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Abstract

We consider the problem of unsupervised camera pose

estimation. Given an input video sequence, our goal is to

estimate the camera pose (i.e. the camera motion) between

consecutive frames. Traditionally, this problem is tackled by

placing strict constraints on the transformation vector or

by incorporating optical flow through a complex pipeline.

We propose an alternative approach that utilizes a compo-

sitional re-estimation process for camera pose estimation.

Given an input, we first estimate a depth map. Our method

then iteratively estimates the camera motion based on the

estimated depth map. Our approach significantly improves

the predicted camera motion both quantitatively and visu-

ally. Furthermore, the re-estimation resolves the problem

of out-of-boundaries pixels in a novel and simple way. An-

other advantage of our approach is that it is adaptable to

other camera pose estimation approaches. Experimental

analysis on KITTI benchmark dataset demonstrates that our

method outperforms existing state-of-the-art approaches in

unsupervised camera ego-motion estimation.

1. Introduction

We tackle the problem of visual odometry (VO), where

the goal is to estimate the camera poses (e.g. motion) given

a number of consecutive frames in a video sequence. This

problem plays an important role in many real-world appli-

cations, such as self-driving vehicles [2], obstacle avoid-

ance [30], interactive robots [6] and navigation systems [7].

In the presence of a single RGB camera (i.e. monocular),

this problem has been explored in [44, 42, 26, 43, 25, 3,

19, 19, 16, 40] from various perspectives and under differ-

ent assumptions. Our work is particularly inspired by a re-

cent line of work [44, 42, 26] on learning monocular cam-

era pose estimation and depth estimation in an unsupervised

setting. The only available data in this setting during train-

Figure 1: An illustration of the problem of large displace-

ment between two views in pose estimation with the view

synthesis formulation. The 3rd row shows three consecu-

tive frames in a video. The 1st row shows the difference

between the left and middle frames. The 2nd row shows the

difference between the middle and right frames. When the

displacement of two views is large, the assumption made by

the view synthesis no longer holds. In this paper, we pro-

pose an alternative approach that splits the estimation into

smaller pieces and re-estimate the transformation through a

compositional transformation estimation.

ing are monocular frames and camera intrinsics. The model

is learned to map the input pixels to an estimate of camera

poses (parameterized as transformation matrices) and scene

structures (parameterized as depth maps). During testing,

the input to the model is the raw video. We will use the

learned model to produce the camera poses of the test video.

As a by-product, we will also obtain the predicted depth

map on each frame of the test video.

Several previous works (e.g. [44, 42, 26]) have been pro-

posed to estimate the relative camera pose between consec-

utive frames in a video sequence using a view synthesis for-
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mulation. These methods work by predicting the camera

poses and the depth maps, then using them to warp nearly

frames to a target view using the predicted camera poses

and depth maps. The learning objective is defined using the

photometric loss between the predicted target view and the

ground-truth target view. This view synthesis formulation

implicitly makes several assumptions: 1) the scene is static;

2) there is no occlusion/disocclusion between two views;

3) there is no lighting change between two views. These

assumptions often fail in applications where there exists a

large displacement between the source view and the target

view (see Fig. 1).

To address these limitations, we propose a new unsu-

pervised camera pose estimation approach using composi-

tional re-estimation. Our proposed approach is partly in-

spired by the inverse compositional spatial transformer net-

work [21] being developed for image alignment. The idea

of our approach is that instead of estimating the relative

pose between two frames in one shot, we consider the rela-

tive pose as being composed of a sequence of smaller cam-

era poses. These smaller camera poses are estimated in a

recurrent manner. The advantage of this compositional re-

estimation is that we can decompose the problem of esti-

mating the camera pose with a large displacement into sev-

eral smaller ones, where each smaller problem satisfies the

assumption made by the view synthesis formulation of un-

supervised camera pose estimation.

This paper makes several contributions. We propose a

new compositional re-estimation approach that decomposes

the camera pose estimation into a sequence of smaller pose

estimation problems. Although the idea of compositional

re-estimation has been used for image alignment [21], this

is the first work using this idea for deep visual odometry.

Our model can be trained end-to-end in an unsupervised

learning setting. Experimental results show that our method

significantly outperforms other state-of-the-art approaches.

