
Generating Positive Bounding Boxes for Balanced Training of Object Detectors

Kemal Oksuz, Baris Can Cam, Emre Akbas∗, Sinan Kalkan∗

Department of Computer Engineering

Middle East Technical University, Ankara, Turkey

{kemal.oksuz, can.cam, eakbas, skalkan}@metu.edu.tr

Abstract

Two-stage deep object detectors generate a set of

regions-of-interest (RoIs) in the first stage, then, in the sec-

ond stage, identify objects among the proposed RoIs that

sufficiently overlap with a ground truth (GT) box. The sec-

ond stage is known to suffer from a bias towards RoIs that

have low intersection-over-union (IoU) with the associated

GT boxes. To address this issue, we first propose a sam-

pling method to generate bounding boxes (BB) that overlap

with a given reference box more than a given IoU thresh-

old. Then, we use this BB generation method to develop

a positive RoI (pRoI) generator that, for the second stage,

produces RoIs following any desired spatial or IoU distri-

bution. We show that our pRoI generator is able to simulate

other sampling methods for positive examples such as hard

example mining and prime sampling. Using our genera-

tor as an analysis tool, we show that (i) IoU imbalance has

an adverse effect on performance, (ii) hard positive example

mining improves the performance only for certain input IoU

distributions, and (iii) the imbalance among the foreground

classes has an adverse effect on performance and that it

can be alleviated at the batch level. Finally, we train Faster

R-CNN using our pRoI generator and, compared to conven-

tional training, obtain better or on-par performance for low

IoUs and significant improvements when trained for higher

IoUs for Pascal VOC and MS COCO datasets. The code is

available at: https://github.com/kemaloksuz/

BoundingBoxGenerator.

1. Introduction

An important challenge in object detection is class im-

balance [2, 17, 20, 27, 31]: even from a single image, an

infinite number of negative examples can be sampled, in

contrast to only a limited set of positive RoIs (regions-of-

interest). Naturally, this leads to significant imbalance be-

tween negatives and positives. Class imbalance also exists

within foreground classes.

∗Equal contribution for senior authorship.

Task: Generate BB

with IoU > 𝑇

Generated Box

With IoU > 𝑇
Feasible Spaces

for Corners

Reference Box

(a) Bounding Box Generation

Feature 

Extraction 

Network

Fea
tu

re
 M

ap
s

Detection

Network

Positive Region of 

Interest Generator

BB IoU

Distrib.

Ground Truths

Distribution Requirements

BB Spatial 

Distrib.

Bounding Box 

Generator

Foreground 

Class

Distrib.

Region 

Proposal 

Network

Positive 

RoIs

Negative 

RoIs

R
oI

Poo
lin

g

O
b

je
ct

 D
e

te
ct

io
n

 P
ip

e
li

n
e

R
o

I
G

e
n

e
ra

ti
o

n

In
pu

t I
m

ag
e

D
et

ec
tio

ns

(b) Generating Bounding Boxes for Training an Object Detector

Figure 1. (a) An illustration of Bounding Box (BB) Generation.

Given a reference box (in blue) and an IoU threshold T , a BB hav-

ing at least T IoU is generated (drawn in green). (b) An illustra-

tion of training an object detector with positive region-of-interests.

Given distribution requirements on foreground classes and BBs,

we generate positive RoIs using the BB generator (Fig 1(a)). Neg-

ative RoIs are still generated by the region proposal network.

A prominent solution to the foreground-background

class imbalance is to have two stages [5, 10, 30]: The first

stage estimates regions (i.e., RoIs) that are likely to contain

objects, significantly discarding background samples, and

the second-stage classifies these regions into objects, and

also fine-tunes the coordinates of the bounding boxes. Other

solutions generally employ sampling with hard constraints

(e.g., online hard example mining [31], Libra RCNN [27])

or soft constraints (e.g., focal loss [20], harmonizing gradi-

ents [17]).

The foreground-foreground class imbalance problem,

i.e., the imbalance in the number of examples pertaining to

different positive classes at the image, dataset or mini-batch

levels, has not attracted as much attention. In addition, the

IoU distribution of the RoIs generated by the region pro-

894



posal network (RPN) [30] is imbalanced [1], which biases

the BB regressor in favor of the IoU that the distribution

is skewed towards. We call this imbalance problem as IoU

distribution imbalance. Addressing these problems requires

a careful analysis of the positive RoIs.

In this paper, we analyze and address foreground-

foreground class imbalance and IoU distribution imbalance

by actively generating BBs. We first propose the “BB gen-

erator”, a method that can generate an arbitrary BB overlap-

ping with a reference box with an IoU larger than a given

threshold (Figure 1(a)). Using the BB generator, we de-

velop a positive RoI (pRoI) generator that can produce RoIs

conforming to desired IoU and relative spatial distributions

(Figure 1(b)). Considering that there is a correlation be-

tween the hardness of an example and its IoU [27], the pRoI

generator can generate (rather than sample) not only posi-

tive or negative samples, but also samples with any desired

property such as hard examples [31] or prime samples [2].

We use our pRoI generator to perform several analyses

and improvements. Specifically, we (i) show that IoU and

foreground class distributions affect performance, (ii) make

a comparative analysis for RPN RoIs and (iii) improve the

performance of Faster RCNN for IoU intervals where RPN

is not able to generate enough samples.

Finally, we devise an online, foreground-balanced (OFB)

sampling method which considers the imbalance among

the foreground classes dynamically within a training batch

based on multinomial sampling.

