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Abstract

Skeleton-based human action recognition from video se-

quences is currently an active topic of research. Conven-

tionally, human action recognition is performed after con-

ducting feature extraction on a given spatial-temporal rep-

resentation of a human pose by using statistical methods or

deep learning methods. The spatial and temporal features

are globally evaluated by a classifier and used to determine

which action is closest. However, the conventional method-

ology does not identify the temporal location of the action

that determines the classification. To address this problem,

we propose a skeleton-based human action recognition and

localization method using weakly supervised graph convo-

lutional neural networks, which are both spatially and tem-

porally connected. In this method, human action localiza-

tion is accomplished using time series data of human joint

positions as input and then applying regression to find an

expected value for each action at each time frame. Our

weakly supervised training is based on multiple-instance

learning inspired by deep ranking, and we devise a loss

function so that high scores can be spontaneously learned

for temporally important time frames. In this paper, we

first explain the network architecture and then present a

multiple-instance learning method for its optimization. In

the experiment, we performed localization and classifica-

tion of human actions by using this method and confirmed

the temporal localization efficacy of the method.

1. Introduction

Human action recognition from video sequences is cur-

rently being actively studied, and it has attracted increasing

attention in computer vision fields such as video surveil-

lance, human-computer interaction, and entertainment. To

recognize human action, various methods using RGB im-

ages, depth images, and human skeletons have been pro-

posed. For RGB images, methods for extracting spatial-

temporal features such as optical flow [25, 27, 31] and sil-

houettes [11, 10] have been proposed. Although these meth-

ods can be applied to various situations, they struggle to

yield robust results in the presence of a background, noise,

and other disturbances. The use of a depth image captured

by a stereo camera or an infrared camera can easily separate

the background and is advantageous for the analysis of hu-

man action. Recently, with the emergence of hardware such

as Microsoft Kinect, skeleton-based human action recog-

nition techniques have been actively researched. When ap-

plied to human action analysis and compared with RGB and

depth images, skeletal information is a high-level feature, is

the simplest in terms of information, and is lightweight. In

addition, the skeletal information is more robust to subject

rotation as compared with RGB or depth image based meth-

ods.

The skeleton-based human action analysis method is fo-

cused on human action that can be expressed as a combi-

nation of two- or three-dimensional spatial time-series data

of human poses. Conventionally, after performing feature

extraction on a given spatial-temporal representation of a

human pose, by using statistical methods or deep learning

methods, the spatial and temporal features are globally eval-

uated by a classifier, which classifies the action using an a

priori dataset of actions. However, not all temporal loca-

tions of a human action are necessarily important for iden-

tifying it. For example, when recognizing the “make a call

on a mobile phone” action, the “move hand close to ear”

action is important for determining the action. However,

the “take mobile phone out of pocket” action is common

to other actions, so it is insufficient to determine the ac-

tion. If it is possible to localize where the important action

is included, it would be useful for advancing video surveil-

lance or other applications. Thus far, various human action

datasets [15, 34, 29, 2, 21, 7, 16] have been proposed for re-

search in human action analysis. Each of these is composed

of tens to hundreds of frames of video and skeletal informa-

tion, each with a single label to explain its action. However,

it has been difficult to perform temporal action localization
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using such datasets, because when annotating an instance

in high-dimensional time series data, such as human action,

it is difficult to quantify what information is necessary in a

given frame to determine whether the action is occurring.

To solve these problems, we propose a weakly super-

vised graph convolutional network (WST-GCN) that en-

ables temporal human action localization that recognizes

actions and localizes important time frames. We devise a

loss function to optimize the network using a singly labeled

human action dataset so that high scores can be learned

spontaneously for temporally important video frames. The

loss function is able to recognize and localize multiple

classes of actions. We also adopt multiple-instance learn-

ing inspired by learning to rank [26].

In this paper, we first explain the network architecture

and then explain a weakly supervised learning method for

training the network. We then apply single and multiple-

class action classification.