2. Related Work

In this section, we review several lines of research

closely related to our work.

Structure from Motion: Simultaneous estimation of struc-

ture and motion is a long-standing and fundamental prob-

lem in computer vision. Traditional approaches rely on

geometric constraints extracted from monocular feed to

estimate motion. They commonly start with feature ex-

traction and matching, followed by geometric verification

[32, 36, 33]. They are effective and powerful, yet com-

putationally expensive and only focus on salient features.

They also need high-quality images, and the results can drift

over time due to factors such as low texture, stereo ambigu-

ities, occlusions and complex geometry. Recently, learning-

based methods have become popular and raised the bar on

the performance [40, 15, 14, 27]. DeepVO [40] performs

end-to-end visual odometry. PoseNet [15] learns 6 Degree-

of-Freedom (6DOF) pose regression from monocular RGB

images. Encoder-decoder style Hourglass networks have

also been proposed to perform localization [27]. Tang et

al. [35] present BA differentiabl layer to bridge the gap be-

tween classic and deep learning methods. They minimize

the feature-metric difference of aligned pixels. On the other

hand, our focus is on leveraging recurrent architecture in

direct method.

Depth Estimation: Increasing availability of single view

datasets [10, 29, 20] has made it possible to have signif-

icant improvement in depth prediction. Supervised deep

networks [4, 22, 23, 8, 41, 18, 17, 1, 37] have achieved a

promising performance and a variety of architectures have

been proposed. Eigen et al. [4] demonstrate the capability

of deep models for single view depth estimation by directly

inferring the final depth map from the input image using two

scale networks. Liu et al.[22, 23] formulate depth estima-

tion as a continuous conditional random field learning prob-

lem. Laina et al. [18] propose the Huber loss and a newly

designed up-sampling module. Kumar et al. [17] demon-

strate that recurrent neural networks (RNNs) can learn spa-

tiotemporally accurate monocular depth prediction from a

video. Supervised techniques are limited due to the diffi-

culty of collecting expensive ground truth information and

impractical in applications as they often require data col-

lection process different from the target robotic deployment

platform.

Warping-based View Synthesis: Rethinking depth estima-

tion as an image reconstruction task allows to alleviate the

need for ground-truth labels. Self-supervised approaches

for structure and motion borrow ideas from warping-based

view synthesis. The core idea is to supervise depth estima-

tion by treating view-synthesis via rigid structure from mo-

tion as a proxy task. Recently, unsupervised single image

camera pose estimation and depth estimation techniques

have shown remarkable progress [19, 12, 44, 38, 25, 5, 39].

These methods are mostly based on the photometric error

which uses a Lambertian assumption. Garg et al. [9] train a

network for monocular depth estimation using a reconstruc-

tion loss over a stereo pair with Taylor approximation to

make the model fully differentiable. Godard et al.[12] fur-

ther improve the results by introducing symmetric left-right

consistency criterion and better stereo loss functions. Zhou

et al. [44] propose a temporal reconstruction error that is

computed using temporally aligned snippets of monocular

images to deal with the limitation of having stereo images.

The camera pose is unknown and needs to be estimated to-

gether with depth. The learning loss is obtained by com-

bining a depth estimation network with a pose estimation

network. This leads to the loss of absolute scale informa-

tion in their predictions. This is solved by Li et al. [19] who

combine both spatial and temporal reconstruction losses to
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Figure 2: The re-estimation process consists of the pose es-

timation network, the depth estimation network and compo-

sitional variables which keep track of the transformations.

The circle indicates the inverse warping process. The recur-

sive arrow shows the warped sources passed to the pose net

for the next step.

directly predict the scale-aware depth and pose from stereo

images. Proposed by Mahjorian et al. [26], geometric con-

straints of the scene are enforced by an approximate ICP

based loss. On the other hand, Yin et al. [42] jointly learns

monocular depth, ego-motion and optical flow from video

sequences. To handle occlusion and ambiguities, an adap-

tive geometric consistency loss is proposed to increase ro-

bustness towards outliers and non-Lambertian regions. Ge-

ometric features are extracted over the predictions of indi-

vidual modules and then combined as an image reconstruc-

tion loss. Last but not least, Wang et al. [39] address scale

ambiguity through a compositional unit which requires Ja-

cobian calculation.

