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Abstract

We propose an image reconstruction method from event

data, assuming the target images belong to a prespecified

class like QR codes. Instead of solving the reconstruction

problem in the image space, we introduce a code space that

covers all the noiseless target class images and solves the

reconstruction problem on it. This restriction enormously

reduces the number of optimizing parameters and makes the

reconstruction problem well posed and robust to noise. We

demonstrate fast and robust QR-code scanning in difficult,

high-speed scenes with industrial high-speed cameras and

other reconstruction methods.

1. Introduction

QR codes are widely used in factory automation and pro-

duction control. When a target object is moving (e.g., on a

belt conveyor), motion blurring occurs and QR-code scan-

ning often fails. A common solution for preventing motion

blurring is to shorten the shutter time by preparing a light

source or introducing a high-speed camera. However, it is

expensive to install and maintain the facilities; moreover,

the amount of redundant data increases, and frequent mem-

ory access and high computational power are required.

Event-based cameras [4] are bio-inspired sensors that

asynchronously report per-pixel intensity changes instead

of acquiring images at a constant rate. As shown in Fig.

1a, when a logarithmic intensity changes above a certain

threshold θ, an event with precise timestamp occurs. The

event also contains a binary polarity that indicates brighter

or darker change. The advantages of event cameras are their

high temporal resolution (µs order), high dynamic range

(130 dB), and low power consumption [3, 10]. Even in a

scene moving at high speed as shown in Fig. 1b, event data

can be acquired without blurring. In addition, an event in

which the luminance change information is encoded in bi-

nary polarity is sufficient and suitable for estimating a bi-

nary QR code.

Since the QR code is a black-and-white luminance pat-

tern, it is necessary to restore the luminance to estimate the

(a)
(b)

Figure 1: (a) Working principle of the event-based camera.

The blue graph shows the temporal change of logarithmic

intensity at one pixel. The red and green arrows indicate the

positive and negative events, respectively. (b) Comparison

of the event camera and industrial camera (330 fps) in the

high-speed scene. Event data are integrated for 0.25 ms.

QR code from the event data. However, complete image re-

construction from spatially sparse event data is an ill-posed

problem. In this paper, we propose a fast, robust reconstruc-

tion method by optimizing in a code space more constrained

than the image space. The image representation of the QR

code and affine transformation significantly reduce param-

eters, making reconstruction a well-posed problem and ro-

bust to noise. Our main contributions are summerized as

follows:

• The image is modeled as generated by affine transfor-

mation the QR code, and it succeeds in significantly re-

ducing the optimized parameters compared with pixel-

wise reconstruction. The sampling described in [12]

was applied to our model to formulate the gradients

interms of QR code. We proposed a method of estimat-

ing the QR code quickly and robustly from event data

by optimizing with the code space more constrained

than the image space.

• We captured the QR code moving at various speeds

and attached at various angles with an event cam-

era, and we constructed a new dataset called QR-code

Event Camera Dataset (QRECD). We demonstrated

that it is possible to read the QR code, even in high-

speed moving scenes that were difficult with an indus-

trial high-speed camera (330 fps) and other restoration

methods.
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2. Related Work

Image reconstruction from event data can be performed,

for example, for generating video with a high dynamic

range at high frame rates [7, 11, 14–16]. However, our goal

is not to generate a video, but rather, to recover a QR code

quickly from a short event sequence.

Barua et al. [2] proposed the method of patch-based

image reconstruction from event data by using learned a

dictionary for mapping integrated events to image gradi-

ents. Kim et al. [8] performed camera tracking and recon-

structing two-dimensional (2D) panoramic image in the ro-

tational motion-only scene from pure events using the ex-

tended Kalman filter. In these two methods, the image is re-

stored from the gradient image by Poisson reconstruction.

In a later work, Kim et al. extended their study to 6 de-

gree of freedom (DOF) tracking and depth estimation [9].

Bardow et al. [1] estimated dense images and optical flow

without depending on the camera motion by optimizing the

cost function combining the event data term, optical flow

constraints, and spatio temporal smoothness regularization.

