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Abstract

Previous methods for audio-driven talking head genera-

tion assume the input audio to be clean with a neutral tone.

As we show empirically, one can easily break these systems

by simply adding certain background noise to the utterance

or changing its emotional tone (to for example, sad). To

make talking head generation robust to such variations, we

propose an explicit audio representation learning frame-

work that disentangles audio sequences into various fac-

tors such as phonetic content, emotional tone, background

noise and others. We conduct experiments to validate that

when conditioned on disentangled content representation,

the generated mouth movement by our model is significantly

more accurate than previous approaches (without disentan-

gled learning) in the presence of noise and emotional vari-

ations. We further demonstrate that our framework is com-

patible with current state-of-the-art approaches by replac-

ing their original component to learn audio based repre-

sentation with ours. To the best of our knowledge, this is

the first work which improves the performance of talking

head generation through a disentangled audio representa-

tion perspective, which is important for many real-world

applications.

1. Introduction

With recent advances in deep learning, we have wit-

nessed growing interest in automatically animating faces

based on audio (speech) sequences, thanks to applications

in gaming, multi-lingual dubbing, virtual 3D avatars and

so on. Specifically, the talking head generation is formu-

lated as: given an input face image and an audio (speech)

sequence, the system needs to output a video where the

mouth/lip region movement should be in synchronization

with the phonetic content of the utterance while still pre-

serving the original identity.

As we all know, speech is riddled with variations. Dif-

ferent people utter the same word in different contexts with

varying duration, amplitude, tone and so on. In addition to

linguistic (phonetic) content, speech carries abundant infor-

mation revealing details about the speaker’s emotional state,

identity (gender, age, ethnicity) and personality to name a

few. Moreover, unconstrained speech recordings (such as

from smartphones) inevitably contain a certain amount of

background noise.

There already exists a large body of research in the do-

main of talking head generation[30, 31]. However, inspired

by the rapid progress in Generative Adversarial Networks

(GAN) [16], most of the recent works focus more on com-

ing up with a better visual generative model to synthesize

higher quality video frames. While impressive progress has

been made by these prior methods, learning better audio

representation specially tailored for talking head generation

is being almost ignored without attracting much attention.

For example, most of the previous works simply assume

the input to be a clean audio sequence without any back-

ground noise or strong emotional tone, which is unlikely in

practical scenarios as we described above. We highlight in

our empirical analysis that the state-of-the-art approaches

are clearly unable to generalize to noisy and emotionally

rich audio samples. Although recent works, such as [14]

and [1], show that visual signals can substantially help im-

prove the audio quality (i.e., remove noise) when the system

can see the visual mouth movements, it is however reason-

able to assume that in many cases video is not available or

there could be misalignment issue between audio and video

in practical online applications.

Therefore, to make the system less sensitive to the noise,

emotional tone and other potential factors, it is desired to

explicitly disentangle the audio representations first, before

feeding it into the talking head generation part, rather than

simply treating it as black box and expect the network to im-

plicitly handle the factors of variations. We argue that meth-

ods which explicitly decouple the various factors should

have better chances to scale up the training and general-

ize well to unseen audio sequences, while implicit methods

such as [31, 22, 26, 30] may have high risk of overfitting.

To this end, we present a novel learning based approach

to disentangle the phonetic content, emotional tone and

other factors into different representations solely from the

input audio sequence using the Variational Autoencoder[23]
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framework. We encourage the decoupling by adding (1) lo-

cal segment-level discriminative loss to regularize phonetic

content representation, (2) global sequence-level discrimi-

native loss to regularize the emotional tone and (3) margin

ranking loss to separate out content from rest of the factors,

in addition to the regular VAE loss. We further propose

our own talking head generation module conditioned on the

learned audio representation, in order to better evaluate the

performance. To summarize, there are two major contribu-

tions of this work:

• We present a novel disentangled audio representation

learning framework for the task of generating talking

heads. To the best of our knowledge, this is the first ap-

proach of improving the performance from audio rep-

resentation learning perspective.