Compositional and Transformer Networks: Spatial

transformer networks [13] are developed to resolve the am-

biguity of spatial variations for classification. Jaderberg et

al. [13] propose a novel strategy for integrating image warp-

ing in neural nets. Inverse compositional spatial transform-

ers [21] further extends this work to remove the boundary

artifacts introduced by STNs based on intuitions from the

Lucal & Kanade algorithm [24] that propagates warp pa-

rameters rather than image intensities.

3. Our Approach

The basic components of our method are illustrated in

Fig. 2. The input to our model consists of N consecu-

tive frames in a video denoted as < I1, I2, ..., IN >. We

consider one frame It as the target frame (also known as

target view or target image) and the remaining frames Is
(1 ≤ s ≤ N, s ̸= t) as the source frames (also known

as source views or source images). Our model consists of

a depth network, a pose estimation network, and a warp-

ing module. The depth network produces a per-pixel depth

map Dt of the target frame. The pose estimation network

learns to iteratively produce camera relative pose T i
t→s (pa-

rameterized as a 6 DoF vector representing the transfor-

mation) between the target frame It and source frames Is
where i is the index of the iteration. At each iteration, we

also maintain a warped source image denoted as Iis. This

warped source image is obtained by applying the transfor-

mation T i
t→s on the source image Is. In other words, the

pose estimation network takes a target view It and N source

views Ii−1
s at the i-th iteration as its input. It then pro-

duces ∆T i
t→s. This transformation is combined with previ-

ous transformations T i−1
t→s from earlier iterations to be used

for warping Is (original source frames) by incorporating the

depth map Dt and camera intrinsics K (see Sec. 3.2). Let

r be the number of iterations of this re-estimation process.

The loss function is defined in the last step of the process

where i = r. The entire process is explained as an algo-

rithm in the supplementary material.

3.1. Compositional Re­estimation

The goal of the compositional re-estimation module is

to estimate the transformation T r
t→s ∈ SE(3) from the

target frame to a set of source frames. Instead of esti-

mating the transformation in one shot, we use an iterative

process that estimates this transformation incrementally. In

each iteration i, we estimate an incremental transformation

∆T i
t→s ∈ SE(3). We use T i

t→s to denote the transforma-

tion after the i-th iteration. T i
t→s can be obtained by adding

the effect of ∆T i
t→s ∈ SE(3) to the transformation matrix

T i−1
t→s from the previous iteration, i.e.

T i
t→s = ∆T i

t→s ⊕ T i−1
t→s (1)

where T 0
t→s includes rotation, translation. It is initialized

by transformation zero and the rotation identity matrix and

a row of 0 and 1 to make the matrix squared, here, ⊕ denotes

a matrix multiplication operator. Let r be the number of this

compositional re-estimation steps, T r
t→s will be used as the

final transformation.

The intuition behind this process is that by obtaining

T r
t→s from ∆T i

t→s (i = 1, 2, ..., r), we allow the model to

solve the camera pose estimation problem by splitting it into

simpler pieces. Since each step in this process only needs to

estimate a small amount of transformation, the assumptions

commonly made in camera pose estimation algorithms are

more likely to hold. We can unfold this process of com-

positional re-estimation over time steps as depicted in Fig.

3.

3.2. Warping Module

In each estimation step i, a warped view Iis is generated

by projecting each pixel pt in the target view It to the cor-

responding position ps in the source view (for each source
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Figure 3: Our process is unfolded over time steps. The pose estimation network (green) estimates ∆T i
t→s in every steps by

receiving Ii−1
s and It. ∆T i

t→s is then composed to create the final T r
t→s. The loss functions will be calculated only in the

last step. Warped source views Ir+1
s from transformation T r

t→s will be used for calculating the loss.

view in Ii−1
s ) and inversely warp them. This process is done

for each estimation step i ∈ {1, ..., r}. Since the process is

the same throughout these time steps, we explain this warp-

ing module in one time step.

As shown in Fig. 4, each pixel pt ∈ It must be mapped

to the corresponding ps ∈ Ii−1
s . This process requires the

camera intrinsics K, the estimated depth Dt and transfor-

mation T i
t→s (see Eq. 2). Each ps ∈ Ii−1

s is warped to

position pt ∈ It to produce Iis.

ps ∼ KT i
t→sDt(pt)K

−1pt (2)

In the above equation, K is a matrix of camera intrinsics

and Dt(pt) is the corresponding depth of pt and T i
t→s ∈

SE(3).

