This WACYV 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Structured Compression of Deep Neural Networks with Debiased Elastic Group
LASSO

Oyebade K. Oyedotun, Djamila Aouada, Bjorn Ottersten
Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, L-1855 Luxembourg

{oyebade.oyedotun, djamila.aouada, bjorn.ottersten}@uni.lu

Abstract

State-of-the-art Deep Neural Networks (DNNs) are typ-
ically too cumbersome to be practically useful in portable
electronic devices. As such, several works pursue model
compression that seeks to drastically reduce computational
memory footprints, FLOPS and memory for storage. Many
of these works achieve unstructured compression, where the
compressed models are not directly useful since dedicated
hardware and specialized algorithms are required for stor-
age of sparse weights and fast sparse matrix-vector multi-
plication respectively. In this paper, we propose structured
compression of large DNNs using debiased elastic group
LASSO (DEGL), which is motivated by different interesting
characteristics of the individual components. That is, where
group LASSO penalty enforces structured sparsity, 12-norm
penalty promotes features grouping, and debiasing disen-
tangles sparsity and shrinkage effects of group LASSO. We
perform extensive experiments by applying DEGL to dif-
ferent DNN architectures including LeNet, VGG, AlexNet
and ResNet on MNIST, CIFAR-10, CIFAR-100 and Ima-
geNet datasets. Furthermore, we validate the effectiveness
of our proposal on domain adaptation using Oxford-102
flower species and Food-5K datasets. Results show that
DEGL can compress DNNs by several folds with small or
no loss of performance. Particularly, DEGL outperforms
conventional group LASSO and several other state-of-the-
art methods that perform structured compression.

1. Introduction

Computer vision tasks benefit from the success of DNNs,
as several interesting results have been reported for differ-
ent tasks [12, 25, 22]. Importantly, exceptional results on
challenging datasets have been obtained using large DNN
models [28, 14]. On one hand, there seems to be a positive
correlation between model size and performance for many
tasks [41, 23]; many works posit that large models allow

the expoloration of extensive solution configurations, and
thus reduces the possibly of getting stuck in poor local min-
ima. On the other hand, these high-performance models are
usually too cumbersome! for deployment in real-life appli-
cations. A solution to the aforementioned problems of large
DNNs is to train from scratch smaller models with accept-
able computational memory footprint, FLOPS and memory
for storage. However, such small models typically incur no-
ticeable generalization loss in comparison to large models.
Consequently, model compression [29, 5] seeks to address
the problems associated with cumbersome models, but in-
cur minimal or even no performance loss in comparison to
the reference large models.

Model compression results can be classified as unstruc-
tured or structured. In unstructured compression [32], the
outcome is implicitly compressed, but the overall architec-
ture of the compressed model is the same as the original (or
reference) large model. Consequently, the aforementioned
benefits of compression are not directly obtainable; dedi-
cated hardware to store model weights with unstructured
sparsity are required to realize a reduction in memory size,
specialized algorithms are required for fast matrix-vector
multiplications to realize a reduction in computational foot-
print and faster inference in comparison to the original large
model [18]. In contrast, structured compression [44, 1]
leads to an explicitly smaller model that requires no ad-hoc
algorithms or specialized hardware for operation.

Model compression works [32, 18] have directly taken
inspiration from sparse signal processing [46, 33]. The con-
vergence and transferability of key concepts in signal pro-
cessing to neural networks (NNSs) is not surprising, since
one can consider NNs as directed graphs with information
flowing through them. Several works [18, 27] on unstruc-
tured and structured model compression have relied on en-
forcing some form of sparsity in model parameters by incor-
porating various penalty terms in the model’s cost function.

IThe term ‘cumbersome’is used to refer to the computer memory size
and computational footprint

2277

Depending on the specific characteristics of the penalty
term used, different forms of sparsity can be achieved for
model parameters. It is noteworthy that these sparsity-
enforcing penalty terms that are now used for model com-
pression are essentially not new; they have existed in classi-
cal signal processing for several years [33, 24]. Very good
results have been reported using such penalty terms for
compressing DNNs, and thus their characteristics deserve
to be investigated even further for improved results. For en-
forcing unstructured and structured sparsity, LASSO [33]
and group LASSO [39] penalties, respectively, have been
reported to yield interesting results. Motivated by the afor-
mentioned drawbacks of unstructured model compression,
we focus in this paper on structured model compression
based on group LASSO.