2. Related works

2.1. Skeleton­based human action recognition

In recent years, many human action analysis methods us-

ing human pose time series data have been proposed. Hand-

crafted feature quantities [34, 8, 20, 28, 33] and methods

using deep learning [25, 27, 31, 19, 4, 18, 35, 13, 32] have

been proposed for human action recognition. Hand-crafted

feature-based methods include temporal covariance matri-

ces of skeletal joint [8], modeling of human behavior as

a curve in a Lie group [28], spatial-temporal Naive-Bayes

Nearest-Neighbor [33], etc. Deep learning based methods

include convolutional neural networks (CNNs), recurrent

neural networks (RNNs), long short-term memory (LSTM),

and GCNs. Liu et al. [19] proposed representing joint posi-

tions by using RGB image maps and processing them with

a CNN-based model to extract and fuse deep features. Du

et al. [4] introduced an end-to-end hierarchical RNN model

to represent the temporal dynamics of human structures and

joints. Liu et al. [18] designed a 2D spatial-temporal LSTM

framework to simultaneously explore hidden sources of be-

havioral context information in the spatial and temporal do-

mains. They also introduced a trust gate mechanism [17] to

handle inaccurate 3D coordinates provided by depth sensors

for skeletal joints.

More recent studies focus on spatial and temporal fea-

tures of the skeleton sequence, Yan et al. [35] and Li et al.

[13] proposed a human action analysis method using spa-

tially and temporally connected GCNs (ST-GCNs). Fur-

thermore, several works demonstrating the improved per-

formance of ST-GCN have been reported [14, 24, 23, 22].

Li et al. [14] proposed an A-link inference module and an

encoder-decoder structure called actional-structural graph

convolution network (AS-GCN), which combines actional-

structural graph convolution and temporal convolution as a

basic building block. Si et al. [24] improved ST-GCN in-

cluding an attention enhanced graph convolutional LSTM

(AGC-LSTM) layer and improved its classification accu-

racy. These ST-GCN based methods achieve state-of-the art

performance in human action recognition, and all methods

use hundreds of frames as input but provide only a single

score for each action; localization is not considered.

2.2. Multiple­instance learning for ranking

Multiple-instance learning inspired by learning to rank

can be used to estimate the relative score, rather than the

absolute score, by using weakly labeled data. Joachims et

al. [9] proposed a rank-SVM and report improvements in

search engines. Recently, deep ranking has been used in

computer vision applications, and it has reported leading

edge performance in various fields: feature extraction [30],

image generation [6], person identification [3], place recog-

nition [1], and video summarization [5].

Similarly, Sultani [26] proposed an anomaly detection

method inspired by learning to rank and degree of anomaly

that applied a multiple-instance learning model to video se-

quences in which it is difficult to annotate a ground truth

value. These methods are similar in nature to human action

localization in dealing with time series data that is difficult

to annotate. By imitating the dataset for anomaly detec-

tion, each instance in the dataset has two values, positive

or negative, and it can perform single-class action classifi-

cation by training on a dataset including or not including

the specific action. However, in this method, the loss func-

tion is only applicable for binary classification (positive or

negative), and it cannot be applied as-is to multiple-class

classification problems. In our research, this idea is applied

to multiple-class human action recognition and localization

by improving the loss function.

3. Action localization ST-GCN

In this section, we first describe an overview of the pro-

posed human action recognition method and the structure

of the GCN. We then explain how to train it with weakly

supervised learning. After describing the method applied

to single-class human action recognition, we apply it to

multiple-class action recognition.

3.1. Overview of proposed method

An overview of the proposed method is depicted in Fig-

ure 1. In this method, we first perform feature extraction on

the human-pose time series data using a GCN. Next, human

action recognition and localization are performed by a one

dimensional CNN, which outputs human action localization

as an expected value for each time frame. In action recog-

nition using pose information, three-dimensional data for
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Figure 1. Visualization of human action recognition method. (left) Conventional method using ST-GCN: multiple frames are input to the

network and output a single frame score. (right) Proposed method: multiple input frames are input and output multiple frame scores.

the pose is provided in a time series along with spatial rela-

tionships between different joints in the same frame and be-

tween different frames. The temporal relationships between

the same joints are both important in human action analysis

using skeletal information. Therefore, in this research, we

adopted an ST-GCN for feature extraction. The output of

a general ST-GCN [35] is an N × T dimensional matrix.

Here, N is the number of action classes and T is the time

length. However, the classifier CNN, installed after the ST-

GCN, transforms the outputs into an N dimensional vector,

because it is activated with a softmax function and trained

on single-class labels with cross-entropy loss. Meanwhile,

the proposed network outputs anN×T dimensional matrix

directly through weakly supervised learning based on rank-

ing loss. It enables us to use regression to find the expected

importance of each time frame for identifying the desired

action.