In these two methods, dense images are reconstructed from

spatially sparse event data using smoothness regularization.

Despite its advantages, smoothness regularization re-

quires many iterations due to the event’s sparsity. In

addition, code boundaries are not clearly estimated with

smoothness regularization due to the high noise level of

the event camera. Due to the nature of event camera, no

event occurs when the motion and luminance gradients are

orthogonal. At this time, the codes parallel to the motion di-

rection are uniformly estimated in surrounding pixels with

smoothness regularization.

To reconstruct the intensity from a spatially sparse and

tempotally short event sequence, it is necessary to apply

constraints in accordance with the physical model. In the

QR code scene we focused on, there is a prespecified base

of a QR code in the image, and it is only necessary that

the luminance information be restored for that part. There-

fore, in our model that the image is generated by the QR

code and affine transformation, and it is optimized in the

restricted code space instead of the image space.

3. Proposed Method

3.1. Event data representation

An event-based camera outputs an event ei
.
= (ti,xi, ρi)

consisting of the microsecond timestamp ti, pixel coordi-

nates xi, and polarity ρi ∈ {+1,−1}, indicating brighter

or darker changes when the logarithmic intensity changes

above a threshold θ at a certain pixel x = (x, y). The input

data comprise event E
.
= {ei}, where ti ∈ [tref, tref + ∆t]

over a duration of ∆t from reference time tref.

Figure 2: Parameterization. The intensity image L ∈ R
h×w

is generated by affine transforming the QR code q ∈ R
r×r.

The optimization parameters are drastically reduced from

image size (e.g., 480×640) to QR-code size (e.g., 25×25),

with six affine parameters. The motion vector is common to

all pixels, and the number of parameters is 2.

3.2. Code space and parameterization

As shown in Fig. 2, there are three parameters to be es-

timated, namely, the QR code q ∈ R
r×r (r is the number of

codes on one side of the QR code), motion vector common

to all pixels m ∈ R
2, and affine parameters representing

the state of the QR code on the image W ∈ R
6.

R
r×r is the code space we defined. The intensity image

L ∈ R
h×w is modeled to be generated by affine transform-

ing the QR code q ∈ R
r×r, and it allows the optimiza-

tion parameters to be drastically reduced from the image

size (e.g., 480 × 640) to the QR-code size (e.g., 25 × 25),

with six affine parameters. The number of parameters of

the QR code is actually smaller than r × r because there

are known patterns in the specification.1 By optimizing in

strongly constrained code space while maintaining expres-

siveness, the QR code can be estimated robustly from event

data obtained in the image domain. Although the QR code

is a binary code, the code space is defined in the real number

space, since it is evaluated for consistency with event data

in the image space. The QR code is optimized with con-

tinuous values in the real number space, and binarized with

threshold 0 to obtain the final QR code. In addition, assum-

ing a situation where the QR code on the belt conveyor is

photographed from above, the geometrical transformation is

the affine transformation and the motion vector is common

to all pixels.

1QR-code Standardization: https://www.qrcode.com/en/

about/standards.html
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3.3. Cost function

The proposed cost function is as follows:

argmin
q,m,W

∑

x

∥

∥

∥

∥

∥

(∇L(x) ·m)∆t+
∑

i

θρiδ(x− x
′

i)

∥

∥

∥

∥

∥

2

, (1)

where x
′

i = xi −m (ti − tref) , (2)

L = fW (q), fW : Rr×r → R
h×w. (3)

This cost function is based on the occurrence model of the

event when the object moves in a uniform linear motion.

Due to the µs-order high temporal resolution of the event

data, the time width of the input sequence can be set to be

arbitrarily small, and the assumption of uniform linear mo-

tion is sufficiently satisfied. Events that occur when an edge

moves via uniform linear motion m are schematically de-

scribed in Fig. 3. Events occur by drawing a linear tra-

jectory, and the integration of events on the trajectory is

equivalent to the temporal change of luminance due to the

movement m of the edge. The events trajectory integration

can be expressed by warping events with a motion vector

m and summing it up in the time direction [5, 6]. Then, the

delta function δ(x − x
′

i) is smoothly approximated by the

Gaussian function N (x;x′

i, ϵ
2) so that the events occurring

at the same edge are associated.