We start by examining the drawbacks of group LASSO
(which simply reduces to LASSO in the case where each
group is considered as one feature [10]) in the context of
model compression. First is the problem of LASSO satu-
ration [46, 4] that occurs when the number of model pa-
rameters is considerably larger than the number of training
data points; here, the number of features that LASSO se-
lects is at most the number of training data points. This
poses a huge limitation for application in DNNs where it
is customary that the number of model parameters are ex-
ponentially higher than available training data points. Sec-
ond is that group LASSO does not work well with corre-
lated features [46]; the work [40] discusses the problems of
ordinary least squares (OLS), LASSO and group LASSO
with correlated variables. If, for instance, sets of features
form groups, LASSO ‘randomly’ selects one set from each
group, and discards the rest [34, 37, 42]. Interestingly, fea-
tures correlation (especially among hidden units or convo-
lution filters) is highly prevalent in DNNs [13, 2]. Third
is that group LASSO simultaneously enforces both fea-
ture selection (which is desirable for model compression)
and feature shrinkage (which is not so desirable) [46]; as
such, model compression (via features selection) is entan-
gled with model regularization (via feature shrinkage). Ob-
viosuly, this is a concern since our actual interest lies in
feature selection which characterizes truly important fea-
tures (identified by non-zero valued weights), as other fea-
tures (with zero valued weights) can be discarded without
hurting model performance. In fact, the shrinkage effect of
group LASSO can be so impactful such that it causes mod-
els to underfit training data [42].

Our proposal in this paper is aimed at tackling the afore-
mentioned problems encountered with group LASSO for
compressing DNNs. The overall framework of the proposed
compression method is shown in Figure 1. Namely, the con-
tributions in this paper can be summarized as follows:

1. Compression of DNNs using [2-norm penalty and
group LASSO, where group LASSO enforces group

sparsity of parameters, and [2-norm promotes group-
ing and selection stability of correlated features.

2. Model debiasing after pruning by eliminating group
LASSO prior to the retraining phase. This simple step
disentangles the interwoven impact of feature selection
and shrinkage, and thus ameliorate interpretability.

3. Experimental validation on various DNN architectures
using six benchmarking datasets. Improved results
over conventional group LASSO and several state-of-
the-art approaches are reported.

The rest of this paper is organized as follows. In Section 2,
related works are discussed. Section 3 presents as back-
ground conventional group LASSO and subsequntly the
problem statement. Section 4 describes the proposed ap-
proach that addresses the problems highlighted in Section
3. Section 5 contains experimental results and discussions.
The paper is concluded in Section 6.

2. Related work

High performance DNNs are typically cumbersome for
real-life applications. Consequently, several works [15, 8]
have proposed different methods of compression.

In [38], neuron importance score was defined for as-
sessing the impact of hidden neurons in trained models;
the score takes into account the reconstruction of impor-
tant responses in the layer before the classification layer. It
is argued that global pruning methods yield better results
as opposed to pruning methods that take into account only
adjoining layers. Soft filter pruning was proposed in [7],
where pruning is performed dynamically. During training,
previously pruned filters can be included again and partici-
pate in learning if it becomes necessary.

Sparse convolutional neural network was proposed that
in [18]. This work employed sparsity-inducing contraints to
impose sparsity in model parameters during training. The
original model is trimmed after training using some defined
thresholds to determine inconsequential weights. Unfor-
tunately, the compression is unstructured, and thus the re-
ported results, despite being good, are not directly usable as
discussed earlier. In [35], group LASSO is used for learning
structured sparsity in DNNGs; interesting results are reported
given that they directly achieve model speedup during in-
ference without recourse to custom algorithms. In a sim-
ilar work [27], sparse group sparsity was proposed. The
idea is similar in spirit with [18]; that is, imposing unstruc-
tured sparsity among model parameters. Again, the over-
all result leads to unstructured sparsity and thus suffers the
aforementioned drawbacks. In [6], [2-norm penalty was
used to enforce model parameters to have small values. Al-
though good results were achieved, the sparsity of resulting
models were unstructured. In another work [9], LASSO

2278

penalty is used for channel selection and then subsequent
pruning. The work reported compact models with reduced
model size and accelerated inference.