• Through various experiments, we show that our ap-

proach is not only robust to several naturally-existing

audio variations but it is also compatible to be trained

end-to-end with any of the existing talking head ap-

proaches.

2. Related Work

Speech-based facial animation literature can be broadly

divided into two main categories. The first kind uses a blend

of deep learning and computer graphics to animate a 3D

face model based on audio. [26] uses a data-driven regressor

with an improved DNN acoustic model to accurately predict

mouth shapes from audio. [22] performs speech-driven 3D

facial animation mapping the input waveforms to 3D ver-

tex coordinates of a face model and simultaneously using

an emotional state representation to disambiguate the varia-

tions in facial pose for a given audio. [32] introduces a deep

learning based approach to map the audio features directly

to the parameters of the JALI model [12]. [29] uses a slid-

ing window approach to animate a parametric face model

from phoneme labels. Recently, [11] introduced a model

called Voice Operated Character Animation (VOCA) which

takes as input a speech segment in the form of its corre-

sponding DeepSpeech [18] features and a one-hot encod-

ing over training subjects to produce offsets for 3D face

mesh for subject template registered using FLAME [25]

model. Their approach is for 3D facial animation which

allows altering speaking style, pose and shape, but cannot

adapt completely to an unseen identity. The paper suggests

DeepSpeech features to be robust to noise but we later show

that these are not as efficient as our disentangled represen-

tations which are modeled to decouple from content not just

noise but also other variations including emotion and speak-

ing style.

The second category includes approaches performing

audio-based 2D facial video synthesis, commonly called

“talking head/face generation”. [7] learns a joint audio-

visual embedding using encoder-decoder CNN model and

[15] uses Bi-LSTM to generate talking face frames. [28]

and [24] both generating talking head for specifically

Barack Obama using RNN with compositing techniques

and time-delayed LSTM with pix2pix [20] respectively.

[21] uses RNN with conditional GAN and [30] uses Tem-

poral GAN to synthesize talking faces. [6] employs optic-

flow information between frames to improve photo-realism

in talking heads. [31] proposes arbitrary-subject talking face

generation using disentangled audio-visual representation

with GANs.

Almost all of the previous approaches have been trained

to work on clean neutral audio and fail to take into ac-

count many of the factors of variations occurring in real-

world speech such as noise and emotion. Several recent

works have demonstrated the importance of disentangled

and factorized representation to learn a more generalized

model [19]. To the best of our knowledge, our approach

is the first attempt to explicitly learn emotionally and con-

tent aware disentangled audio representations for facial an-

imation. Some previous approaches [22, 31, 26] do try to

perform some kind of disentanglement but none of them

explicitly deals with disentangling the different factors of

variation in audio.

3. Method

Our proposed method consists of two main stages,

Learning Disentangled Representations from Audio

The input audio sequence is factorized by a VAE into dif-

ferent representations encoding content, emotion and other

factors of variations (Figure 1). KL divergence, negative

log likelihood along with margin ranking loss ensure the

learned representations are indeed disentangled and mean-

ingful.

Generating Talking Head Based on the input audio, a

sequence of content representations are sampled from the

learned distribution which along with the input face image

are fed to a GAN-based video generator to animate the face

(Figure 2). We use temporal smoothing along with frame

and video discriminator [5, 30] here but as we show later,

our audio representations are compatible with any existing

talking head approach.