Contributions. Overall, our main contributions are as fol-

lows:

1. Generators: (i) A BB generator to generate BBs for a

given IoU threshold and (ii) a positive RoI generator to gen-

erate RoIs with desired foreground class, IoU and relative

spatial distributions.

2. Imbalance Problems and Analysis: Using our pRoI

generator, we show that IoU distribution and foreground-

foreground class imbalance within a training batch affect

the performance of the object detectors. We also provide an

analysis of RPN RoIs and show that the effect of the hard

examples depends on the IoU distribution of the BBs.

3. Practical Improvements: We train a detection net-

work using our pRoI generator, which increases the amount

and the diversity of the positive examples especially for

the larger IoUs, and show that the performance improves

compared to the standard training (e.g. for IoU = 0.8,

mAP@0.8 improves by 10.9% for Pascal VOC). We also

train the conventional detection pipeline by using the pro-

posed OFB sampling, and improve the performance.

2. Related Work

Deep Object Detectors: We can group deep object detec-

tors into two: One-stage methods and two-stage methods.

While one-stage methods [8, 20, 23, 28, 29] predict the ob-

ject categories and their BBs directly from anchors, two-

stage methods [5, 10, 11, 30] first estimate a set of RoIs

from anchors and then predict objects from these RoIs in

the second stage. Both approaches use a deep feature ex-

tractor [13, 33], optionally followed by steps like feature

pyramid networks [9, 15, 19, 22].

Our BB sampling approach is more suitable for the sec-

ond stage of the two-stage methods since one-stage detec-

tors have structural constraints owing to the fact that each

output of a one-stage detector corresponds to a predefined

anchor having fixed location, shape and scale. For this rea-

son, an additional module is required to employ our gener-

ator. However, having balanced IoU and foreground class

distributions are relevant for any object detection pipeline

since any object detector needs to deal with BBs even if

they are estimated or fixed (in the case of anchors).

Class Imbalance in Object Detection: Following Oksuz

et al. [25], we categorize the class imbalance problem for

the deep object detectors into two: foreground-background

and foreground-foreground class imbalance.

Foreground-background class imbalance has attracted

more attention with hard sampling, soft sampling and gen-

erative approaches. In hard sampling methods, certain sam-

ples are shown more to the network. This can be performed

via random sampling [5, 30], or by relying on “sample use-

fulness” heuristics as in hard-example mining [23, 27, 31]

and prime sampling [2]. Hard-example mining methods

usually assume that examples with higher loss are more dif-

ficult to learn, and therefore, they train a network more with

such examples. This approach is adopted for negative sam-

ples in SSD [23], while a more systematic approach con-

sidering both the positive and negative samples is proposed

in online hard example mining (OHEM – [31]). An alter-

native hardness definition was proposed in Libra R-CNN

[27] based on a sample’s IoU, and a solution was proposed

using hard example mining using BB IoUs without comput-

ing the loss for the entire set. A recent interesting method,

“prime sampling” [2], asserts that positive samples with

higher IoUs are more representative and proposed ranking

the positive samples based on its IoU with the ground truth,

while still showing that hard example mining for the nega-

tive class works well. BB IoU imbalance is addressed by

Cascade R-CNN [1] by employing cascaded detectors in

such a way that a later-stage detector is trained by a dis-

tribution skewed towards higher IoU.

In soft sampling, a weight is assigned to each sample

rather than performing a discrete (hard) selection of sam-

ples. Prominent examples include focal loss [20], which

promotes hard examples; prime sampling [2], which as-

signs more weight to examples with higher IoUs; and fi-

nally gradient harmonizing mechanism [17], which assigns

lower weights to easy negatives and suppresses the effect of

the outliers.

895



The generative methods address imbalance with a differ-

ent perspective by introducing generated samples. Example

approaches include generating hard examples with various

deformations and occlusion [32] and generating synthetic

examples [12].

Foreground-foreground class imbalance is critical as

well. Kuznetsova et al. [16] showed that object detection

datasets are highly imbalanced also for foreground classes.

The only method to consider the problem at the dataset level

handcrafts a similarity measure, and based on the measure

clusters the classes to have a more balanced training [26].

In the classification domain where there is no background

class, this imbalance is studied more [7, 14] by, e.g., per-

forming class-aware sampling [18]. However, these meth-

ods are not directly applicable for two-stage object detec-

tors because the second stage’s input is very dynamic since

it depends on RoIs estimated by the first stage. Despite this

difference, class-aware sampling is said to be adopted by

[22], however no comparison is presented for balanced and

imbalanced training from the object detection perspective.

Our ideas in this paper are relevant for both foreground-

background and foreground-foreground class imbalance.

One can generate any number of positive RoIs to address

the foreground-background imbalance, and the generated

set can also be chosen equally from each class to address the

foreground-foreground imbalance. Among the three types

of methods mentioned above, we classify our approach as a

generative method. Since the end-to-end training pipeline is

not disrupted (see Figure 1(b)), any hard sampling method

[27, 31] can also be simulated. In addition, we directly

address foreground-foreground class imbalance by online

foreground balanced (OFB) sampling. Its main difference

from the previously proposed class-aware sampling [18] is

that while they use a static dataset, our OFB sampling is

able to handle the dynamic nature of the RoIs (i.e. the batch

depends on the sampled RoIs at each iteration) owing to the

proposal network.

3. The Generators

In this section, we describe the methods for generating

bounding boxes and balanced positive RoIs.