Since some pixels are not mapped to regular grids, we

reconstruct the value of pt with respect to the projection

by a weighted sum of pixel neighbourhood through bilinear

interpolation (Eq. 3) similar to [44].

Iis(pt) =
∑

i∈t,b,j∈l,r

wi,jIis(p
i,j
s ) (3)

In this equation, t,b,l and r denote top,bottom,left and right.

3.3. Training Losses

Training the re-estimation process requires a supervision

signal in the form of a loss function. This loss function

consists of four main components.

Photometric Difference (Lph): This loss function plays a

vital role in our framework. Like [44, 42, 26], Lph is an L1
loss between the warped source views Ir+1

s and the target

view:

Lph =
∑

I∈I
r+1
s

∑

p

|It(p)− I(p)| (4)

where p represent a pixel in an image.

p
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Figure 4: The impact of two steps re-estimation is illus-

trated. The 2nd and 3rd rows are decompositions of the 1st

row. The 1st row shows how transformation T 2
t→s leads to

warping ps ∈ Is to pt ∈ It. It consists of 2 steps of esti-

mation. In the first step (2nd row), the pixel ps is warped

to pt, but the transformation is not exactly correct. The

next step (3rd row) corrects the mistake of the previous step

by adding a complementary transformation to the previous

step. As a result, T 2
t→s is obtained which is a true transfor-

mation from the target view to the source view. Note that

although we estimate T 2
t→s, we inversely warp source views

to target view by the inverse of this transformation.

Multi Scale Dissimilarity: This term is known as DSSIM

which was firstly used in [42]. It is resilient to outliers as

well as being differentiable. It calculates the dissimilarity

in multi-scales of the Ir+1
s and It. We incorporate this term

with the photometric loss to form a rich dissimilarity loss.

Therefore, we define it as follows:

Ld =

n∑

i=1

∑

I∈I
r+1
s

1− SSIM(I, It)

2
(5)

where n denotes the number of scales in the prediction.
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Smoothness: This term keeps sharp details by encouraging

disparities to be locally smooth. It mainly contributes to

the quality of the disparity map. As most of the work on

monocular depth estimation such as [42], we find this term

very helpful in our method. We defined this term as Ls.

Principled Mask: The term of principled mask refers to

an attention mechanism which ensures that out of bound

pixels do not contribute to the loss function. This term is

used in [44, 26]. In our work, this mask only contributes to

the last step (r) of estimation. In order to avoid the trivial

attention of zero for all pixels, we also use a regularization

term (Lreg(E)) in [44] in our loss function on the mask. As

a result, the final photometric term in our loss function is as

follows:

Lph =
∑

I∈I
r+1
s

∑

p

E(p) |It(p)− I(p)| (6)

where Es is pixel-wise predicted principled mask for the

target and source and p denotes a pixel.

Putting all the pieces together, the final loss function for

training our model is then computed as a weighted summa-

tion of aforementioned loss functions:

Lfinal = λphLph + λdLd + λsLs + λe

n∑

i=1

Lreg(E
i) (7)

where λph, λs, λd and λe are loss weights. Note that fol-

lowing [44], the final loss is computed over different scales.

Since our method estimates the relative pose in multi-

ple steps in a recurrent manner, the vanishing gradient may

become an issue. To overcome this, we use residual con-

nections and memory mechanisms in our model shown in

Fig. 3. The depth estimation network has residual connec-

tions to every differentiable warping module to alleviate the

vanishing gradient problem. On the other hand, compose

∈ SE(3) is a variable which preserves the compositional

transformation for the warping module. This variable is up-

dated at each step so that the warping module always has

access to the most updated version of transformations.

3.4. Model Architecture

Pose Estimation Network: The pose estimation network is

an encoder. Each layer is a convolution followed by a ReLU

activation for non-linearity. The inputs to the encoder are

It, I
i
s. The encoder outputs n 6DOF vectors correspond-

ing to each source view to represent camera relative poses

∆T i
t→s from target view It to source views Iis.