3.1. Learning Disentangled Representations

Speech comprises of several factors which act indepen-

dently and at different temporal scales. Taking inspiration

from [19], we intend to disentangle content and emotion

in an interpretable and hierarchical manner. We introduce
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Figure 1. VAE architecture to learn emotionally and content aware disentangled audio representations

Figure 2. GAN based talking head generation model

several talking head generation specific novelties which in-

clude lateral disentanglement of content and emotion by ex-

plicit decoupling using margin ranking losses, and a mech-

anism to learn variation-specific priors which, unlike [19],

may or may not be sequence agnostic. Syllables (linguis-

tic content of an utterance) last only for few hundred mil-

liseconds and do not exhibit significant variation within and

between different speech sequences. We call this short du-

ration a segment and encode syllables by a set of latent

content variables regularized by a content-specific (viseme-

oriented) prior that is sequence-independent. Since emotion

is similar within a subset of utterances, we model emotion-

related factors with latent emotion variables regularized by

a prior shared among sequences with the same emotion an-

notation. Finally, we need latent sequence variables to en-

code residual variations of an entire utterance (sequence)

that can’t be captured by either content or emotion based

variables.

Model Formulation Let D = {Xi}Mi=1
consists of M

i.i.d. sequences where every X
i = {xi,n}N

i

n=1
is a sequence

of N i observed variables with N i referring to the number

of content segments (syllables) in the ith sequence and xi,n

referring to the nth content segment in the ith sequence. We

omit i in subsequent notations to refer to terms associated

with a single sequence without loss in generality.

Let each audio sequence X be randomly generated from

a content-specific prior µc, emotion-specific prior µe and

sequence-specific prior µs with N i.i.d latent variables for

content Zc, emotion Ze and sequence Zs (one for each of

the N segments in X). The joint probability for a sequence

is therefore given by,

pθ(X,Zc,Ze,Zs,µc,µe,µs) = pθ(µc)pθ(µe)pθ(µs)

N
∏

n=1

pθ(x
n|zn

c , z
n
e , z

n
s )pθ(z

n
c |µc)pθ(z

n
e |µe)pθ(z

n
s |µs) (1)

where the priors µc, µe and µs are drawn from prior

distributions pθ(µc), pθ(µe) and pθ(µs) respectively and

the latent variables zn
c , zn

e and zn
s are drawn from isotropic

multivariate Gaussian centred at µc, µe and µs respec-

tively. θ represents the parameters of the generative model

and the conditional distribution of x (audio segment) is

modeled as a multivariate Gaussian with a diagonal covari-

ance matrix.

Since the exact posterior inference is intractable, we

use Variational Autoencoder (VAE) to approximate the true

posterior pθ with an inference model qφ given by,

qφ(Zc

i
,Ze

i
,Zs

i
, µ

i
c, µ

i
e, µ

i
s|X

i) = qφ(µ
i
e)qφ(µ

i
s)

N
∏

n=1

qφ(µ
i,n
c )qφ(z

i,n
s |zi,n

c , z
i,n
e ,x

i,n)

qφ(z
i,n
c |xi,n)qφ(z

i,n
e |xi,n) (2)

[19] suggests that the mean µ̃i
s

(one for each sequence)

of qφ(µ
i
s) be part of a lookup table and learned like other

model parameters. We extend this idea to talking head sce-

nario by introducing lookup tables for qφ(µ
i,n
c ) and qφ(µ

i
e)

having different values µ̃i,n
c

and µ̃i
e

for different viseme

and emotion labels respectively. Being at sequence level,

µ̃i,n
s

= µ̃i
s

and µ̃i,n
e

= µ̃i
e
∀ n. Based on the annotation, the

corresponding value is picked up from the respective tables

for optimization. Such variation-specific priors allow the la-

tent variables to be modeled effectively with samples with

similar viseme/emotion made to lie closer together on the

latent manifold. By further aligning zs with µ̃i
s
, we encour-

age zs to encode sequence-specific attributes which have

larger variance across sequences but little variance within

sequences.

The variational lower bound for this inference model

3292



over the marginal likelihood of X is given as,

log pθ(X) ≥ L(θ, φ;X) =
N
∑

n=1

[L(θ, φ;xn|µ̃n
c , µ̃e, µ̃s)

+ log pθ(µ̃
n
c )] + log pθ(µ̃e) + log pθ(µ̃s) + const (3)

Please refer to the supplementary material for proofs and a

more detailed explanation of this section.

