was trained using a binary

verification loss. Ding et al. [6] proposed a triplet loss to

learn CNN features. Ahmed et al. [1] proposed a siamese

CNN architecture and used binary verification loss for train-

ing. Cheng et al. [4] used a parts-based CNN model for re-

identification, which was learned using a triplet loss. Xiao

et al. [39] used domain guided dropout that allowed learning

of CNN features from multiple domains. They used a soft-

max classification loss to train the model. Xiao et al. [40]

jointly trained a CNN for pedestrian detection and identi-

fication. They proposed online instance matching (OIM)

loss, which they showed to be more efficient than the soft-

max classification loss.

Another line of work [34, 45, 42, 35] leverages human

pose estimators and uses parts-based representations for

person re-identification. For example, Suh et al. [35] used

a two-stream framework with an appearance and a pose

stream, which were combined using bilinear pooling to get

a part-aligned representation.

Video-based person re-identification. The methods work-

ing with videos commonly rely on CNNs to extract fea-

tures from the individual frames, while using different

ways for aggregating frame-wise CNN features, e.g. Yan

et al. [41] used LSTM to aggregate the frame-wise fea-

tures. Zheng et al. [44] aggregated the CNN features using

max/average pooling and also used metric learning schemes

such as KISSME [15] and XQDA [20] to improve the re-

identification performance. McLaughlin et al. [25] used

RNN on top of CNN features followed by temporal max/av-

erage pooling.

More recent works have also started exploring tempo-

ral and spatial attention based methods for video-based re-

identification. Zhou et al. [47] used a temporal attention

mechanism for the weighted aggregation of frame features.

Li et al. [18] employed multiple spatial attention units for

discovering latent visual concepts that are discriminative for

re-identification. They combined the spatially gated frame-

wise features from each spatial attention unit using temporal

attention mechanisms and concatenation.

Liu et al. [21] used the two-stream framework for video

re-identification, which consists of an appearance and a mo-

tion stream, to exploit the motion information in the video
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sequences. Instead of using pre-computed optical flow,

however, they learned the motion context from RGB images

in an end-to-end manner.

3. Approach

We assume humans have been detected and tracked and

we are provided with cropped videos that contain a single

human. We view the videos as ordered sequences of ten-

sors (RGB frames). We formally define the problem we ad-

dress as that of learning a parameterized similarity between

two ordered sequences of tensors. Denote the query and the

gallery video sequence as, Xq = {xq,1, xq,2, . . . , xq,n}, and

Xg = {xg,1, xg,2, . . . , xg,m}, with xi,k ∈ F = R
3×H×W

being an RGB frame. We are interested in learning a func-

tion ψΘ : Fn × Fm → R, with parameters Θ, which takes

as input two sequences, Xq,Xg and outputs a real-valued

similarity between them ψΘ(Xq,Xg), where a high (low)

similarity indicates that they are (not) of the same person.

3.1. Learning Clip Similarity Aggregation

The similarity function we propose is based on a learned

aggregation of clip-pairs sampled from the video sequences.

Fig. 2 gives a full block diagram of our method. We uni-

formly sample M clips of length L from both the query

and the gallery sequences, denoted by {s1q, . . . , s
M
q } and

{s1g, . . . , s
M
g }, where, siq, s

i
g ∈ R

L×3×H×W . The number

of clips could also be different for the two sequences being

compared, but for brevity and implementation ease we keep

them to be the same, allowing potential overlap of the clips

if the number of frames in the sequence(s) is less than ML.

We first forward pass the clips through a state-of-the-art

3D CNN fξ(·) with parameters ξ to obtain D-dimensional

features xq → {f1q, . . . , f
M
q } and xg → {f1g, . . . , f

M
g },

where, fiq = fξ(s
i
q), fig = fξ(s

i
g) and fiq, f

i
g ∈ R

D. We

then learn to estimate which pairs of clips are informative,

considering all the M2 combinations. This is in contrast to

many sequence modeling approaches, like those based on

max/average pooling [44] or attention-based temporal pool-

ing [47], which encode the clip sequences individually with

the intuition that some clips might be bad due to occlusion,

difficult pose or high motion blur, etc. In our case, we ar-

gue that even if some clips have partial artefacts, due to the

various nuisance factors, they might still match with a simi-

larly (partially) corrupted clip from another video, and thus

should not be discarded. Hence, in the proposed method

we consider all the quadratic combinations of pairs of clips

and learn to weight them according to their importance. We

run the importance estimation in a sequential manner and

condition on the information that we have already accumu-

lated at any step t. We estimate the importance score of the

clip pair at step t, αt, using a small neural network gθ(·)
which takes as input the difference of the aggregated repre-