3.4. Formulation of image generation model from
QR code

The main feature of the proposed cost function is that

the image L is generated by affine transforming fW the QR

code q to the image domain. Compared with the pixel-wise

restoration, a large number of parameters can be reduced

while maintaining expressiveness, thereby enabling robust

restoration.

The point (uq, vq) on the QR code corresponding to the

image coordinates (u, v) after affine transformation are ex-

pressed as follows:

(

uq

vq

)

=

[

W11 W12 W13

W21 W22 W23

]





u

v

1



 (4)

The image L is represented by sampling the QR code q by

bilinear interpolation as follows:

Luv =

r
∑

j

r
∑

i

qij max (0, 1− |uq − i|)max (0, 1− |vq − j|)

(5)

Here, qij is a luminance value of a QR code on 2D grid co-

ordinates (i, j). This sampling is differentiable, and partial

derivatives of code q and affine parameters W for luminance

L can be calculated [12].

Figure 3: Accumration of events. The events are warped

with motion vector m and summed in the time direction to

obtain the time change of luminance.

3.5. Optimization scheme

The system flow is shown in Fig. 4. If the affine param-

eter W is not determined correctly, the code space can not

correspond to the image space, making it difficult to esti-

mate the QR code q. Thus, optimization was performed in

two steps, first m and W , then q. In the first step, for the

fixed value of q, the part determined by the specifications of

the QR code as in the lower left of Fig. 4 was used.

The initial value of W is estimated before optimization

because the cost function is not convex when the positional

correspondence between the QR code and image shifts by

one code. In the QR code, the symbols shown in Fig. 5 are

arranged at three corners. For luminance images, the posi-

tion and orientation are determined by detecting where the

code has a 1:1:3:1:1 ratio, shown on the left in Fig. 5. In the

case of events, the distance between events is a 1:1:3:1:1 ra-

tio as shown on the right of Fig.5. The symbol was detected

by finding the peak via convolving the one-dimensional ker-

nel of this pattern while changing the scale. For the initial

value of m, a velocity vector is obtained by principle com-

ponents analysis (PCA) in spacetime. After W converges in

the first step, optimization is performed for q in the second

step.

The convergence of the parameter p was determined

based on the update amount as follows:

∥p(i) − p
(i−1)∥ < ϵp (6)

The superscript i indicates the number of iterations, and ϵp
indicates the criteria for convergence judgment.

After convergence, q is binarized with a threshold of 0
for obtaining the QR code. All optimizations were simply

performed using the first-order gradient descent method.

4. Experiments

4.1. Dataset

Since there was no publicly available dataset that had QR

codes scenes using an event-based camera, we constructed
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Figure 4: System flow. The input is only events over a duration of ∆t. The

initial values of motion vector m and affine paramter W are calculated before

optimization. In the first step, m and W are optimized using known parts of the

QR code, and after W converges, q is optimized in the second step.

Figure 5: Symbol detection for affine

transformation’s initial value estima-

tion. The affine transformation is cal-

culated from the three symbols loca-

tion detected by matching the patterns

in the 1:1:3:1:1 ratio.

a new dataset called the QRECD. The dataset includes real

data acquired by the Samsung DVS Gen3 [17] event camera

and artifitial data simulated by ESIM [13], with a resolution

of 480× 640.

As shown in Fig. 6a, we created a situation where the

plane of the QR code the optical axis of the camera are per-

pendicular and the QR code is moving at a constant linear

motion. The QR code was attached at an angle of {0◦，30◦，
45◦} in the traveling direction. Two train toys with differ-

ent speeds (faster train, approx. 2m/s; slower train, approx.