3.2. Spatial­temporal graph convolution

The idea of using ST-GCNs for spatial-temporal feature

extraction from human action was based on the method of

[35]. The input to an ST-GCN expresses a human pose by

using a spatial-temporal graph, in which each node cor-

responds to a human joint at each time frame, and each

edge corresponds to a spatial-temporal connection between

nodes. Spatial connections constitute graphs that are rep-

resented by human joints in a single frame. Here, the spa-

tial connections of the graph represent the natural connec-

tions between joints of the human body. The temporal con-

nections are configured by connecting corresponding joints

across a series of frames. A graph having T frames with

a skeletal graph having I nodes in a single frame is repre-

sented by G = (V,E). Here, V = {vti|t = 1, ..., T, i =

1, ..., I}. For the spatial domain, the graph convolution is

expressed as

fout(vti) =
∑

vtj∈B(vti)

1

Zti(vtj)
fin(vtj) ·w(lti(vtj)). (1)

Here, fin and fout are input and output features, respec-

tively. B(vti) represents the set of neighboring nodes for

vti, where one distance neighborhood of the object node vti
is considered. The weight for computing the inner product

using the input features is w. Because the number of weight

vectors is fixed, B(vti) is divided into three subsets: (1) the

target node, (2) nodes that are closer to the center of gravity

(centripetal nodes), and (3) the remaining nodes (centrifugal

nodes). lti is a function that maps each node in the vicinity

of vti to its subset label. The subset radix Zti(vtj) is used as

a normalization term to ensure that different subsets do not

break the output balance. In the ST-GCN in Yan’s imple-

mentation [35] of the graph convolution described in Kiph

et al. [12],

fout =
∑

j

Λ
− 1

2

j AjΛ
− 1

2

j finWj (2)

is adopted. A is anN×N adjacency matrix. To implement

the ST-GCN, equation (1) is converted to the feature fin and

fout, and the input feature fin is expressed as a tensor with

dimension (N,T,C), where C is the number of input chan-

nels. The adjacency matrix is divided into three matrices:
A0, A1, and A2. These represent self-connections, t

centripetal-node connections, and centrifugal-node connec-

tions respectively. Each matrix represents a subset of the

connections. Wj represents a weight matrix, and the weight

vectors for a plurality of the output channels are stacked.
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Figure 2. Proposed network optimization method for action localization. (a) Action localization for time frames that include and do not

include a target action. (b) Minimization of loss function L, when initial overall estimated scores are (top) high and (bottom) low.

3.3. Action localization

3.3.1 Single-class action localization

The proposed model estimates the importance score for

determining the action from human pose time series data

as a regression problem, as it is difficult to label the hu-

man pose data quantitatively for each time frame. Figure 2

is an overview of the model optimization method with our

weakly supervised training method. First, the human pose

data is classified for each class according to whether the tar-

get action is included (positive) or not included (negative).

Next, the frames containing a specific action are given a

higher score than those that do not contain the specific ac-

tion. Here, we use ranking loss to encourage a higher score

for positive frames than for negative ones:

max
t∈{1,...,T}

ytpos > max
t∈{1,...,T}

ytneg (3)

where ytpos and ytneg are the predicted positive and negative

scores of time frame t. It is unknown which part of the se-

quence contains important information for determining the

action, so we use only the two frames that have the highest

score from each of the positive and negative data:

L = max(0, 1− max
t∈{1,...,T}

ytpos + max
t∈{1,...,T}

ytneg)+λ (4)

where λ is a regularization term to stabilize training,

λ = µ1

T−1
∑

t=1

(ytpos − yt+1
pos ) + µ2

T
∑

t=1

ytpos. (5)

The two terms are a smoothness term and a sparsity term,

and µ1 and µ2 are parameters for controlling the strength of

each type of regularization.

3.3.2 Multiple-class action localization

By training multiple-class human action localizers and

using them in parallel, multiple-class action localization be-

comes possible. However, this is not preferable owing to the

memory requirements and the calculation time. Using the

expressive power of GCNs of the same size as those used

for single-class localization, it is possible to localize mul-

tiple actions. To utilize GCNs for multi-class action local-

ization, we expanded the output dimension of our model to

N × T and proposed a new loss function

L = max

(

0,

2
∑

k=1

N
∑

n=1

(φkn − ψknYkn)

)

+ λ. (6)

Here, Ykn denotes the maximum value of output score from

the tth frame, and the kth indexed and nth action data

randomly selected pair of indexes included in the training

dataset

Ykn = max
t∈{1,...,T}

ytkn. (7)

φkn and ψkn are N dimensional labels indicating whether

each instance includes the action. We define φkn and ψkn

as
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φkn =

{

1 if nth action is included,

0 otherwise,
(8)

ψkn =

{

1 if nth action is included,

−1 otherwise.
(9)

We use λ as a regularization term:

λ = λ1 + λ2 + λ3, (10)

λ1 = µ1

2
∑

k=1

N
∑

k=1

T
∑

t=1

(ytkn − yt+1
kn ), (11)

λ2 = µ2

2
∑

k=1

N
∑

k=1

T
∑

t=1

ytkn, (12)

λ3 = −µ3

2
∑

k=1

N
∑

k=1

φtkn log
exp(Ykn)

∑

m exp(Ykm)
. (13)

It is represented similarly as in the single-class case, where

the first term represents smoothing and the second term rep-

resents sparsity. The third term represents cross entropy

loss, which prevents the score for the negative sample from

becoming too large.