sentation rt till that point and the combined representation

ct of current clip pair. The combined representation used

for a pair of clips is an element-wise dot product (denoted

as ⊙) of the clip features, and the pooling process, at step

t = 2, . . . ,M2 is given by,

ct = fq,t ⊙ fg,t, αt = gθ(rt−1 − ct) (1)

rt =
1

At

{(
t−1∑

i=1

αi

)
rt−1 + αtct

}
=

1

At

t∑

i=1

αici (2)

with, At =
∑t

i=1 αi, r1 = fq,1 ⊙ fg,1. This gives the final

combined representation rqg = rM2 .

We then predict the similarity score between xq and

xg by taking an average of all clip-pair cosine similarities

weighted according to the importance scores,

s(xq, xg) =
1

∑M2

t=1 αt

M2∑

t=1

αt

fq,t · fg,t

‖fq,t‖2 ‖fg,t‖2
(3)

If the clip features fq,t and fg,t are ℓ2-normalized, then the

final similarity (3) can be directly computed using the final

combined representation rqg as

s(xq, xg) =
D∑

l=1

rlqg, (4)

where rqg =
[
r1qg, . . . , r

D
qg

]
. The expression (4) can be ob-

tained from (3), with ct =
[
c1t , . . . , c

D
t

]
, as follows,

s(xq, xg) =
1

∑
T
t=1

αt

T∑

t=1

αt(fq,t · fg,t) =
1

∑
T
t=1

αt

T∑

t=1

(

αt

D∑

d=1

c
d
t

)

(5)

=

D∑

d=1

(
1

∑
T
t=1

αt

T∑

t=1

αtc
d
t

)

=

D∑

l=1

r
l
qg. (6)

3.2. Learning

Our method allows us to learn all the parameters, Θ =
(ξ, θ) end-to-end and jointly for the task using the standard

backpropagation algorithm for neural networks. However,

due to computational constraints, we design the training

as a two-step process. First, we learn the parameters of

3D CNNs, then we fix the 3D CNNs and learn the clip-

similarity aggregation module parameters. We now de-

scribe each of these steps.

3D CNN. In each training iteration, following [11], we

randomly sample a batch of PK sequences belonging to

P person identities with K sequences from each identity.

Then, we randomly sample one clip of length L frames

from each sampled sequence to form the mini-batch. We

use a combination of the hard mining triplet loss [11] and
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Figure 2: The block diagram of the proposed video similarity estimation method. The video sequences are first split into

clips, which are combined to give a clip features. The combined clip features are then pooled with an importance score as a

weight. The final pooled representation vector is then used to compute the similarity.

the cross-entropy loss as our objective, L(ξ) = Ltriplet(ξ) +
Lsoftmax(ξ).

The hard mining triplet loss is given as, Ltriplet(ξ) =

P∑

i=1

K∑

a=1

[

m+ max
p=1,...,K

d(xa,i, xp,i)− min
j=1,...,P
n=1,...,K

j 6=i

d(xa,i, xn,j)

]

+

, (7)

where, d(x1, x2) = ‖x1 − x2‖2, xk,i is the 3D CNN feature

vector of the k-th clip of the i-th person in the batch, and m

is the margin, and [·]+ = max(0, ·).
We add a classification layer on top of our 3D-CNN net-

work with C classes, where C is the total number of iden-
tities in the training set. Let {w1, . . . ,wC} be the weights
of the classification layer. The softmax cross-entropy loss
is given by,

Lsoftmax(ξ) = −

P∑

i=1

K∑

k=1

[

log
exp(w

yi · fk,i)
∑

C
c=1

exp(wc · fk,i)

]

, (8)

where yi is the person index of the i-th person in the batch.

Note that, while learning 3D CNN parameters, ξ, we do not

use our clip-similarity aggregation module.