3.1. Definitions and Notation

Let B = [x1, y1, x2, y2] denote a ground-truth box with

top-left corner TL(B) = (x1, y1) and bottom-right corner

BR(B) = (x2, y2) satisfying x2 > x1 and y2 > y1. The

area of B is simply defined as:

A(B) = (x2 − x1)× (y2 − y1), (1)

and the area of the intersection between B and B̄ is:

I(B, B̄) = (min (x̄2, x2)−max (x̄1, x1))× (2)

(min (ȳ2, y2)−max (ȳ1, y1).

(a) (b)

Figure 2. (a,b) Applying Algorithm 1 on the blue BB (B) with T =
0.5. Red polygons denote boundaries for top-left and bottom-right

points that can be sampled with an IoU larger than T = 0.5. Red

dots are sampled points, and green box is the generated box (B̄)

with IoU = 0.5071.

Based on this notation, IoU(B, B̄) can be easily defined as:

IoU(B, B̄) =
I(B, B̄)

A(B) + A(B̄)− I(B, B̄)
. (3)

Finally, we note two useful properties of the IoU function:

(Theorem 1) IoU(B, B̄) is scale-invariant, and (Theorem

2) IoU(B, B̄) is translation-invariant (see Suppl. Mat. for

the proofs). These theorems allow us to shift and scale the

input BBs to a reference box during BB generation and then

shift and scale them back to their original aspect ratio and

location.

3.2. Bounding Box Generator

Algorithm 1 Bounding Box Generator. See Section 3.2 and

the Suppl. Mat. for the definitions of the functions.

1: procedure GENERATEBB(B, T )

2: # Step-1: Find top-left corner

3: TLPoly ← findTLFeasibleSpace(B, T )
4: TL(B̄)← samplePolygon(TLPoly)
5: # Step-2: Find bottom-right corner

6: BRPoly ← findBRFeasibleSpace(B, T,TL(B̄))
7: BR(B̄)← samplePolygon(BRPoly)
8: return [TL(B̄),BR(B̄)]
9: end procedure

Given a reference box B and a threshold T , the goal

of the BB generator is to determine a new box B̄ =
[x̄1, ȳ1, x̄2, ȳ2] such that IoU(B, B̄) ≥ T . To gen-

erate such a box, we propose a 2-step algorithm pre-

sented in Algorithm 1 and illustrated in Fig. 2. The

first step (lines 3-4) finds the polygon1 that computes

the feasible space for TL(B̄) = (x̄1, ȳ1), which satis-

fies the desired IoU, and samples a point in this polygon.

The second step (lines 6-7) takes into account the sam-

pled TL(B̄) and, similar to Step 1, determines a feasi-

ble space for bottom-right corner, then, samples BR(B̄).

1Note that the shape is not strictly a polygon; however, we approximate

it as one at regular small intervals, and therefore, we call it a polygon for

the sake of simplicity.

896



(a) (b)

Figure 4. (a) The regions around TL(B) and BR(B) are splitted

into four each. Red and green dashed lines split the top left and

bottom right regions respectively. The numbers label the splitted

regions.), (b) In the execution of the sample polygon function for

T = 0.75, green dashed box is the enclosing box for the TL space

polygon.

Figure 3. 1K generated

boxes (shown with red) by

Algorithm 1 for reference

box drawn in blue (B) and

IoU threshold T = 0.6.

This order leads to a non-

isotropic distribution with re-

spect to the reference box. To

make it isotropic, we can also

sample in the reverse order:

i.e. sample BR first then TL.

We then randomly choose the

order, before sampling. Fig. 3

superimposes 1000 generated

boxes with T = 0.6.

The following two

sections discuss how

the feasible space

is computed (i.e.

findTLFeasibleSpace(B, T )) and how a point can be

sampled within a polygon (i.e. samplePolygon(TLPoly)).
See the Suppl. Mat. for BR(B̄).

3.2.1 Determining Feasible Space for the Desired IoU

findTLFeasibleSpace(B, T ) is the function determining

the feasible set of points that can be the top left point of

a box ensuring the desired IoU. In order to find the set

of these feasible points (i.e. TL(B̄)) that satisfy Eq. 3,

we assume that BR(B̄) = BR(B) and manipulate Eq. 3,

otherwise, some feasible points are excluded in the feasi-

ble top left space. Even though BR(B̄) is fixed, there are

still two unknown variables x̄1 and ȳ1. That’s why, we first

bound one of these two variables and then find the value

of the unbounded variable by moving within the limits of

the bounded variable with some precision (we use 0.0001
as precision). Since the definition of the IoU(B, B̄) is dif-

ferent in each of the four regions depicted in Fig. 4(a) due

to the max and min operations, an equation is to be derived

for each region.

Denoting the minimum and maximum bounds of x̄1 in

Region I by xImin and xImax respectively, we bound the

values in x axis. It is obvious that xImin = x1 due to the

boundary of Region I. To find xImax, we manipulate Eq. 3

by exploiting that ȳ1 = y1 for xImax, which yields:

xImax = x2 − (x2 − x1)× T. (4)

Having determined the boundaries for x̄1, now we de-

rive a function that determines ȳ1 given x̄1. Finally,

moving within the bounds yields x̄1, ȳ1 pairs satisfying

IoU(B, B̄) = T when BR(B̄) = BR(B). In region I,

note that I(B, B̄) does not rely on ȳ1 (i.e. I(B, B̄) =
(x2 − x̄1)(y2 − y1)). Bringing these together, ȳ1 can be de-

fined as (see Suppl. Mat. for the entire derivation of xImax

and ȳ1):

ȳ1 = y2 −
I(B,B̄)

T + I(B, B̄)−A(B)

(x2 − x̄1)
. (5)

Here, we only show the derivation steps for Region I and

present the equations for all regions in Suppl. Mat. Com-

bining the points in all these regions yields the polygon lim-

iting feasible region with IoU ≥ T .