0.35m/s) were prepared to obtain real data. The 25×25

QR codes of two binary patterns encoding different char-

acter strings at the error correction level H (approx 30%)

are used. The error correction rate is defined as the ratio of

recoverable data codewords out of all codewords, including

codewords for error correction.2 In this case, it is possible

to decode the character strings if approximately five code-

words consisting of eight bits are mistaken. A dataset con-

taining 18 scenes in all will be released when the paper is

published.

4.2. Setup

The time duration ∆t of the event sequence used in each

estimation was 0.25 ms for faster train scenes and simulator

scenes, while it was 0.5 ms for slower scenes. For utiliz-

ing events while the QR code appeared on the screen, we

estimated N times (see Fig. 6b). The final QR-code was

the mode for each bit of the QR code estimated N times.

In the experiment, only one type of QR code binary pattern

2Error Correction Feature: https://www.qrcode.com/en/

about/error_correction.html

was used because it has nothing to do with the algorithm.

The threshold θ for event occurrence was set to 0.2, while

the update rate was set to 0.001 for the first step, and 1 for

the second step. Constants for convergence judgment are

ϵW as 0.001 and ϵq as 5. MATLAB was used for the im-

plementation and experiments were performed on a system

consisting of an Intel R⃝CORE TMi9 7900X CPU and sys-

tem memory of 64 GB.

4.3. Comparison

The following comparisons of methods were carried out

to prove the usefulness of our method.

Image For faster train scenes, the Lumenera industrial

high-speed camera Lt225 (330 fps) was used, and for

slower train scenes, the Logicool web camera C615

(30 fps) was used.

Bardow et al. [1] The regularization parameters used were

those in their paper. The number of images was setto

be optimized K to 128, and the time duration δt was

the same as that in our method, denoted by ∆t. In this

method, the Nvidia QuadroP6000 GPU was used.

w/o QR The method, in which the code space was not

introduced, and smoothness regularization was added

as shown in the cost function below:

argmin
L,m

∑

x

(

∥

∥

∥

∥

∥

(∇L(x) ·m)∆t+
∑

i

θρiδ(x− x
′

i)

∥

∥

∥

∥

∥

2

+λ ∥∇L(x)∥2
)

. (7)
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(a) (b)

Figure 6: (a) Experimental setup. A toy train with a QR

code attached is taken from above with an event camera.

(b) QR code is estimated using the event sequence N times

for one scene over a duration of ∆t.

The optimization parameters are the intensity image L

and motion vector m. The regularization parameter λ

was set to 0.2.

Ours Our approach, in which the code space has been in-

troduced.

4.4. Evaluation metrics

The five evaluation metrics were delineated below were

used.

Mode acc. This is the bit accuracy of the QR code, which

is finally determined as the mode when converging in

N trials. The known part of the QR code is excluded

when the accuracy is calculated.

Time/iteration to read Average time and iterations to read

when the reading is successful, regardless of conver-

gence.

Max acc. This is the max bit accuracy of the QR code,

regardless of convergence, in N trials. The accuracy

is calculated without the known part of the QR code.

This metric can not be calculated when the true QR is

unknown in real operation, but in the experiments, it is

calculated for comparing the limits of the model.

Read rate Success rate of reading the QR code when con-

vergence occurs.

ZXing read rate from the image Success rate of read-

ing from estimated images using the most famous open

source QR code library, ZXing.3

In the image-based reconstruction method, four indexes

were calculated for the QR code detected using the pattern

matching; this was similar to the initial value estimation in

our method. This is because the judgment of detection is se-

vere in ZXing and the detection rate is lowered; thus, com-

parison cannot be performed to the same standard as in our

3ZXing: https://github.com/zxing/zxing

method. As shown on the left side of the Fig. 5, the one-

dimensional kernel that becomes 1:1:3:1:1 was convolved

in the vertical and horizontal directions while changing the

scale, and peaks were detected in either direction. After de-

tection, the estimated QR code was obtained by binarizing

with threshold 0 in the same way as in our method.

4.5. Qualitative result

The estimated images are shown in the Fig. 7. Since the

luminance is not estimated in the form of an image in our

method, the displayed image is generated by the estimated

QR code and affine transformation.