Clip similarity aggregation module. For learning θ, we

use the same batch sampling process as described for the

learning of 3D CNN parameters ξ, except now we uni-

formly sample M clips of length L instead of a single clip

from each sampled sequence. We extract features xi of

the clips, with the above learned 3D CNNs, and normalize

them. Then, we compute the similarity scores between all

pairs of sequences in the batch using (4). We use the hard

mining triplet loss similar to (7) as the objective, with the

euclidean distances replaced by negative clip similarities as

defined above in (3)–(6).

4. Experiments and Results

4.1. Datasets

MARS. The MARS dataset [44] is a large scale video-based

person re-identification benchmark. It contains 20,478

pedestrian sequences belonging to 1261 identities. The se-

quences are automatically extracted using the DPM pedes-

trian detector [8] and GMMCP tracker [5]. The lengths

of the sequences range from 2 to 920 frames. The videos

are captured from six cameras and each identity is captured

from at least two cameras. The training set consists of 8,298

sequences from 625 identities while the remaining 12,180

sequences from 636 identities make up the test set which

consists of a query and a gallery set.

DukeMTMC-VideoReID. The DukeMTMC-VideoReID

[28, 38] is another large benchmark of video-based person

re-identification. It consists of 702 identities for training,

702 identities for testing. The gallery set contains addi-

tional 408 identities as distractors. There is a total of 2,196

sequences for training and 2,636 sequences for testing and

distraction. Each sequence has 168 frames on average.

PRID2011. PRID2011 dataset [12] contains 400 sequences

of 200 person identities captured from two cameras. Each

image sequence has a length of 5 to 675 frames. Following

the evaluation protocol from [37, 44], we discard sequences

shorter than 21 frames and use 178 sequences from the re-

maining for training and rest 178 sequences for testing.

4.2. Implementation Details

3D CNN Architecture. We use the PyTorch implementa-

tion1 of the Inception-V1 I3D network [2] pre-trained on

the Kinetics action recognition dataset. We remove the fi-

nal classification layer from the I3D network and replace

the original average pooling layer of kernel 2 × 7 × 7 with

a global average pooling layer. The resulting I3D network

takes an input clip of size L× 3× 256× 128 and outputs a

1024-dimensional feature vector (D = 1024).

Clip similarity aggregation module architecture. The

clip-pair similarity aggregation module takes as input a pair

of tensors (M × D,M × D) representing I3D features of

M clips sampled from the two sequences to be matched. In

1https://github.com/piergiaj/pytorch-i3d
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Figure 3: Effect of frame sampling methods and test clip

length on MARS. Ltrain = 4, 8, 16 counterclockwise.

our experiments, we set the number of clips M to 8 and the

clip length L to 4 frames, this setting was faster than higher

L and smaller M while giving similar performance (kindly

see the supplementary document for complete ablation ex-

periment). The importance scoring function gθ(·) consists

of two hidden layers with 1024 units in both layers. The

output layer has a single unit that represents the estimated

importance score. The hidden layers have the ReLU acti-

vation function while the output layer has the softplus ac-

tivation function, σ(x) = log(1 + exp(x)). The softplus

function, a smooth approximation of ReLU function, con-

straints the importance score to always be positive. We also

use a dropout layer [33] with dropout probability 0.5 and a

batch normalization layer [14] after both hidden layers.

Training details. Due to lack of space, we include the com-

plete training details of the 3D CNN and the Clip Similarity

Aggregation module in the supplementary document.

Evaluation protocol and evaluation metrics. We fol-

low the experimental setup of [37], [44] and [38] for

PRID2011, MARS and DukeMTMC-VideoReID respec-

tively. For MARS and DukeMTMC-VideoReID, we use

the train/test split provided by [44] and [38], respectively.

For PRID2011, we average the re-identification perfor-

mance over 10 random train/test splits. We report the re-

identification performance using CMC (cumulative match-

ing characteristics) at selected ranks and mAP (mean aver-

age precision).

4.3. Analysis of I3D Features for Re­Identification

Frame sampling method and clip length. In the scenario,

where we use a single clip to represent a sequence, it be-

comes important how we sample the frames from the se-

quence to form a clip. In this experiment, we explore multi-

ple frame sampling methods given in Tab. 1 and their effect

1 2 4 8 16
No. of Clips

60
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80

85

Pe
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Rank-1
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Rank-1 (norm.)