In the last step of the re-estimation process, this network

behaves differently, and it outputs ∆T r
t→s and an attention

mask denoted as Er. This attention mask is generated us-

ing a sequence of deconvolution (convTranspose) followed

by sigmoid. This attention mask is used to exclude out of

boundary pixels [26]. Note that it is acceptable that some

pixels may not contribute to the loss function because they

are not in target view. However, one step estimation ex-

cludes some pixels that are supposed to be in the target but

are warped out of boundary due to the wrong estimation.

Since we estimate the pose in multiple steps, the out of

boundary pixels of ours and previous methods are different.

Depth Estimation Network: The depth estimation network

outputs the disparity map of It. Pixel-level depth estimation

provides a rich source of information to resolve scale am-

biguity of camera motion estimation [43]. In order to be

consistent with both [42] and [43], we report the results of

using both VGG-based and ResNet50-based depth estima-

tion networks.

4. Experiment

We evaluate the performance of the proposed method

on two complementary tasks: camera pose estimation and

depth estimation. Our experiments on these tasks demon-

strate that the proposed formulation leads to state-of-the-art

performance for estimating the camera pose while obtaining

comparable results for estimating the target frame’s depth.

In the following, we first describe the implementation

details of training and give details of the benchmark dataset

used in the experiments. Then we present both quantitative

and qualitative results. We also investigate the impact of

the re-estimation process on the performance by performing

ablation studies.

4.1. Dataset and Training Details

Dataset: We evaluate our pose estimation network on the

KITTI Odometry benchmark [11]. KITTI Odometry con-

tains 22 sequences of frames recorded in street scenes from

the egocentric view of the camera. Among the 22 se-

quences, IMU/GPS ground truth information of the first 11

sequences (seq. 00 to seq. 10) is publicly available. For the

pose estimation task, we use the same training/validation

splits used in [44, 42, 26, 43]. For pose estimation, we train

the networks on seq. 00 to seq. 08 in the official odometry

benchmark of KITTI dataset. Sequence 09 and sequence 10

are reserved for evaluating the performance of camera pose

estimation. Besides, we provide qualitative outputs of our

approach on sequences 11 and 15, though the ground truth

is not available on these sequences. For depth estimation,

we use 40k frames for training and 4k for validation in or-

der to be consistent with previous work. We evaluate the

depth estimation on the split provided by Eigen et al. [4].

It consists of 697 frames for which the depth ground truth

is obtained by projecting the Velodyne laser scanned points

into the image plane.

Training Details: The training procedure is performed in

an end-to-end fashion by jointly learning camera pose and

depth estimation at the same time. Monocular frames are

resized to 128 × 416 and the network is optimized by an
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improved variation of Adam optimizer [31]. The optimizer

parameters are set to β1 = 0.9 and β2 = 0.999. The learn-

ing rate is adjusted at 2e−4 and loss weights are set to be

λph = 0.15, λd = 0.85, λs = 0.1 and λe = 0.1. In all of

our experiments, we use a batch size of 4 and set the input

sequence to be 3 frames for training.

Network Architecture: The pose estimation network con-

sists of 7 convolution layers followed by ReLU. The last

convolution is a 1 × 1 convolution to produce 6 DoF vec-

tors. This 6 DoF vector corresponds to 3 Euler angles and

3-D translation which are then converted to SE(3) format

for composition. In the last step of the re-estimation, the

decoder of pose estimation is activated to produce the prin-

cipled masks. In order to compare the depth estimation with

previous work, we have experimented with using both VGG

and ResNet50 as the backbone architecture in the depth es-

timation network. The VGG-based network is used in [44],

while the ResNet50-based network is used in [42].

4.2. Monocular Pose Estimation

As discussed before, the input to the pose estimation net-

work is a sequence of 3 consecutive frames. We follow [44]

to split the long sequences into chunks of 3 frame. The mid-

dle frame in each chunk is considered as the target frame

and the other two frames as source frames. Since our work

is a monocular-based system, the frames are obtained from

one camera in training and testing. In [26, 42, 44], the pose

estimation network generates the camera pose vector in one

step. In contrast, our approach uses the re-estimation pro-

cess through composition. As a result, we achieve camera

poses in a step-by-step fashion (see Sec. 3.1). The perfor-

mance of pose estimation is measured by the absolute tra-

jectory error (ATE) over 3 and 5 frames snippets. Table 1

compares the result of our method with other approaches.