3.2.2 Controlling the Relative Spatial Distribution of

the Boxes

samplePolygon(TLPoly) function determines the BB spa-

tial distribution. We follow rejection sampling [3] in such

a way that a point is proposed by the proposal distribu-

tion until it hits the inside of the polygon. Accordingly,

the proposal distribution determines the BB spatial distri-

bution. Fig. 4(b) presents an example for spatial uniform

distribution for the top-left space polygon with T = 0.75.

We sample a point in the rectangle uniformly, which corre-

sponds basically to generating two uniform numbers within

a range. If the point is in the polygon, then it is accepted,

else a new point is proposed until it is inside the polygon.

Note that different proposal distributions lead to different

relative spatial distributions for the generated BBs.

3.3. pRoI Generator: Training by Generated BBs

This section provides an application of our BB generator

for generating positive RoIs for training a two-stage object

detector. By applying our BB generator to the ground-truth

boxes, we can generate positive RoIs with desired charac-

teristics. This enables us to (i) analyze how the performance

of Faster R-CNN is affected by the properties of the posi-

tive RoIs and (ii) improve the performance for IoU intervals

where RPN is not able to generate enough samples.

Algorithm 2 Positive RoI Generator. See Section 3.3

and the Suppl. Mat. for the definitions of functions

fgBalancedRoIAlloc and genRoIs.
1: procedure GENERATEPROI(GTs, ψIoU ,WIoU , RoINum)

2: perGtRoI = fgBalancedRoIAlloc(GTs,RoINum)
3: RoIs = genRoIs(GTs, perGtRoI, ψIoU ,WIoU , RoINum)
4: return RoIs

5: end procedure

897



The method, “Positive RoI Generator” (pRoI Gen-

erator), described in Algorithm 2, can control sev-

eral different characteristics of the set of positive RoIs.

fgBalancedRoIAlloc() first divides RoINum by the num-

ber of different classes in the given ground truth set, GTs,
to determine the allocated box number per class, and then

shares this value among each example of the same class

equally. As a result, fgBalancedRoIAlloc() determines the

number of boxes to be generated for each ground truth box

in GTs. Secondly, given the allocated number of boxes for

each ground truth, genRoIs() iteratively uses BB genera-

tor as a subroutine to provide a set of RoINum RoIs. In

this step, the IoU distribution requirement is determined by

the inputs ψIoU , the base of the IoU bins and the weight of

the each bin denoted by WIoU . WIoU is basically a multi-

nomial distribution over the bins determined by ψIoU . An

important benefit of pRoI generator is that training with the

generated RoIs has no impact on the gradient flow for the

training process (see Suppl. Mat.). At each training itera-

tion, RPN generates a set of RoIs among which we discard

the positive ones and use the positive RoIs generated by the

proposed method (Fig. 1(b)). Using our pRoI generator, we

can address the imbalance problems regarding RoIs at three

different levels:

(1) Foreground-foreground class imbalance, which oc-

curs when a dataset or mini-batch (or batch) contains dif-

ferent numbers of positive examples from different classes.

To illustrate on a batch, an image (used as a batch) from

PASCAL dataset [6] includes 4 bottles, 2 persons, 2 dining

tables and 1 chair. In such a case, having equal number of

RoIs per instance may lead the model to be biased in fa-

vor of the bottle class while ignoring the chair class. In our

pRoI Generator, fgBalancedRoIAlloc() function allocates

the same number of RoIs for each class within the batch.

(2) IoU distribution imbalance, which occurs when the

positive RoIs have a skewed IoU distribution (Fig. 5). It

has been shown that the hardness of a RoI is related to its

IoU [27] and also the regressor overfits to RoIs which has

IoU around 0.5 when the distribution of the RPN proposals

is concentrated towards 0.5 [1]. Thus, these recent findings

imply that the IoU distribution has an important effect on

training. As aforementioned, genRoIs() is able to control

the IoU distribution of the BBs.

(3) Relative spatial imbalance, which occurs when the

BBs intersect significantly and a diverse set of examples can

not be provided to the detection network. This level of im-

balance is controlled in our pRoI generator in the subroutine

BB generator as discussed in Section 3.2.2.

4. Experimental Setup

Dataset and Implementation Details: We evaluate our

generative methods on Faster R-CNN in two different set-

tings: (i) on Pascal VOC 2007 [6] with backbone ResNet-

101 following the implementation and training in [34] with

batch size 1 image on 1 GPU, and (ii) on MS COCO

[21] with backbone ResNet-50 following the implementa-

tion and training in [4] with batch size 2 images/GPU on 2
GPUs. During training, 32 positive, and 96 negative RoIs

are used from each image in the batch.

Performance Measures: We exhaustively search for the

best mean-average-precision (mAP) and mean-optimal-

localization-precision-recall (moLRP) error [24] values

over epochs and report them. moLRP is a recently intro-

duced metric for object detection, which represents recall,

precision and average tightness of the BBs. Note that mAP
is a higher-is-better measure, while moLRP is an error met-

ric and thus, it is a lower-is-better measure.