Figure 4: Test perfor-

mance (MARS) with

averaging of I3D features

of multiple clips, with and

without ℓ2-normalization.

consec Randomly sample a clip of L consec-

utive frames

random Randomly sample L frames (arrange

in order)

evenly Sample L frames uniformly

all Take all frames

Table 1: Frame

sampling meth-

ods for clip

construction

on re-identification performance.

Note that, all sampling methods in Tab. 1 result in a clip

of lengthL except the all sampling method. We train three

I3D models with different clip lengths, Ltrain ∈ {4, 8, 16}.

The frames are sampled consecutively (consec) to form

a clip during training. During the evaluation, each test

sequence is represented by I3D features of a single clip

sampled in one of the ways described above. Given a

query, the gallery sequences are ranked based on the dis-

tances of their I3D features. We evaluate the three models

with different frame sampling methods and test clip lengths

Ltest ∈ {4, 8, 16, 32}.

Figure 3 shows the plots of re-identification performance

as a function ofLtest with different frame sampling methods.

We observe that the performance improves as we increase

the clip-length during testing, although with diminishing re-

turns. We also observe that when tested on longer clips (e.g.

Ltest = 16, 32), models trained on different clip-lengths

(Ltrain = 4, 8, 16) show similar performance to each other.

However, when tested on shorter clips (e.g. Ltest = 4),

a model trained on shorter clips performs better than the

model trained on longer clips.

The sampling methods random and evenly perform

better than the consec sampling method, especially for

smaller clip lengths. This can be explained by the fact that

random and evenly have larger temporal extents than

consec and do not rely on frames only from a narrow tem-

poral region which could be non-informative because of a

difficult pose, occlusion, etc.

Averaging features of multiple clips. Since sequences in

the MARS dataset can be up to 920 frames long, using sin-

gle short clips to represent these sequences is not optimal.

In this experiment, we take the average of the I3D features

of multiple clips evenly sampled from the original sequence

to represent these sequences. We vary the number of clips

in {1, 2, 4, 8, 16} on the MARS dataset. We use the model

trained with Ltrain = 4 and we keep the same clip length

Ltest = 4 during the evaluation. We also evaluate with

and without the ℓ2-normalization of clip-features. Figure 4
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Figure 5: Example of an uncorrupted and a corrupted clip.
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MARS test

mAP vs. se-

lection rate

(t) for top-t%
clip-similarity

aggregation.

shows the test re-identification performance for different

number of clips with and without ℓ2-normalization of clip-

features. We observe that averaging features from multiple

clips significantly improves the re-id performance. The per-

formance improves up to around 8 clips beyond which there

is little improvement. We also find that ℓ2-normalization

of clip features leads to consistent improvement in perfor-

mance.

4.4. Evaluation of Learned Clip Similarity Aggre­
gation on MARS

In this section, we present the re-identification perfor-

mance results of our learned clip similarity aggregation

method on the MARS test set. We also investigate the ro-

bustness of our method by evaluating it with varying de-

grees of input corruption. We randomly corrupt clips during

training and evaluation as follows. For every training or test

sequence x, we first randomly pick a number Mc(x) with

0 ≤ Mc(x) ≤ Mmax
c . Here, Mmax

c denotes the maximum

number of corrupt clips in a sequence with Mmax
c ≤ M .

Next, we apply a corruption transformation function to ran-

domly selected Mc(x) of the M clips sampled from the se-

quence x. The corruption transformation function consists

of first scaling of every frame in the clip down by a factor of

5, JPEG compression of resulting scaled-down frames, and

finally rescaling of the frames up to the original size. Fig-

ure 5 shows examples of uncorrupted and corrupted clips.

Let {f1q, . . . , f
M
q } and {f1g, . . . , f

M
g } be the ℓ2-normalized

I3D features of M clips sampled from a query sequence

xq and a gallery sequence xq respectively. As described in

Section 3, the similarity between xq and xg , as estimated by

our method, is given by (3) or (4). We train and evaluate

our clip-similarity aggregation module for different rates of

input corruption. The rate of input corruption is changed

via the parameter Mmax
c . We use the I3D network trained

only on uncorrupted clips and keep it fixed throughout the

experiment.