Discriminative Objective It is possible for the priors to

learn trivial values for all sequences (µ̃i
c
= 0, µ̃i

e
= 0,

µ̃i
s
= 0 ∀i) and still maximize the variational lower bound

described above. To ensure that the priors are indeed dis-

criminative and characteristic of the variations they encode,

we introduce a discriminative objective function that infers

variation-specific annotation from the corresponding repre-

sentation. For instance, we enforce the content latent vari-

able zi,n
c for audio segment xi,n to correctly infer its viseme

annotation vi,n through classification loss given by,

log p(vi,n|zi,n
c ) = log p(zi,n

c |vi,n)− log

V
∑

j=1

p(zi,n
c |vi,j) (4)

where V is the set of all viseme labels [13]. We simi-

larly enforce discriminative objective over emotion and se-

quence latent variables to correctly predict the emotion and

sequence id associated with the audio sequence.

Margin Ranking Loss To enable effective mapping of

the audio content with the facial features and minimize am-

biguity, we need to separate out the content from the rest of

the factors of variations as much as possible. So we need

to ensure that zc, ze and zs are as decoupled as possible.

The discriminative objectives over the different latent vari-

ables ensure that they capture well their respective factors

of variations (content, emotion and global sequence varia-

tions respectively) but to really disentangle them, we want

to make them agnostic to other variations by having them

perform badly on other classification tasks (that is, content

variable zc perform poorly in predicting the correct emotion

associated with the audio sequence). To this end, we intro-

duce margin ranking losses T with margin γ on the softmax

probability scores of the viseme label for zc with zs and ze
given by,

T (vi,n, zi,n
c n, z

i,n
e , z

i,n
s ) = max

(

0, γ + P(vi,n|zi,n
s )−

P(vi,n|zi,n
c )

)

+max
(

0, γ + P(vi,n|zi,n
e )− P(vi,n|zi,n

c )
)

(5)

where P(vi,n|.) denotes the probability of vi,n given some

latent variable. Margin ranking loss widens the inference

gap, effectively making only zc learn the content relevant

features. We similarly introduce margin ranking loss on

probability scores for emotion label to allow only ze learn

emotion relevant features.

Equation 3 suggests that the variational lower bound of

an audio sequence can be decomposed into the sum of vari-

ational lower bound of constituent segments. This provides

scalability by allowing the model to train over audio seg-

ments instead. As shown in Figure 1, the input to the VAE

is audio segments each having T time points. Based on

the inference model in Equation 2, these segments are first

processed by LSTM-based content and emotion encoders,

and later by sequence encoder (along with other latent vari-

ables). All the latent variables are then fed to the decoder

to reconstruct the input. The final segment based objective

function to maximize is as follows,

LF (θ, φ;xi,n) = L(θ, φ;xi,n)− β[T (ei, zi,n
c , z

i,n
e , z

i,n
s )

+T (vi,n, zi,n
c , z

i,n
e , z

i,n
s )] + α[log p(i|zi,n

s )

+ log p(vi,n|zi,n
c ) + log p(ei|zi,n

e )] (6)

where α and β are hyper-parameter weights.

3.2. Talking Head Generation

We use adversarial training to produce temporally coher-

ent frames animating a given face image conditioned on the

content representation zc as shown in Figure 2.

3.3. Generator

Let G denote the generator function which takes as in-

put a face image If and sequence of audio-based content

representations {zn
c }

N
n=1

sampled from Zc given an audio

sequence X = {xn}Nn=1
having N audio segments. G gen-

erates a frame On
f for each audio segment xn. Each zn

c is

combined with the input image by channel-wise concatenat-

ing the representation after broadcasting over the height and

width of the image. The combined input is first encoded and

then decoded by G which has a U-Net [27] based architec-

ture to output a video frame with the face modified in cor-

respondence to the speech content. For temporal coherency

between consecutive generated video frames, we introduce

temporal smoothing similar to [5] by making G generate

frames in an auto-regressive manner. We employ L1 loss

along with perceptual similarity loss and L2 landmark dis-

tance (mouth region) as regularization.