RoI Sources: In addition to RoIs output by RPN, we use the

RoIs generated by our pRoI generator, with a given distribu-

tion, during the analysis and training. The different distribu-

tions are obtained by controllingWIoU (see Suppl. Mat. for

the exact configurations of WIoU ) in Algorithm 2. Unless

otherwise stated, we set ψIoU = [0.5, 0.6, 0.7, 0.8, 0.9] and

RoINum = 32. We train these RoI sources with and with-

out foreground balanced sampling in order to see the effects

of different imbalance problems on different RoI sources.

The results are presented in Table 1.

5. Imbalance Problems and Analysis of RPN

RoIs

Figure 5. IoU distribution of different

RoI Sources. See Suppl. Mat. for the

configurations of the RoI sources.

In this section,

using our pRoI

generator, we

show that IoU and

foreground class

distributions affect

performance, sim-

ulate a sampling

method and ana-

lyze the relative

spatial distribution

of RPN RoIs.

5.1. IoU Distribution Imbalance

Our BB generator method (Algorithm 1) samples boxes

for a given IoU threshold, spatially uniformly. It does not

impose an upper bound for the IoUs of the sampled boxes.

Therefore, in order to analyze the density of the different

IoUs for the positive samples, we uniformly generate 100K
boxes for each IoU distribution type and plot the distribu-

tion of the generated boxes in Fig. 5. Note that training

a detector with different IoU distributions of positive ex-

amples affects the resulting test performance (see Table 1),

which implies the effect of IoU distribution imbalance.

From Fig. 5, we observe the following: (1) The dis-

tribution of the boxes with baseIoU = 0.5 is highly bi-

898



Table 1. Effect of the batch properties for generated positive sam-

ples (see Fig. 5 for different RoI sources) on Pascal VOC 2007.

We trained each RoI source with balanced foreground-foreground

distribution and simulating OHPM. RS, Unif, LS and Base respec-

tively denote pRoI-Right Skew, pRoI-Uniform, pRoI-Left Skew

and pRoI-Base IoU=0.5 distributions. FGB refers to foreground

balanced generation of RoIs.
RoI FGB? OHPM moLRP moLRP moLRP moLRP mAP@0.5
Distrib. ↓ (IoU) ↓ (FP) ↓ (FN) ↓ ↑

No No 64.6 21.4 18.7 29.8 74.9
RS Yes No 64.5 21.5 18.7 29.5 75.3

Yes Yes 60.4 19.5 16.8 27.2 77.4
No No 61.3 19.5 17.9 28.5 76.3

Unif. Yes No 61.1 19.5 17.0 28.8 76.9
Yes Yes 59.9 19.2 16.0 27.6 77.8

No No 60.4 19.1 16.9 28.3 77.0
LS Yes No 60.3 19.0 17.3 28.2 77.2

Yes Yes 60.7 19.3 17.7 27.8 76.9
No No 61.5 19.7 17.2 28.8 76.6

Base Yes No 61.4 19.3 16.3 29.4 76.7
Yes Yes 61.2 19.7 16.6 28.6 76.7

ased towards 0.5 and includes very low samples with higher

IoUs. This implies that the proportion of the boxes with

IoU > 0.9 is far too low than that of the boxes with

0.6 > IoU > 0.5 when T = 0.5. (2) RPN RoIs follow a

similar tendency to the sampled boxes with baseIoU = 0.5
since the RoIs are based on anchors, which are uniformly

distributed with a fixed set of boxes on the image. Thanks to

the RPN regressor, the IoU distribution improves compared

to the distribution of the sampled boxes with baseIoU =
0.5. On the other hand, this bias towards 0.5 is previously

argued to make the regressor overfit for smaller IoUs [1].

(3) RPN is able to provide hard positive examples inher-

ently; however, the number of prime samples (i.e. examples

with larger IoUs) is quite low. This is critical since it is

shown that prime sampling performs better than hard posi-

tive mining [2].

5.2. ForegroundForeground Class Imbalance

We observe that, for each RoI source, addressing

foreground-foreground imbalance (FGB=Yes) improves

performance in terms of both mAP and moLRP, espe-

cially for the right skew and uniform cases (see Table

1). Moreover, addressing foreground-foreground class

imbalance does not seem to affect the localization error

(moLRPIoU) but improves the classification performance

since mAP@0.5, moLRPFP and moLRPFN get better (ex-

cept for the left-skew case). Therefore, we conclude that

foreground-foreground class imbalance can also be allevi-

ated by employing methods in the batch level.

5.3. Effect of Online Hard Positive Mining

Here we demonstrate another useful use-case of our pRoI

generator by simulating OHEM [31] on positive examples.

OHEM chooses the positive and negative examples with the

highest loss values after applying NMS to the examples to

preserve example diversity. A recent study [27] showed

that the IoU and the hardness of an example are correlated.

On the other hand, another study [2] proposed an oppo-

site perspective to the OHEM based on prioritizing “prime

samples”, i.e. samples with high IoUs. To be more clear,

OHEM [31] implies preferring positive examples with IoUs

just above 0.5, while prime sampling asserts that the higher

the IoU, the better the example. To make an analysis on the

positive examples, we simulate OHEM by (i) initially gen-

erating 128 BBs by pRoI generator, (ii) applying NMS us-

ing loss value of an example, (iii) finally selecting the ones

with the larger loss values. We coin this as online hard

positive mining (OHPM).