3. Background and problem statement

This section discusses the simple premise that the applica-
tion of conventional group LASSO can be suboptimal for
the purpose of compressing DNNs.

3.1. Background

Consider the cost function, J(W), for a DNN parame-
terized by W; where W = {Wy, Wy, ..., W, .., W}, and
W is the weight matrix at layer [; and L is the total number
of weight layers in the DNN. For instance, say J(W) is the
Mean Squared Error (MSE) given as

1 2
J(W) = — —yo |I?, 1
(W) argmin 2NH Yda — Yo |l)]

such that

Yo = f(z; W), ()
where z is the input data; f is the mapping function defined
by the DNN; y4 and y, are the desired and computed out-
put vectors, respectively; and N is the number of training
data points. Given that the group of features at layer [is
denoted W} and there are G groups, the new cost for the
DNN with group LASSO, Jg; (W), can then be written as

Jgt(W) = argmin J(W), s.t.
w

G (3)
| W, HQ:ZHW;’ |, <e:V1<I<L.

g=1
Note that each convolution filter or all the weights of a hid-

den unit are taken as a group; that is, g. In Langragian form,
(3) can be written explicitly as

G L
Jo(W) = argmin {J(W)) > Iwy HQ},)
g=11=1

w

where the relationship between + and ¢ is such that y o 1/e.
3.2. Problem statement

We herein discuss the problems that can impact the ap-
plication of group LASSO to the task of DNN compression.

3.2.1 Saturation

For problems where the total number of model parame-
ters, 0, is considerably larger than the number of training
samples, NV, LASSO does not select more than N features
prior to saturation [46, 4]. This can severely impact the
expressiveness of the resulting compact model. A formal
treatment and proof of this scenario can be found in [26].
Interestingly, the case 6, > N is extremely prevalent in
DNNs, and thus deserves to be addressed when LASSO is
employed for enforcing parameters sparsity.

3.2.2 Correlated features and grouping

It has been shown that for correlated features, LASSO sim-
ply randomly selects a feature from the group and dis-
cards the rest [46]. This ultimately results in instability of
feature selection over different training runs. Coinceden-
tally, DNNs are popular for learning highly correlated fea-
tures [13, 2]. As such, for model compression techniques
that employ LASSO, features selection instability is a con-
cern in view of model interpretability.

3.2.3 [Entangled feature selection and shrinkage

An examination of LASSO penalty in [46, 33] reveals that
LASSO performs both feature selection and shrinkage. This
combined impact could be interesting for specific applica-
tions where alleviating model overfitting is the main ob-
jective; thus, being unable to identify their individual im-
pact is of no concern. However, in model compression, our
main goal is feature selection to facilitate interpretability
and therefore compactness. As such, it becomes important
to disentangle feature selection and shrinkage when LASSO
is employed for model compression. Additionaly, LASSO
shrinkage effect can over-penalize model parameters so that
model underfits [42].

4. Proposed approach

We present in Figure 1 the proposed approach that address-
esthe challenges discussed in Section 3.2. The objective
is to obtain compact DNNs by employing a more inter-
esting penalized cost function than the conventional group
LASSO.

4.1. Debiased Elastic Group LASSO (DEGL)

We propose Debiased Elastic Group LASSO (DEGL)
that aims to separate model selection via elastic group
LASSO (EGL) from model estimation via ridge regression.

4.1.1 Elastic group LASSO

Motivated by the success of elastic net [46], the problems of
LASSO saturation and erratic selection for correlated fea-
tures discussed in Sections 3.2.1 and 3.2.2 are addressed in
this paper by incorporating [2-norm penalty into the group
LASSO cost given in (5). The Elastic group LASSO (EGL)
cost function that is proposed to enforce group sparsity, pro-
mote features grouping and alleviate selection instability is

Jegi(W) = argmin J(W), s.t.
w

G
Wil =D W l,<er:V1<I<L, ®)

g=1

Wi 2<e:¥V1<I<L.