3.4. Discriminator

We incorporate WGAN-GP [17] based discriminators

which act as critic to evaluate the quality of the generated

frames/videos. We introduce a frame-level discriminator

Dframe which computes the Wasserstein distance of each
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individual generated frame conditioned on the input con-

tent representation. The architecture of Dframe resembles

that of PatchGAN [20]. Dframe is designed to behave as a

multi-task critic network. It also evaluates the condition-

ing between the generated frame and content representa-

tion through an auxiliary classification network that predicts

the correct viseme corresponding to the conditioned audio

segment (content representation). The loss for this auxil-

iary network is given by cross-entropy loss over the set of

viseme labels.

We introduce a video-level discriminator Dvideo simi-

lar to [30] to enforce temporal coherency in the generated

video. The architecture of Dvideo is similar to Dframe

without the auxiliary viseme classification network and has

a 3D convolutional architecture with time representing the

third dimension. It takes as input a set of frames (real

or generated) along with corresponding content representa-

tions (concatenated channel wise) and evaluates the Wasser-

stein distance estimate over the video distribution. By doing

so, Dvideo evaluates the difference in realism and temporal

coherence between the distribution of generated sequences

and real sequences.

4. Experiments

4.1. Datasets

GRID [10] is an audiovisual sentence corpus with high-

quality recordings of 1000 sentences each from 34 talkers

(18 male, 16 female) in a neutral tone. The dataset has high

phonetic diversity but lacks any emotional diversity.

CRowdsourced Emotional Multimodal Actors Dataset

(CREMA-D) [4] consists of 7,442 clips from 91

ethnically-diverse actors (48 male, 43 female). Each

speaker utters 12 sentences in 6 different emotions (Anger,

Disgust, Fear, Happy, Neutral, Sad).

Lip Reading Sentence 3 (LRS3) Dataset [2] consists of

over 100k spoken sentences from TED videos. We use

this dataset to test our method in an ‘in-the-wild’ audio-

visual setting. Previous approaches have experimented with

LFW [8] which is a precursor to LRS3 dataset.

4.2. Training

We use speech utterances from GRID and CREMA-D

for training the VAE to learn disentangled representations.

We divide the dataset speaker-wise using train-val-test split

of 28-3-3 for GRID and 73-9-9 for CREMA-D. We first pre-

train the content pipeline of the VAE using GRID (which

provides the phonetic diversity) and then, use the learned

weights to initialize the training of the entire VAE using

CREMA-D (which provides the emotional diversity). To

obtain the viseme annotations, we use Montreal Forced

Aligner to extract phoneme annotation for each audio seg-

ment and then categorize them into 20 viseme groups (+1

for silence) based on [32]. Emotion labels are readily avail-

able from CREMA-D dataset for 6 different emotions. We

label each audio sequence from GRID having neutral emo-

tion.

We use a setup similar to [19] for training the VAE. Ev-

ery input speech sequence to the VAE is represented as a

200-dimensional log-magnitude spectogram computed ev-

ery 10ms. Since the length of a syllabic segment is of the

order of 200ms, we consider x to be a 200ms segment im-

plying T = 20 for each x. We use 2-layer LSTM for all

encoders and decoder with hidden size of 256. Based on hy-

perparameter tuning, we set the dimensions for zc, ze and

zs to 32, and the variance of priors to 1 and latent variables

to 0.25. α, β and margin γ are set to 10, 1 and 0.5 re-

spectively. For generating talking head, we use GRID and

LRS3 dataset. All faces in the videos are detected/aligned

using [3] and cropped to 256×256. Adam optimizer is used

for training in both stages, and learning rate is fixed at 10−3

for VAE and 10−4 for GAN.