We compare our method with the top-t% clip-similarity

aggregation (top-t%) baseline, which is based on [3]. It

takes t% of the clip-pairs with the highest similarity and

averages their similarities to estimate the overall similarity

between the two sequences. By taking only top t% and

not all clip-pairs into account, the resulting similarity be-

comes more robust and improves re-identification perfor-

mance [3]. In our implementation, we learn a linear layer

that projects the D-dimensional I3D features to a new D-

dimensional space. We define the similarity between two

given clips as the cosine similarity between their projected

I3D features. Let {f′
1
q, . . . , f

′M

q } and {f′
1
g, . . . , f

′M

g } be the

projected clip features and let P̂t(xq, xg) be the set of t%
clip-pairs with the highest similarity. Then, the top-t%

similarity between the two sequences is given by,

stop-t%(xq, xg) =
1∣∣∣P̂t(xq, xg)

∣∣∣
∑

(i,j)∈

P̂t(xq,xg)

f′
i

q · f′
j

g∥∥∥f′
i

q

∥∥∥
2

∥∥∥f′
i

g

∥∥∥
2

. (9)

We implement two variants of this method. In the first

variant top-t%-eval, we perform the top-t% similarity

aggregation only during the evaluation. In the second vari-

ant, top-t%-traineval, we perform the top-t% sim-

ilarity aggregation during the evaluation as well as during

the training. This means that the loss gradients are back-

propagated only for the clips that are included in the top t%
of the clip-pairs.

Figure 6 shows the test re-identification performance

vs t plots for top-t%-eval and top-t%-eval re-

spectively with different values of Mmax
c . As expected,

the re-identification performance deteriorates as the value

of Mmax
c is increased. We also observe that top-t% ag-

gregation during training significantly improves the re-

identification performance, especially with the smaller se-

lection rates.

Table 2 shows the re-identification performance of our

method and the baselines on the MARS test set. Our method

has comparable performance to the top-t% clip-similarity

aggregation when the corruption rate is low i.e. Mmax
c is

small. However, it significantly outperforms the top-t%
clip-similarity aggregation baseline for higher rates of input

corruption, e.g. for Mmax
c = 7, the maximum mAP for the

baseline topt-e is 49.3 (for t = 20%), while our method

degrades more gracefully to give 69.6 mAP. This highlights

the advantage of the proposed method for learning of clip

similarity aggregation.

4.5. Comparison with the state­of­the­art

In Table 3, we compare our method with the state-of-

the-art techniques on MARS dataset. Our method achieves

75.9% mAP and 82.7% Rank-1 accuracy. In terms of mAP,

our method is on par with all the methods, except for the re-

cently published visual distributional representation based

method of Hu and Hauptmann [13], who achieve an mAP of
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Method t (%)

mAP Rank-1

Mmax
c Mmax

c

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

topt-e

10 73.9 72.6 71.3 68.5 63.9 57.0 53.5 49.2 78.9 78.3 78.0 76.9 73.0 67.5 64.7 62.4

20 75.2 74.7 73.7 72.3 68.0 60.6 56.7 49.3 80.9 80.7 80.9 80.0 76.8 70.7 67.6 62.1

30 75.6 75.1 74.6 73.7 70.6 62.5 58.2 49.0 81.2 81.1 81.6 81.1 79.7 73.7 69.3 61.8

40 75.9 75.3 75.0 74.1 71.5 63.2 58.4 48.7 81.8 81.5 82.6 81.6 80.2 73.9 70.1 61.5

50 76.0 75.4 75.1 74.3 71.6 63.2 58.3 48.3 82.5 81.5 82.6 82.2 80.3 73.9 70.0 61.3

60 76.1 75.4 74.8 74.1 71.2 63.0 58.1 47.9 83.2 82.3 82.2 82.2 79.7 72.9 70.1 60.7

70 76.1 75.2 74.5 73.4 70.6 62.7 57.7 47.5 83.2 82.2 82.4 81.4 79.2 72.8 69.6 60.4

80 75.8 75.0 73.9 72.7 69.7 61.9 57.5 47.3 82.9 82.1 82.2 81.0 78.6 72.2 69.4 60.2

90 75.4 74.5 73.3 71.9 68.8 61.3 57.1 47.0 82.6 82.0 82.0 80.4 77.6 71.9 68.5 60.4