It can be seen that the general camera images are blurred

in any scene, but the event-based camera does not suffer

from motion blurring. In our method, only the QR code

can be estimated without restoring redundant luminance of

the whole image. In the scene of real data from the faster

and slower trains, image-based restoration makes the code

boundaries unsharp due to a lot of noise. When the angle of

the QR code is 0◦, the event does not occur from the edge

where the motion and luminance gradient are orthogonal.

The intensity of the code parallel to the direction of move-

ment is not restored with Bardow et al. [1] or w/o QR.

The estimated QR codes are shown in Fig. 8. The ma-

genta areas represent codes that were mistakenly estimated

to be black, whereas green areas indicate the opposite. In

the scene where the object moves rapidly, since the occur-

rence of the event is delayed and the trajectory does not

become straight, QR code reconstruction tends to be more

difficult. In the faster train scene, it is clear that our method

has a higher QR code accuracy by an overwhelming margin.

4.6. Quantitative result

The experimental results are shown in Table 1. In the

faster train scene, the QR codes can not be read at all with

the 330-fps industrial camera and the method of Bardow et

al. [1]. While the read rate after convergence is less than

10% in w/o QR, our method achieves a read rate of 90%

or more. Since the mode acc. is 99% and time to read

is short at any angle with our method, fast and robust QR

code estimation was realized even in the most demanding

fast scenes.

In the slower train and simulator scenes, the noise is less

and the events are ideally generated from an edge while

making a plane in spacetime. Therefore, the QR code was

estimated with high accuracy in the method of Bardow et

al. using K times longer duration events. However, to es-

timate a dense image from sparse events with smoothness

regularization, many iterations are required for reading.

The low reading rate in our method, at 0◦ is considered

to be the result of early convergence judgment based on the

same criteria as used for other angles. It is necessary to

consider when to terminate optimization when it can not be
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Figure 7: Estimated images. In the faster, slower train and simulator scenes, for every three columns from the upper row, the

angles of the QR code are 0◦, 30◦, and 45◦ from the top.
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Figure 8: Estimated QR codes. In the faster, slower train

and simulator scenes, for every three columns from the up-

per row, the angles of the QR code are 0◦, 30◦, and 45◦

from the top. The magenta areas are codes that were mis-

takenly estimated to be black, whereas green areas indicate

the opposite. These QR codes are determined by the mode

from the QR code converging in each of N trials.

read in real operation, such as using different convergence

criteria depending on the angle of detection, and using the

number of iterations as the criterion.

In this method, max acc. was 100 in every scene. This

shows that a model in which an image is generated by affine

transforming a QR code is consistent with the data and acts

as an effective regularization.

The QR code reading rate using ZXing for the entire es-

timated image is low. This indicates that the image restored

from the event data through smoothness regularization in

the image space is low in quality, as seen in features like its

unclear edges.

5. Conclusion

We worked on the task of reading a QR code using an

event camera in high-speed scenes where blurs occur even

with the use of an industrial high-speed camera. In the

conventional method, the intensity was restored from the

event data in the whole image from the event data under the

smoothness assumption. In contrast, we proposed the QR

code reconstruction method of optimization with the code

space more constrained than the image space. By model-

ing such that the image was generated by affine transform-

ing the QR code, we succeeded in significantly reducing the

number of parameters while maintaining the representation

of the scene. We demonstrated that the QR code can be

read quickly and robustly using our dataset, including real

and simulated data.

Assuming a practical application such as a belt conveyor,

the geometric transformation is limited to the affine ap-

proach, and the motion vector is limited to two parameters

common to all pixels. When the QR code plane is tilted in

relation to the camera in a hand-held reader, some exten-

sions are required. Geometric transformations can easily be

extended to the projective transformation, but it is necessary

to reconsider motion vector definitions and initial value es-

timation methods. However, the basic model in which the

image is generated from the QR code remains unchanged,

and it still seems to work powerfully.
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