2279

Train DNN with clastic group LASSO cost function, Jo(W)

=

Non-selected filters after training reflect as black convolution channels

Figure 1: Overall framework for the proposed approach in Section 4. Top left: DNN is trained using the proposed elastic group LASSO cost
function, Jg; (W), in Section 4.1.1. Top right: the non-selected filters after training translate to the black convolution channels. Bottom right:
Non-selected filters are pruned, as in Section 4.1.2. Bottom left: Pruned model is retrained without group LASSO, as in Section 4.1.3

Again, in Langragian form, (5) can be combined and written
explicitly as

G L L
() = avgunin {002, 3 S W7 1423 1 12},
=1

g=11=1
(6)
where <, addresses over-penalization of small feature
groups by taking into account the length of each group, pg,
for any given 7y as in

Yo =V Pg- @)

4.1.2 Pruning unimportant filters

Given a specific filter m out of M filters in layer | denoted
W™, we assess its importance by computing the maximum

value of its individual absolute weight values, w}"’“ as in

maz(W]™) = maz{| w"* |}sz1, 8)
where k indexes the individual weights in filter W;™. The
set of unimportant filters in layer [that least contribute
to model performance is denoted W}/. Given the pruning

threshold ¢y, Wlp is initialized as an empty set, and then
populated from W; using the condition

mazx(W™) <ty :V1<m< M. 9)

Hence, Wlp C W, and the set of remaining filters after
pruning layer is denoted W, = W\W}/. Similar proce-
dure can be repeated for all weight layers so that the overall
resulting trimmed model is now parameterized by W as in
Wr={wry,..W/,..., W[}

4.1.3 Debiasing elastic group LASSO

To tackle the problem of entangled feature selection and
shrinkage discussed in Section 3.2.3, we completely elimi-
nate group LASSO from the cost function given in (10) by

setting v = 0, and retraining the trimmed model now using
the cost function, Jyeq: (W), given as

L
s (W) = argin { 1OV + 20 SN WE] (10
=1

W
where \,; denotes the new [2-norm penalty weight for re-
training; and \; = sA: 0 < s < 1, since W, C W; s is

chosen considering the size of W". The new cost in (10) is
similar in spirit to LARS-OLS [4] and relaxed LASSO [20].

5. Evaluation metrics

The different metrics used for evaluating the perfor-
mance of the proposed approach are discussed as follows.

5.1. Model parameters

We consider a DNN with L weight layers, out of
which L.,, are convolution layers. Given a convolu-
. . w h n n .
tion weight layer W, € Rf"*fiXei1Xel’ that receives

w h n

an input H;_; € RUs*c=1Xc-1X¢“1 and output H; €
Rbs < i’ xep! x<' where wlf s hlf , ¢4, ¢ are the filter width,
filter height, number of input feature channels and output
feature channels, respectively; bs, ¢;” ;, c{ll are the batch
size, incoming feature channel width and height, respec-
tively. The number of parameters in a convolution layer [,
67", can be obtained using

07" = fi flrei sl (11)

For a fully connected layer I, the hyperparameters f, f1,
s c?_l, 1, s cfl, ;' can all be set to 1, so that the
number of parameters, Hlf ¢, is given as

0/ = 1. (12)

2280

Hence, the total number of model parameters, 6, is

Lenow L—Lcnoy

0= > 07"+ > o (13)
=1 =1

5.2. Float point operations per second (FLOPS)

Required Float point operations per second (FLOPS)
is a very useful criterion for assessing how fast a model
runs. The number of FLOPS for a convolution layer [,
FLOPS!,, can be obtained using

cnuv?’
FLOPS™ = b f flrel (e ctep. (14)

Similarly, the number of FLOPS for a fully connected layer
l, referred to as ' LOPS lf ¢, can be computed as

FLOPS/® = bsc}_). (15)

Thus, the total number of FLOPS for the model, FLOPS;,
is given as
Lenw L—Lecny
FLOPS, = Y_ FLOPS{™+ Y FLOPS{®. (16)

=1 =1
5.3. Computational memory footprint (CMF)