100 74.8 73.6 72.5 70.9 67.6 60.5 56.6 47.1 82.2 81.2 81.1 79.4 76.8 71.5 67.9 59.9

topt-te

20 74.7 74.7 74.4 74.1 72.0 67.7 64.7 53.8 80.5 80.7 80.5 80.9 79.1 77.1 74.9 67.1

50 75.7 75.4 75.2 74.7 72.1 64.9 60.4 49.1 82.2 81.6 82.6 82.4 79.9 75.0 72.0 63.0

70 75.7 75.3 74.4 73.3 70.0 62.3 58.4 47.4 82.9 82.3 82.7 81.8 78.5 73.5 70.6 60.7

100 74.6 73.4 72.3 70.5 66.9 59.5 56.3 46.6 82.5 81.0 81.7 79.0 76.7 70.7 67.9 59.9

Ours n/a 75.9 75.4 75.2 75.2 74.4 73.7 73.1 69.9 82.7 81.4 81.4 81.5 79.8 80.0 80.3 78.6

Table 2: The MARS test performance (mAP and rank-1 accuracy) of our method learned clip similarity aggregation and of

the top-t% aggregation baseline. The blocks of rows labeled topt-e and topt-te show the results of the top-t%-eval

and top-t%-traineval variants of the baseline top-t% clip-similarity aggregation, respectively.350
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Figure 7: Each column gives an example of different clips from query and gallery videos, where in each row, the left clip is a

query clip (green outline) and the right one is a gallery clip (orange outline). Notice how the method predicts low importance

score when the query clip is very different from the gallery clip, and thus effectively ignores the pair even if the similarity is

predicted to be non trivially high by the feature matching.

81.8%, which is significantly higher than ours (we discuss

below). In terms of mAP performance, our method is very

close to the part-aligned bilinear representations (PABR)

[35] and CSSA-CSE + Flow [3]. However, the performance

of [3] is much lower than ours when optical flow is not used

(see CSSA-CSE in Table 3). Among methods that use 3D

CNNs as their backbone (marked * in Table 3), our method

achieves the best mAP performance.

Table 4 shows the comparison of our method with

the state-of-the-art on the DukeMTMC-VideoReID dataset.

There are only a few works with results on this dataset.We

achieve 88.5% mAP and 89.3% Rank-1 accuracy, which

is significantly better than the baseline presented in [38].

However, the performance of Hu and Hauptmann [13] and

[9] is better than our method.

Comparing our method to very recent works such as that

of Hu and Hauptmann [13], we note that their method is

significantly more costly than ours in terms of gallery stor-

age requirements, and uses a network that is deeper than

ours. While we use a 3D CNN with 22 layers, they use an

image-based DenseNet CNN with 121 layers. They com-

pare the test video with the gallery videos by estimating the

Wasserstein distance between the densities estimated using

KDE. This requires them to use (and save) all the frames

to make the inference. While in our case, we use a limited

number of clip features (∼ 8) per video. While such an ac-
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Model mAP R1 R5 R20

RQEN+XQDA+Reranking (2018 [32]) 71.1 77.8 88.8 94.3

TriNet + Reranking (2017 [11]) 77.4 81.2 90.8

DuATM (2018 [30]) 67.7 81.1 92.5

MGCAN-Siamese (2018 [31]) 71.2 77.2

PSE (2018 [29]) 56.9 72.1

PSE + ECN (2018 [29]) 71.8 76.7

RRU + STIM (2018 [23]) * 72.7 84.4 93.2 96.3

Two-Stream M3D (2018 [17]) * 74.1 84.4 93.8 97.7

PABR (2018 [35]) 75.9 84.7 94.4 97.5

PABR + Reranking (2018 [35]) 83.9 85.1 94.2 97.4

CSSA-CSE + Flow (2018 [3]) 76.1 86.3 94.7 98.2

STA (2019 [9]) 80.8 86.3 95.7 98.1

STA + Reranking (2019 [9]) 87.7 87.2 96.2 98.6

D + GE + DG (2019 [13]) 81.8 87.3 96.0 98.1

Ours * 75.9 82.7 94.0 97.2

Ours + Reranking * 83.3 83.4 93.4 97.4

Table 3: Comparison of our model with the state-of-the-art

re-identification methods on MARS dataset. Entries in grey

represent the models that use re-ranking. Models marked *

use 3D CNNs as their backbone.