4.3. Robustness to Noise

We evaluate the quality of the generated videos using
Peak Signal to Noise Ratio (PSNR) and Structure Similar-
ity Index Measure (SSIM). Higher the value of these met-
rics indicate better overall video quality. We further use
Landmark Distance (LMD) (similar to [6]) to evaluate the
accuracy of the mouth movement in the generated videos.
LMD calculates the Euclidean Distance between the mouth
landmarks as predicted by the landmark detection model [3]
of the original video and the generated video.

LMD =
1

F
×

1

L

F
∑

f=1

L
∑

l=1

||P real
f,l − P

fake

f,l ||2

where F denotes the number of frames in the video, L

denotes the number of mouth landmarks, and P real
f,l and

P
fake
f,l represents the landmark coordinates of the lth land-

mark in f th frame in the original and generated video re-

spectively. Lower LMD denotes better talking head genera-

tion.

To test the robustness of our approach to noise, we create

noisy samples by adding uniformly distributed white noise

to audio sequences. We experiment with different noise lev-

els by adjusting the loudness of the added noise compared

to the original audio. A noise level of -40dB means that

the added noise is 40 decibels lower in volume than the

original audio. -10dB refers to high noise (almost imper-

ceptible speech), -30dB refers to moderate (above average

background noise) and -60dB refers to low noise (almost

inaudible noise).

Table 1 shows the landmark distance estimates for dif-

ferent approaches over different noise levels. We re-
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Figure 3. Visual comparison over different methods for different speech variations. If we look at the frames highlighted in the red box,

we can observe how the introduction of noise or emotion reduces the performance/consistency of the current state-of-the-art while our

approach is robust to such changes. Sentence: Don’t forget a jacket. Symbols at the bottom denote syllables.

Figure 4. Visual comparison showing the ease of using our disentangled audio representation with existing talking head approaches to

improve robustness to speech variations. Sentence: Maybe tomorrow it’ll be cold. Symbols at the bottom denote syllables.

Method
GRID LFW/LRS3

Clean
Low

-60dB

Med

-30dB

High

-10dB
Clean

Low

-60dB

Med

-30dB

High

-10dB

[30] (original) 1.32 1.40 1.96 2.87 1.81 1.79 2.56 2.92

[30] (w/ ours) 1.33 1.34 1.45 2.71 1.83 1.82 1.98 2.73

DAVS [31] 1.21 1.28 1.67 2.56 1.64 1.65 2.1 2.76

Baseline 1.36 1.34 1.73 2.80 1.89 1.85 2.63 2.84

Baseline + Augmentation 1.35 1.38 1.48 2.79 1.87 1.85 1.94 2.81

Baseline (DeepSpeech) 1.31 1.31 1.53 2.84 1.7 1.75 2.05 2.90

Ours (w/o Margin Loss) 1.28 1.26 1.46 2.7 1.65 1.63 1.87 2.81

Ours 1.25 1.27 1.33 2.62 1.67 1.66 1.79 2.80

Table 1. Comparison of different approaches for audio samples

with different noise levels.

implemented [30] and used the public available model for

DAVS [31] for obtaining and comparing the results. From

the table, we can observe that for low noise levels, the per-

formance of all the approaches is comparable to that for

clean audio. But there is a significant rise in the landmark

distance for [30] and DAVS as the noise levels become mod-

erately high. While on the other hand, it is in this part of the

noise spectrum where our approach excels and significantly

outperforms the current state-of-the-art by maintaining a

value comparable to clean audio. Clearly, by distentangling

content from the rest of the factors of variations, our model

is able to filter out most of the ambient noise and allow con-

ditioning the video generation on a virtually cleaner signal.

We observe that when the noise levels become exceedingly

high, even our approach is unable to maintain its perfor-

mance. We believe that such high noise levels completely

distort the audio sequence leaving nothing meaningful to

be captured and since we neither do any noise filtering nor

use noisy samples for training explicitly, it is likely for the

model to not perform well on almost imperceptible speech.