It is noteworthy that our method does not use any external

supervision signal during training. Instead, it leverages a re-

estimation process which leads to a better estimation of the

camera pose. Also, note that our model even outperforms

other baselines that use auxiliary information. For example,

ORB-SLAM [28] benefits from loop closure techniques and

GeoNet [42] utilizes the optical flow information in train-

ing. In contrast, our model does not use any of this auxiliary

information. In order to evaluate the global consistency of

the proposed method, we also evaluate ATE on the full tra-

jectory which is described in [34] as another measurement.

Table 2 shows the comparison with ORB-SLAM [28] with-

out loop closure and SFMLearner [44].

4.3. Monocular Depth Estimation

We follow [44, 42] in setting up the training and testing

sets for the depth estimation task. More specifically, we first

filter out all the testing sequence frames and frames with a

very small optical flow (with magnitude less than 1) from

Figure 5: Dissimilarity loss (photometric loss + DSSIM

loss) over training epochs. The loss of our approach (blue)

is lower than that of the network without the re-estimation

(orange) throughout the epochs. This shows that by using

the re-estimation process, our model generates images that

are more similar to the target frame.

Method seq. 9 seq. 10

ORB-SLAM [28] 0.014 ± 0.008 0.012 ± 0.011

SFMLearner [44] 0.016 ± 0.009 0.013 ± 0.009

GeoNet [42] 0.012 ± 0.007 0.012 ± 0.009

3D ICP (3 frames)[26] 0.013 ± 0.010 0.012 ± 0.011

EPC++(mono) [25] 0.013 ± 0.007 0.012 ± 0.008

Ours (2 steps) 0.009 ± 0.005 0.009 ± 0.007

Table 1: Quantitative results for the camera pose estimation

task. We compare our model with existing state-of-the-art

approaches. Following prior work, we report the mean and

standard deviation for Absolute Trajectory Error (ATE) over

3 and 5 snippets of sequence 9 and sequence 10 of KITTI

odometry benchmark.

Method seq. 09 seq. 10

ORB-SLAM[28] 54.94 26.99

SFMLearner [44] 31.21 28.36

Ours (2 steps) 28.38 10.25

Table 2: Odometry evaluation on KITTI odometry bench-

mark sequence 09 and sequence 10. The error refers to the

translational ATE error over full trajectories.

the training set. In the end, we obtain 44540 sequences. We

use 40109 of them for training and the remaining 4431 for

evaluation. Note that for the task of depth estimation, the

input in the training and testing phases consists of only one

frame (i.e. the target frame, It).
Similar to previous work, we multiple the predicted

depth map by a scalar scale s defined as s =
median(DGT )/median(Dpredict) [44].

For a fair comparison, we compare with other monocu-

lar depth estimation approaches that use VGG and ResNet

as the backbone architectures separately. Since the maxi-

mum depth in the KITTI dataset is 80 meters, we also limit

the distance to 80 meters. The results are shown in Table 3.
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Figure 6: Qualitative examples of depth estimation for one step (middle) and two steps (right) depth estimation through depth

estimation network. Note that the only difference between them is the compositional re-estimation.

Although the results are comparable on the depth estima-

tion task, our model does not outperform state-of-the-art on

monocular depth estimation. This is expected since the re-

estimation does not directly affect the depth estimation be-

cause it does not re-estimate the predicted depth map. This

also confirms that the improvement of our method on cam-

era pose estimation (see Table 1 and Table 2) is due to the

compositional re-estimation.

4.4. Ablation Study

In order to further investigate the relative contribution

of each module in our model, we perform two additional

ablation studies. In the first experiment, we remove the re-

estimation process in our model and train the rest of the

network. We then measure the performance on the eval-

uation set. To do so, we set the maximum step (r) to 1

to assess the relative contribution of one step re-estimation

process. Table 4 (2nd row) shows that removing this pro-

cess profoundly impacts the overall performance. The esti-

mation accuracy drops on seq. 09 is particularly significant.