3.4. Model optimization

For the architecture of the ST-GCN, we adopted the

method of Yan et al. [35]. The ST-GCN has 9 layers. The

first 3 layers have 64 channels. The next 3 layers have 128

channels and the last 3 layers have 256 channels. Pooling

was performed so that the width in the temporal domain was

pooled in the fourth and seventh layers. After each GCN

layer, we perform dropout with a probability of 0.1. In the

original ST-GCN, F = 256 dimensional feature vectors are

extracted temporally and spatially with respect to GCN via

average pooling to obtain a score for N dimensional score

as output. In the proposed method, spatial information is

preserved. After extracting the feature quantity of T × F

dimensions and applying one dimensional convolution, the

T × N dimensional score is output. These networks were

optimized using stochastic gradient descent with a learning

rate of 10−4. The regularization term µ1 is 10−5, µ2 is

10−2, and µ3 is 10−2. After 20 epochs, the learning rate

is reduced by multiplying with 10−1. For data augmenta-

tion, the skeletal data are rotated −30◦ to 30◦ around an

axis perpendicular to the floor surface. In addition, to make

our model robust to differences in body size, we performed

a scale transformation in the range of 0.9 to 1.1 in three-

dimensional space. Furthermore, Gaussian noise was added

to the data to simulate measurement noise for the joint po-

sitions. To verify frame rate change robustness, 0 to 10%
of the frames were randomly removed. The TITAN V GPU

was used for training and experiments.

4. Experiments

In this section, qualitative and quantitative evaluations

were performed on publicly available human action datasets

to evaluate our method. In the experiment, the ability to

perform action localization and classification was compared

with ST-GCN and other related methods.

4.1. Dataset

Three datasets were utilized for evaluating our method.

These datasets include not only human skeleton data but

also RGB images and depth images. However, in this ex-

periment, only skeleton information was used.

UTD-MHAD dataset: The UTD MHAD dataset [2]

was captured with Microsoft Kinect. In this dataset, 27

class actions were performed four different times by eight

subjects. Each skeleton is represented by three-dimensional

coordinates of 20 points of human joints. In the evaluation,

according to the method of [2], the data were divided into

1, 3, 5, and 7, and the data of subjects were divided into 2,

4, 6, and 8; the former was used for training and the latter

was used for testing. Zero padding was applied so that all

data contained 128 frames.

SYSU datasets The SYSU [7] datasets were also cap-

tured with the Kinect, and 12 class actions were performed

by 40 subjects. This dataset was utilized to represent data

that are not included in UTD-MHAD, that is, negative data,

and was used to confirm the behavior of this method to neg-

ative data.

NTU RGB+D datasets To conduct experiments on a

larger dataset, we used the NTU RGB+D [21] dataset. This

dataset was captured by the Kinect V2 and consists of more

than 56,000 frames of video data. It includes 60 action

classes performed by 40 subjects, and each human pose is

represented by 25 points of human joints. The providers of

this dataset recommend two evaluation methods as bench-

marks. The first was the cross-subject benchmark, where

the training and test data included 40,320 and 16,560 in-

stances, respectively. In this evaluation method, learning

and testing were performed in subsets. The second recom-

mendation was the cross-view benchmark, where the train-

ing and test data were divided to contain 37,920 and 18,960

instances, respectively; those captured by two cameras in

the same subset were training data, and the rest were testing

data.

4.2. Qualitative results

The action localization results are presented in Figure

3. In the experiment, training of the WST-GCN was per-

formed using the UTD-MHAD dataset and it was confirmed

whether the actions were included in the testing set. To con-

firm the ability of temporal action localization, annotations

were added to frames that were important for determining
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Figure 3. Estimatied score according to softmax classifier, and the proposed method: (upper) Skeleton sequences of “Arm cross”, “Baseball

swing”, “Tennis serve”, and “Stand to sit” in UTD-MHAD datasets are used as positive test data. (bottom) and “Taking out wallet” and

“Playing phone” in SYSU are used as negative test data.