Figure 5 further shows a trend in the landmark distance for

increasing noise levels. From the graph in Figure 5, we

can observe that the performance of our approach becomes

relatively better with increasing amounts of noise up to a

reasonable level.

Figure 3 shows a visual comparison of our approach with

DAVS for different audio variations. We can notice for -

40dB noise level, the mouth movement for DAVS begins

to lose continuity with abrupt changes in the mouth move-

ment (quick opening and closing of mouth) unlike for clean

audio. By -20dB noise level, the mouth stops opening al-

together. On the contrary, our method is much more re-

silient with mouth movement for -40dB noise level being

almost identical to clean audio and for -20dB being only a

bit abrupt.

We also show results of our approach on clean audio in

Figure 6. Moreover from Table 2, we can observe that for

clean neutral spoken utterances, our approach performs at

par with other methods on all metrics.
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Figure 5. Plot for landmark distance comparison between different methods for different noise levels. Lower means better.

Method GRID LRW/LRS3

LMD PSNR SSIM LMD PSNR SSIM

[30] 1.32 28.88 0.81 1.81 28.49 0.71

[7] 1.35 29.36 0.74 2.25 28.06 0.46

[6] 1.18 29.89 0.73 1.92 28.65 0.53

[31] 1.21 28.75 0.83 1.64 26.80 0.88

Ours 1.25 30.43 0.78 1.67 29.12 0.73

Table 2. Comparison with previous approaches on widely used

metrics for original (clean) audio samples.

Figure 6. Sample results on (a) GRID and (b) LRS3 dataset for

different speakers using clean audio samples.

4.4. Robustness to Emotion

We test the robustness of the disentangled representa-

tions to emotional variations by generating talking head for

emotionally rich audio sequence from CREMA-D dataset.

Due to this cross generation, we can only do a qualitative

analysis as shown in Figure 3. We compare the talking head

videos generated by our method with DAVS on different

emotions. Looking at the frames in the red box, we can

observe that although the performance of DAVS for loud

emotions like happy is as good as for neutral, the mouth

movement becomes abrupt and weak for soft emotions such

as sad. On the contrary, our method is able to perform con-

sistently over the entire emotional spectrum as evident from

almost similar visual results for different emotions.

4.5. Ease of Compatibility

Our model for learning emotionally and content aware

disentangled audio representations is compatible with any

of the current state-of-the-art approaches for talking head

generation, and can be used in conjunction to improve ro-

bustness to factors of audio variations. We demonstrate this

by implementing [30] using the content representation from

our VAE model in place of that learned by the audio en-

coder. Table 1 shows a comparison of the landmark distance

between the two implementations for different noise lev-

els. Similar to above, we can infer that using a filtered out

content representation allows the model to perform signif-

icantly better than the original implementation in the pres-

ence of moderately high levels of noise. From Figure 5,

we can observe that the trend for the ‘hybrid’ implementa-

tion is quite similar to our own implementation. Figure 4

further compares the two implementations qualitatively for

both noise and emotional audio. We can observe that [30]

using our disentangled representations performs much more

consistently than the original implementation. Due to the

unavailability of training code/resources, we were unable to

test our model with other approaches. But above demon-

stration proves that our disentangled representations can be

easily incorporated with any existing implementation.
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4.6. Ablation study

We conduct an ablation study to quantify the effect of

each module in our approach. We run a baseline exper-

iment where we replace our disentangled audio represen-

tation with a generic network which learns directly from

MFCC features similar to [9]. As can be seen from Table 1,

the baseline performs poorly for noisy samples. This clearly

suggests that simple audio representation is not robust to au-

dio variations while generating talking heads.