Model mAP R1 R5 R20

ETAP-Net [Supervised] (2018 [38]) 78.3 83.6 94.6 97.6

STA (2019 [9]) 94.9 96.2 99.3 99.6

R + GE + DG (2019 [13]) 94.9 95.6 99.3 99.9

Ours 88.5 89.3 98.3 99.4

Table 4: Comparison of our model with the state-of-the-art

methods on DukeMTMC-VideoReID dataset.

Model R1 R5 R20

CNN + XQDA (2016 [44]) 77.3 93.5 99.3

E2E AMOC+EpicFlow (2017 [21]) 83.7 98.3 100.0

QAN (2017 [22]) 90.3 98.2 100.0

M3D+RAL (2018 [17]) 91.0

CSSA-CSE (2018 [3]) 88.6 99.1

Ours 82.9 95.8 99.1

Two-Stream M3D (2018) 94.4 100.0

CSSA-CSE + Flow (2018) 93.0 99.3 100.0

Table 5: Com-

parison with

state-of-the-art

re-id methods

on PRID2011

dataset.

curate method achieves higher performance, it comes at a

significant cost.

STA [9] is another recent method with state-of-the-

art performance. While STA focuses on aggregating fea-

tures effectively from a small set of input frames (4-8

frames), our method is more focused on predicting the over-

all similarities between two long sequences while relying on

I3D for clip-level features (a clip is typically 4-16 frames

long). Since the video benchmarks contain much longer se-

quences, our method can be used in conjunction with [9] to

further boost the performance as it is complementary to it.

In Table 5, we show results on the PRID2011 dataset.

Unfortunately being a video-based end-to-end method, our

method seems to overfit severely on the dataset. PRID2011

dataset has only 178 videos from training cf. 8,298 in

MARS. We see that we are still comparable with initial

CNN based methods (eg. CNN+XQDA [44]). The more

recent methods seem to utilize optical flow as input, which

could be leading to some regularization by removing the

appearance from the videos.

4.6. Qualitative Results

Figure 7 shows four examples of pairs of query-gallery

sequences and the similarity between them as predicted by

our method. For each example, we also show two clip

pairs (4 frames each) with the highest importance scores

and two with the lowest importance score. One of the clips

in the bottom clip-pair has, from left to right, (i) a signifi-

cant amount of occlusion, (ii) no person in the frame, (iii)

different persons in different frames due to a tracking error,

and (iv) an improperly cropped person due to poor bound-

ing box estimation. Our method learns to correctly identify

the clip pairs that are unreliable for estimating the overall

similarity between the two video sequences and gives them

very low importance scores (bottom two rows). Our method

gives an overall high similarity (the heading of each col-

umn) to all the examples shown in Figure 7 by minimizing

the effect of bad clip-pairs. Although the MARS dataset

considers the gallery sequences in column 2 and 4 as dis-

tractors, the high similarity estimated by our method is rea-

sonable since they contain the same person as in the query

in many of their frames, and are annotation edge cases.

These qualitative results highlight the ability of the pro-

posed method to identify and match reliable clip pairs, and

filter out unreliable ones despite non-trivial appearance sim-

ilarities estimated by the base network.

5. Conclusion

We addressed the video-based person re-identification

task and, to the best of our knowledge, showed that 3D

CNNs can be used competitively for the task. We demon-

strated better performance with 3D CNN on RGB images

only, cf., existing methods that use optical flow in addition

to RGB frames. This is indicative of the fact that 3D CNNs

are capable of capturing necessary motion cues relevant to

the task of video-based person re-identification.

Further, we proposed a novel clip similarity learning

method that identifies clip pairs which are informative for

correlating the two clips. While previous methods used ad-

hoc approaches to obtain such pairs, we showed that our

method is capable of learning to do so. We showed with the

simulated partial corruption of the input clips, that the pro-

posed method is robust to nuisances which might occur as a

result of motion blur or partial occlusions. We also verified

the intuition used to develop the method qualitatively.

The proposed method can be seen as an approximate

discriminative mode-matching method. There have been

recent works using deeper CNN models (121 layers cf.

22 here) and more accurate distribution matching that ob-

tain better results than the proposed method, however, they

come at a computational and storage cost. A future work

would systematically find the balance between the two ap-

proaches to obtain the best performance for a given budget.
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