Figure 4. Evolution of estimated score over iterations. Colored

windows represent ground truth.

the behavior of each test data in the UTD-MHAD dataset

(not given to training data). This annotation was done man-

ually. Although it required approximately 6 hours, the main

feature of the proposed method is that learning can be local-

ized automatically without the need for the annotation work.

As shown in Figure 3, our method yielded high scores for

the frames that are important for determining the action and

low scores in the other frames. Furthermore, the desired

response to negative data: a sufficiently low value was out-

put. Figure 4 shows the relationship between the number

of iterations used for training and the output value of the

proposed model. With 3,000 iterations, a high score was

produced for the negative class actions, but as the number

of iterations was increased, the score for negative class ac-

tions declined, while a high score was maintained for the

positive class actions.

4.3. Quantitative result on action classification

To evaluate our method, we first confirmed ability to

classify multiple-class actions by using the UTD-MHAD,

and NTU RGB+D datasets.

4.3.1 Experiments on the UTD-MHAD dataset

When calculating action recognition accuracy, the ex-

pected score in each frame output is summed over the entire

skeleton sequence. The detected action is calculated as

detected action = arg max
n∈{1,...,N}

T
∑

t=1

ytn. (14)

A comparison of recognition accuracy with the latest

method and a confusion matrix are shown in Table 1 and

Figure 5.

Here, the ST-GCN paper [35] was not evaluated by

UTD-MHAD, so it was newly implemented and tested. In
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Figure 5. Confusion matrix on UTD-MHAD dataset.

particular, when compared with ST-GCN, which is the com-

parison that is the crux of this study, equivalent classifica-

tion accuracy was confirmed.

Table 1. Comparison of classification accuracy on Two datasets.

Methods UTD-MHAD
NTU RGB+D

CS CV

T-GCN [35] − 81.5 88.3

ST-GCN
94.2 79.5 87.3

(Our implementation)

WST-GCN (Ours) 94.6 79.9 89.8

4.3.2 Experiments on the NTU RGB+D Dataset

To conduct experiments on a larger dataset, we used the

NTU RGB+D dataset. NTU RGB+D dataset. The proposed

method yielded an equivalent classification accuracy to that

of ST-GCN, demonstrating that human action can be prop-

erly classified even in a larger dataset. The ST-GCN that

we implemented was slightly lower than that in the litera-

ture [35], but almost the same result was achieved, and the

appropriateness of the evaluation was confirmed.

4.4. Quantitative result on action classification

To confirm the accuracy related to temporal action lo-

calization, the manually annotated UTD-MHAD dataset

was utilized. The recognition accuracy was evaluated by

Figure 6. Confusion matrix on NTU RGB+D dataset.

mean average precision (mAP), varying the intersection

over union (IoU) threshold over the range of 0.1− 0.5.

Figure 7 shows part of the localization results and ground

truth annotation in the UTD-MHAD dataset. Table 2 shows

the quantitative evaluation results of recognition accuracy

regarding localization. As shown in Figure 7, ST-GCN was

able to recognize the appropriate action but was unable to

localize each action. This failure is explained by the fact

that softmax activation is installed before the output of ST-

GCN, produces some high scores even for information that

is not necessary to determine the action. On the other hand,

in the proposed method, localization was performed appro-

priately. The two methods yielded almost identical results

in the classification task, but the proposed method was ad-

vantageous in terms of the action localization task.

Table 2. Comparison of action localization result on UTD-MHAD

dataset measured by mAP(%) at different IoU thresholds.

mAP@IoU

IoU threshold 0.1 0.2 0.3 0.4 0.5
ST-GCN

24.2 20.5 12.4 4.0 0.7
(Our implementation)

WST-GCN (Ours) 72.3 69.5 59.7 44.1 25.0

5. Conclusions

In this study, skeleton-based human action localization

was achieved through weakly supervised training using

ranking loss inspired by deep ranking. By devising loss

function, our method localized multiple classes of human

actions. In the evaluation, it was possible to classify human
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ST-GCN

Ours

Figure 7. Example of action localization on the UTD-MHAD dataset estimated by (a) ST-GCN and (b) our method.

action by training the WST-GCN that estimates the degree

to each action of the subjects. Temporal localization of hu-

man action is possible while still maintaining the equivalent

classification accuracy. These results suggest the proposed

method is effective in enhancing video surveillance. In ad-

dition, because training does not require information on the

temporal location and the degree of action, it is possible to

detect actions with an unclear definition, such as unnatural

human behavior.
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