In our experiments, we observe that the effect of the hard

examples depends on the IoU distribution of the RoIs and

high-quality samples are required during training: In Table

1, when OHPM is applied, uniform and right-skew distri-

butions, which have more difficult examples due to their

distribution (Fig. 5), have better performance compared to

the left-skew and “Base IoU=0.5” cases. Moreover, while

OHPM does not improve the performance of left-skew and

“Base IoU=0.5” cases, it is crucial for the right-skew and

uniform distributions (Table 1). Therefore, similar to prime

sampling [2], we show that examples with higher IoUs are

crucial during training, however, we also show that these

examples should be supported by hard examples.

5.4. Relative Spatial Imbalance

We now analyze the relative spatial distribution

of the RPN RoIs and how they fit within the the-

oretical IoU boundaries in Fig. 6. To be able

to make such an analysis, we selected a refer-

ence box with [x1, y1, x2, y2] = [0.3, 0.3, 0.6, 0.6].

Figure 6. Relative spatial distribu-

tion of 2, 500 RPN RoIs TL points

and max. IoU limits from IoU =
0.9 to 0.5 (in-out direction)

At the final epoch of

the RPN training, we

track positive RPN

RoIs with associated

ground truths. As

discussed in Section

3.2, we scaled and

shifted the ground

truths to the refer-

ence box and applied

the same transforma-

tions to their asso-

ciated positive RPN

RoIs. Among the

positive RPN RoIs,

top-left (TL) points of the 2, 500 RoIs are plotted with green

dots in Fig. 6. Then, using findTLFeasibleSpace() func-

tion in Algorithm 1, we plot the theoretical limits for the top

left points for RoIs with IoUs larger than 0.5, 0.6, 0.7, 0.8
and 0.9.Especially the last two observations may be criti-

899



Table 2. Average performance of 3 runs for Faster R-CNN with

our OFB sampling on Pascal VOC. Lower is better for moLRP
and its components, whereas higher is better for mAP.

Sampling moLRP
Method moLRP ↓ IoU ↓ FP ↓ FN ↓ mAP@0.5 ↑

Random 59.4 18.7 16.2 27.7 78.0
OFB 58.9 18.7 15.6 27.2 78.5

Table 3. Comparison of different sampling mechanisms on MS

COCO using Faster R-CNN. Lower is better for moLRP and its

components, whereas higher is better for mAP. mAP stands for

COCO-style mAP. R and H denote random and hard sampling re-

spectively, and OFB is our sampling method for positive RoIs. The

first block compares among different positive sampling schemes

combined with random sampling, while the second block com-

pares their combinations with hard example mining.
Sampling Method

Positive Negative moLRP ↓ mAP ↑ mAP@0.5 ↑

R R 72.4 34.1 55.2
H R 75.3 31.0 51.7

OFB R 72.1 34.7 55.8

R H 71.9 35.3 54.6
H H 74.6 31.1 50.0

OFB H 70.9 35.6 55.3

cal for an object detector since they may result in a positive

bias towards specific RoIs and may make the generalization

difficult over the entire spatial space. However, the effects

of all these observations require experimental or theoretical

validation that is not provided in this paper.

Fig. 6 leads to several key findings: (1) As expected,

as the IoU decreases, the boundaries occupy a larger space

around the TL point of the reference box. Hence, the sam-

ple space for 0.9 is very small, which makes it more difficult

to have distinct RoIs with IoU > 0.9. (2) We observe that

no TL point is outside of the 0.5 boundary, which is a sanity

check for the boundaries since a RoI is labeled as positive if

it has at least 0.5 IoU with a ground truth. (3) The TL points

of the RPN RoIs are accumulated around the TL point of

the reference box and they are not uniformly distributed

within the 0.5 boundary. (4) The TL points of the RPN

RoIs tend to be inside the reference box more than to be

outside. Specifically, RPN RoIs between x > 0.3, y > 0.3
and x < 0.3, y < 0.3 are 28.2% and 21.0% of the all, re-

spectively.

6. Practical Improvements

In this section, we propose OFB sampling and show the

effect of employing pRoI generator for training the second-

stage of Faster R-CNN.

6.1. Online Foreground Balanced Sampling

In the conventional training, the set of positive RoIs are

limited and they are not generated as in pRoI generator. Mo-

tivated from the analysis using pRoI generator on the effect

of foreground-foreground class imbalance (see Section 5),

we propose an online sampling method to be used in the

conventional training pipeline. Denoting the total number

of classes in a batch by C and the number of positive RoIs

for class c by kc, each RoI is assigned a probability 1/(Ckc)
and the subset of RoIs to train Faster R-CNN is sampled

from this multinomial distribution. We call this sampling

scheme as Online Foreground Balanced (OFB) Sampling.

In order to see the effect, we train Faster R-CNN with

and without OFB sampling and present results in Tables 2

and 3. For the Pascal VOC [6], we observe 0.5% improve-

ment in mAP@0.5 and moLRP, with better performance

in precision and recall components of moLRP and no im-

pact on the regression branch. In our experiments with MS

COCO (Table 3), we compared our results with hard ex-

ample mining [23, 31]. Similar to the findings of Cao et

al. [2] and our analysis in Section 5, while hard positive

mining does not improve performance, our OFB sampling

is beneficial for foreground examples. Moreover, the table

shows that OFB sampler can be combined with sampling

approaches for negative BBs. In any case, similar to our ex-

periments for Pascal VOC, the best performance gain is in

mAP@0.5. This suggests that controlling RoIs to balance

foreground classes has also a role during training of the ob-

ject detectors and OFB, an efficient sampling algorithm, can

be considered a basic solution for the problem.

6.2. Generating More Samples in Higher IoUs

Our approach can be integrated into an object detector

without any hindrance on the gradient paths (see Suppl.