We introduce a second baseline where we further per-

form aggressive augmentation of the input audio in the

aforementioned baseline of learning directly from MFCC

features. Figure 5 and Table 3 show the results of these

experiments (labeled Baseline + Augmentation). We ob-

serve that the landmark distance estimates are consistently

better than the baseline without augmentation. However,

these results are still noticeably worse than results of our

approach. Data augmentation does make a difference over

using normal dataset, however, we believe that simply rely-

ing on augmented data for training is not efficient enough

as it is very challenging to augment the ‘right’ noise for the

trained model to generalize well for real scenarios.

To further test the effectiveness of the representation,

we perform another baseline experiment where we replace

the disentangled content features with speech features ex-

tracted from robust automatic speech recognition (ASR)

model, DeepSpeech [18]. Since [11] shows the noise ro-

bustness of DeepSpeech features while generating relative

low-dimensional offsets of a 3D face mesh given an audio

input, we wish to test their potential in generating in a visual

space which is orders of magnitude higher in dimension. As

shown in Figure 5 and Table 3, we find these speech features

are not as effective as our disentangled audio representation

for talking face generation. We believe the difference in

performance is because the feature embedding from robust

ASR models such as DeepSpeech is essentially a point em-

bedding which, because of being oriented towards solving

a discriminative task, loses a lot of key information about

the variations in audio and can even be incorrect. Since we

use a VAE, our content representation is modeled instead

as a distribution which preserves these subtle variations by

making it reconstruct the audio while aligning with audio

content at the same time. This dual benefit (balance), which

ASR models cannot offer, makes our content representa-

tion a much more informative and robust input for a high-

dimensional generative task of face animation.

In addition to learning a factorized audio representation,

we also ensure an increased decoupling of the different rep-

resentations by enforcing margin ranking loss as part of the

training objective. Decoupling is essential to allow differ-

ent audio variations to be captured exclusively by the des-

ignated latent variable which in turn helps in distilling the

content information for improved robustness to variations.

Representation

With Margin

Ranking Loss

Without Margin

Ranking Loss

Viseme Emotion Viseme Emotion

Content 77.1 24.5 58.7 37.0

Emotion 29.8 68.4 35.4 55.3

Table 3. Accuracy (%) over viseme and emotion classification task

by disentangled content and emotion representations.

To prove the importance of margin ranking loss, we eval-

uated the landmark distance metric of the model trained

without margin ranking loss. From Figure 5 and Table 3,

we can conclude that margin loss makes the approach ro-

bust to higher levels of noise, For GRID dataset, although

for -40dB noise, the results for with/without margin rank-

ing loss are comparable, there is a noticeable gap for -30dB

noise level. Similar trend can also be observed for LRS-

3/LFW dataset. We believe that although there is some level

of disentanglement without margin ranking loss, when the

audio is noisier, we need stronger disentanglement to pro-

duce more clear content representation which is possible

due to margin ranking loss. To further quantify the effec-

tiveness of margin ranking loss in decoupling, we train aux-

iliary classifiers over the content and emotion representa-

tions for the task of viseme and emotion classification. As

shown in Table 3, it is clearly evident that introduction of

margin ranking loss makes the latent representation perform

badly on tasks other than the designated task. In fact, it not

only widens the performance gap between the representa-

tions for a particular task, but it also facilitates the desig-

nated representation to perform better than without margin

ranking loss.

5. Conclusion and Future Work

We introduce a novel approach of learning disentangled

audio representations using VAE to make talking head gen-

eration robust to audio variations such as background noise

and emotion. We validate our model by testing on noisy

and emotional audio samples, and show that our approach

significantly outperforms the current state-of-the-art in the

presence of such audio variations. We further demonstrate

that our framework is compatible with any of the exist-

ing talking head approaches by replacing the audio learn-

ing component in [30] with our module and showing that

it is significantly robust than the original implementation.

By adding margin ranking loss, we ensure that the factor-

ized representations are indeed decoupled. Our approach

to variation-specific learnable priors is extensible to other

speech factors such as identity and gender which can be ex-

plored as part of future work.
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