This might be due to the fact that seq. 9 is more complex

than seq. 10 and requires more refinement for estimating

the camera pose. In the second experiment, we investigate

the impact of larger displacement on the optimal number of

steps. Therefore, the number of input frame is also set to be

five. As it is shown in table 5 and 6, the best performance

on three frame snippets input is acquired by two steps es-

timation. However, since the displacement between source

frames and target frame is larger in five frame snippets sce-

nario, the best performance is acheived by three steps esti-

mation.

Another important aspect of our method is that it leads

to better image reconstruction. In Fig. 5, we visualize the

re-construction loss (photometric and DSSIM) over training

Figure 7: Full trajectories of our method (solid orange),

SFMLearner [44] (solid blue), ORB-SLAM [28] (solid

green) on the sequence 9 of KITTI Visual Odometry bench-

mark. Ground truth is shown in the dotted gray line.

epochs to show how our method is better at re-construction

than the baseline after a few epochs. We can see a notice-

able gap between the loss of our model and the model with-

out the re-estimation process.

4.5. Qualitative Experiment

We provide qualitative examples for camera ego-motion

estimation as the main contribution of this paper. We visu-

alize the full trajectories on sequence 9 and 10 (Fig. 7 and 8,

respectively). Compared with [44], our trajectories are vi-

sually better and closer to ground truth. To further demon-

strate the impact of the re-estimation process, we also show

the performance of our method on official test sequences
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Method Supervised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cap 80m

Eigen et al. [4] Coarse Depth 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [4] Fine Depth 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [23] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [12] Pose 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [44] No 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [44] updated No 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet [42] No 0.164 1.303 6.090 0.247 0.765 0.919 0.968

ICP [26] No 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Ours VGG (2 steps) No 0.170 1.384 6.247 0.255 0.758 0.913 0.962

Godard et al. [12] Pose 0.124 1.076 5.311 0.219 0.847 0.942 0.973

GeoNet [42] No 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ours ResNet (2 steps) No 0.160 1.195 5.916 0.245 0.774 0.917 0.964

Table 3: Quantitative results on the depth estimation task. We compare our model with other state-of-the-art monocular depth

estimation approaches. Depth estimation is trained on the KITTI dataset. Evaluation is performed using the training/test split

in [4]. “Depth” and “Pose” indicate using the ground truth depth and pose as supervision during training.

Method seq. 9 seq. 10

ours (2 steps) 0.009 ± 0.005 0.009 ± 0.007

w/o re-estimation 0.011 ± 0.006 0.009 ± 0.007

Table 4: Results of ablation study of the proposed method

on the pose estimation task. The 1st row shows the result of

the network using the re-estimation process for 2 steps. The

2nd row shows the performance when removing it.

Figure 8: Full trajectories of our method(solid orange),

SFMLearner [44] (solid blue), ORB-SLAM [28] (solid

green) on the sequence 10 of KITTI Visual Odometry

benchmark. Ground truth is shown in the dotted gray line.

(seq. 11 and seq. 15) of KITTI in supplementary mate-

rial. In addition to this, we demonstrate the impact of the

re-estimation process on depth estimation network in Fig.

1 step 2 steps 3 steps

3 frames 0.011 ± 0.006 0.009 ± 0.005 0.009 ± 0.006

5 frames 0.015 ± 0.007 0.014 ± 0.007 0.013 ±0.007

Table 5: The role of the re-estimation process for 3 frame

snippets and 5 frame snippets inputs on sequence 9 of

KITTI odometry benchmark.

1 step 2 steps 3 steps

3 frames 0.009 ±0.007 0.009 ± 0.007 0.009 ±0.009

5 frames 0.014 ± 0.008 0.013 ± 0.008 0.013 ± 0.007

Table 6: The role of the re-estimation process for 3 frame

snippets and 5 frame snippets inputs on sequence 10 of

KITTI odometry benchmark.

6.

5. Conclusion and Future work

In this paper, we have proposed a novel technique for

learning to estimate camera ego motion step by step in

an unsupervised deep visual odometry framework. Instead

of estimating the camera pose in one pass, our method

estimates the camera pose in an iterative fashion. Our

method provides a new approach to address the problem of

large displacement in consecutive frames. Experimental re-

sults on benchmark dataset show that our proposed method

outperforms existing state-of-the-art approaches in camera

pose estimation.
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