Mat.). In this section, we compare a detector trained with

our pRoI Generator with a detector trained with the conven-

tional method (i.e. using RPN RoIs) – see Table 4. We use

Uniform RoI source with foreground balance and OHPM

since it performed the best in Table 1. For IoU = Θ, we

randomly sample negative samples from the output of the

RPN in the range [0.1,Θ] and the positive samples are pro-

vided by the pRoI generator also using OHPM. To apply

OHPM, we first generate RoINum boxes, then select fg
many from them. In IoUs 0.6 − 0.8, for which fewer RoIs

are possible than 0.5, we initially train the models for 1
epoch by setting fg = 32 and bg = 96 and track “Mean

RoI #” to see an upper bound for the models to generate

RoIs and prevent class imbalance modelwise. In this run,

Mean RoI # for IoUs 0.6, 0.7, 0.8 are 17.26, 7.60, 1.72 for

RPN and 20.0, 11.41, 4.67 for pRoI-Uniform respectively.

Then using IoU = 0.5 as an example, we multiply the re-

sulting “Mean RoI #” by 1.5 and set fg approximately to

it with bg = 3 × fg as in the conventional training. This

approach makes training more stable and fair especially for

the RPN (see Table 4) by balancing foreground and back-

ground consistently.

Looking at Table 4 and comparing the methods in the

IoUs that they are trained for, we observe the following: (1)

For IoU = 0.5, 0.6 and IoU = 0.7 we get comparable

900



Table 4. Performance Comparison with RPN on PASCAL VOC. RoINum is the input of pRoI generator, fg/bg is the desired fg and bg

RoI numbers during training, and Mean RoI # is the actual mean of number of positive RoIs. Note that fg/bg RoI numbers are set differently

for pRoI and RPN so that the best performance is achieved for both of these RoI sources in order to provide a fair comparison especially

in favor of RPN. We trained the models (except the one with the ∗ mark) for 16 epochs with a learning rate decay at epochs 9 and 14 since

our model provides more diverse data than RPN (see in Fig. 6 that the TL points of the RPN RoIs clusters around TL point of B) and there

are fewer samples for training in higher IoUs (see Mean RoI # in Table 4)
RoI Source IoU RoINum fg/bg Mean RoI # ↑ moLRP ↓ moLRPIoU ↓ moLRPFP ↓ moLRPFN ↓ mAP@IoU ↑

RPN* 0.5 N/A 32/96 27.12 59.3 18.7 16.0 27.7 78.0

pRoI-Uniform 0.5 128 32/96 25.49 59.2 18.4 15.5 28.2 77.1
RPN 0.6 N/A 27/81 16.92 65.4 17.0 19.4 31.9 71.2

pRoI-Uniform 0.6 128 27/81 18.28 65.4 16.9 20.8 31.0 70.6
RPN 0.7 N/A 9/27 5.39 74.9 14.7 27.2 42.1 57.3
pRoI-Uniform 0.7 128 18/54 9.93 74.5 14.9 28.0 39.8 57.5

RPN 0.8 N/A 2/6 1.08 92.5 13.2 58.8 69.8 21.3
pRoI-Uniform 0.8 64 8/24 3.92 87.7 12.1 47.8 59.3 32.2

RPN 0.9 N/A 2/6 99.5 7.4 94.2 97.1 0.5 0.17
pRoI-Uniform 0.9 32 2/6 1.62 99.3 7.3 92.4 96.0 0.9

Table 5. Effect of RoINum on PASCAL VOC. Speeds are reported on a single Geforce GTX 1080 Ti.
RoI Source RoINum moLRP ↓ moLRPIoU ↓ moLRPFP ↓ moLRPFN ↓ mAP@0.5 ↑ Train Speed ↓ Mean RoI # ↑

pRoI-Uniform 32 60.3 19.3 16.4 27.8 77.5 0.41s 14.81
pRoI-Uniform 64 59.7 19.0 16.1 27.4 77.6 0.58s 21.32
pRoI-Uniform 128 59.9 19.2 16.0 27.6 77.8 0.97s 25.49

results with the conventional training. (2) For IoU = 0.8,

where RPN is not able to generate sufficient samples, the

performance increases significantly in terms of both metrics

since, at each iteration, generated positive boxes are pro-

vided consistently to the second stage. (3) Overall, the mean

RoI # is approximately four times higher at IoU = 0.8; and,

mAP@0.8 and moLRP improve by 10.9% and 4.8% re-

spectively. A similar trend is also achieved for IoU = 0.9.

In short, these results demonstrate that it is possible to

train an object detector using BB generator with comparable

results for lower IoUs and significantly better performance

for higher IoUs. On par performance for low IoUs can be

owing to the fact that there are sufficient amount of samples

for these cases to see any imbalance effect.

Effect of RoINum: Apart from the input parameters

to determine the nature of the RoI source, RoINum is

the only new hyperparameter in Algorithm 2. In Table 5,

we observe that training improves (mAP increases) when

RoINum is increased because we have more positive sam-

ples at each iteration. However, more samples mean slower

(yet still acceptable) training speed compared to conven-

tional training having 0.23s training speed.

Preliminary Results on MS COCO: In order to back up

our claims, we also conducted an experiment on MS COCO

dataset using IoU = 0.8 with Faster R-CNN. Compared to

the baseline achieving moLRP = 95.1 and mAP@0.8 =
13.2, using pRoI generator the model has moLRP = 93.7
and mAP@0.8 = 15.3. These results suggest that our

model is able to generate more diverse examples than the

baseline in larger IoUs.

7. Conclusion

In this paper, we proposed a BB generator and a positive

RoI generator. We showed that generated RoIs can be used

both as an analysis tool (owing to its controllable nature)

and a training method for the two-stage object detectors.

We showed that there is a bias in the RPN RoIs’ IoU and

spatial distribution with respect to the IoU boundaries that

are physically possible and analyzed the IoU distributions

of RPN and other RoI sources.

Using our BB generator, we developed a pRoI generator

that can generate RoIs overlapping with a GT box with a de-

sired IoU or relative spatial distribution. Then, we trained

Faster R-CNN’s second-stage with the RoIs generated ac-

cording to different distributions. We showed that, by pro-

ducing more samples than RPN, we can achieve better or

comparable performance to Faster R-CNN. Moreover, our

results reconciliated two conflicting recent studies [2, 31]

that both high-IoU and hard RoIs can have positive effect

on the training if the IoU distribution is appropriate.

Our ideas can be used for analyzing the anchors of a one-

stage detector (as well as those of a two-stage detector) in

order to design a better anchor set. Furthermore, other ap-

plications, e.g. tracking, that require spatially distributed

BBs with certain properties can also exploit our approach.

Acknowledgments

This work was partially supported by the Scientific and
Technological Research Council of Turkey (TÜBİTAK)
through a project titled “Object Detection in Videos with
Deep Neural Networks” (grant number 117E054). Ke-
mal Öksüz is supported by the TÜBİTAK 2211-A Na-
tional Scholarship Programme for Ph.D. students. The
numerical calculations reported in this paper were per-
formed at TUBITAK ULAKBIM High Performance and
Grid Computing Center (TRUBA), and Roketsan Missiles
Inc. sources.

901



References

[1] Z. Cai and N. Vasconcelos. Cascade R-CNN: Delving into

high quality object detection. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[2] Y. Cao, K. Chen, C. C. Loy, and D. Lin. Prime Sample At-

tention in Object Detection. arXiv, 1904.04821, 2019.

[3] A. T. Cemgil. A Tutorial Introduction to Monte Carlo meth-

ods, Markov Chain Monte Carlo and Particle Filtering. Aca-

demic Press Library in Signal Processing, 2013.

[4] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun,

W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu,

T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai,

J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin. MMDe-

tection: Open mmlab detection toolbox and benchmark.

arXiv, 1906.07155, 2019.

[5] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection

via region-based fully convolutional networks. In Advances

in Neural Information Processing Systems (NIPS), 2016.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International Journal of Computer Vision, 88(2):303–

338, 2010.

[7] A. Fernndez, S. G. M. Galar, R. Prati, and B. K. F. Herrera.

Learning from Imbalanced Data Sets. Springer, 2018.

[8] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. DSSD:

Deconvolutional single shot detector. arXiv, 1701.06659,

2017.

[9] G. Ghiasi, T. Lin, R. Pang, and Q. V. Le. NAS-FPN: learn-

ing scalable feature pyramid architecture for object detec-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2019.

[10] R. Girshick. Fast R-CNN. In The IEEE International Con-

ference on Computer Vision (ICCV), 2015.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2014.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems (NIPS), 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[14] J. M. Johnson and T. M. Khoshgoftaar. Survey on deep learn-

ing with class imbalance. Journal of Big Data, 6(27), 2019.

[15] T. Kong, F. Sun, W. Huang, and H. Liu. Deep feature pyra-

mid reconfiguration for object detection. In The European

Conference on Computer Vision (ECCV), 2018.

[16] A. Kuznetsova, H. Rom, N. Alldrin, J. R. R. Uijlings,

I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci,

T. Duerig, and V. Ferrari. The open images dataset V4: uni-

fied image classification, object detection, and visual rela-

tionship detection at scale. arXiv, 1811.00982, 2018.

[17] B. Li, Y. Liu, and X. Wang. Gradient harmonized single-

stage detector. In AAAI Conference on Artificial Intelligence,

2019.

[18] S. Li, L. Zhouche, and H. Qingming. Relay Backpropa-

gation for Effective Learning of Deep Convolutional Neu-

ral Networks. In European Conference on Computer Vision

(ECCV), 2016.

[19] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017.

[20] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. In The IEEE International

Conference on Computer Vision (ICCV), 2017.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon Objects in Context. In European Conference on Com-

puter Vision (ECCV), 2014.

[22] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation

network for instance segmentation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detec-

tor. In European Conference on Computer Vision (ECCV),

2016.

[24] K. Oksuz, B. C. Cam, E. Akbas, and S. Kalkan. Localization

recall precision (LRP): A new performance metric for ob-

ject detection. In European Conference on Computer Vision

(ECCV), 2018.

[25] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas. Im-

balance Problems in Object Detection: A Review. arXiv,

1909.00169, 2019.

[26] W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in

finetuning deep model for object detection with long-tail dis-

tribution. The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[27] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin. Li-

bra R-CNN: Towards balanced learning for object detection.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[28] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[29] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(6):1137–1149, 2017.

[31] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[32] X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard

positive generation via adversary for object detection. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017.

902



[33] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.

arXiv, 1611.05431, 2016.

[34] J. Yang, J. Lu, D. Batra, and D. Parikh. A

faster pytorch implementation of faster r-cnn.

https://github.com/jwyang/faster-rcnn.pytorch, Last Ac-

cessed: 24 April 2019.

903