Computational memory footprints (C'M F’s) of compres-
sion results are quite critical, as it describes the memory
required to hold model parameters and units’ activations;
small C'M F's are generally desirable. At a given layer [, the
CMF for a convolution layer and a fully connected layer

can be computed as CM F™” and CM Flf ¢, respectively,
CMFF™ = (Q/8)(0™ + bsci’cl'cl), (17)

and

CMF/° = (Q/8)(6/° + bsc}'), (18)
where @ is the number of bits of precision as in ‘float ’.
The total C M F for the model, CM F*, is

Lenw L—Lcny
CMF, =Y CMF™+ > CMF/*. (19
=1 =1

5.4. Model memory size (MMS)

The compression results are also evaluated in view of the
required memory storage, since one of the critical objec-
tives of model compression is to obtain models that require
considerably less memory for storage. MMS is reported in
megabytes (MB) or kilobytes (KB) in this paper.

6. Experiments

6.1. Main experiments

We perform extensive experiments using six benchmark-
ing datasets. The results of our proposed DEGL are com-
pared to conventional group LASSO and several state-of-
the-art methods. Note that no comparison is made with [2-
norm penalty and LASSO since they do not on their own

yield structured sparsity for compression.

We train the different models in this paper using mini-
batch gradient descent; batch size for all experiments is
chosen in the range 256-512. The initial learning rate, [,
for all experiments are chosen in the range 0.001 to 0.1; [,
is reduced by a factor of 0.1 during training whenever the
training loss fails to improve for 5 epochs. Different suit-
able values for vy and A in (10) are used to enforce the de-
sired sparsity levels and grouping effects respectively in the
models. For pruning, different values of ¢, (as in (9)) are
used to obtain different levels of compression; larger values
for ¢4, translate to more compact models. Note that DEGL
and group LASSO are both retrained after pruning. For all
results, ‘Error 1 °, ‘FLOPS | * and ‘Param. | ’ denote er-
ror rate increase, FLOP percentage decrease and Parameters
percentage decrease, respectively. Error 1 is calculated as in

Errort = Errorqe. — Errorpe, (20)

where Error.. and Errory. are the error rates after and be-
fore compression, respectively. Thus, a negative value for
‘Error? ’ actually shows a decrease in error rate after com-
pression. The evaluated metrics for the reference (i.e. un-
compressed) models are appended at the end of each table.

6.2. Ablation studies

As ablation studies, we observe the performance loss of
elastic group LASSO without model debaising. That is, af-
ter pruning, we employ the same cost objective in (6) for
model retraining. Results of these experiments from Elas-
tic group LASSO without the debiasing step are denoted
(EGL), and are given along side DEGL and group LASSO
for all experiments. In addition, the impact of pruning
threshold values and group LASSO penalty weight hyper-
parameter, v in (6) & (7), on model performance loss are
studied; see supplemtary material for results, including the
training times for DEGL, group LASSO and EGL.

6.3. Results
6.3.1 LeNet-5 on MNIST

The MNIST? dataset contains 60K training and 10K test-
ing samples, respectively. LeNet-5 [6] is a DNN with
two convolution layers and three fully connected weight
layers including the softmax layer; it has 431K param-
eters. LeNet-5 is trained for 100 epochs with v =
5x 1073 and A = 10~%. Table 1 shows the com-
pression results of LetNet-5, and comparison with state-
the-of-art methods. DEGL1, DEGL2, DEGL3, DEGLA4,
DEGLS are obtained by setting the pruning threshold val-
ues, tg, : 107°, 1074, 1072, 1072 and 2.5 x 102, respec-
tively. Figure 2 shows the CMF and MMS of compressed
models using DEGL. For example, DEGLS5 with 98.4% pa-
rameters pruned reduces CMF from 57MB to 27.58MB and

Zhttp://yann.lecun.com/exdb/mnist/

2281

| Models | Errort | FLOPS| | Param. | |

LTPWC [6] -0.03% 83.7% 91.7%
AFP [3] -0.06% 93.3% 93.0%
TSN [32] 0.01% - 95.8%
LiM [43] 0.08% - 98.4%
Group-LASSO [3] 0.00% 87.0% 86.4%
Group-LASSO [3] 0.20% 93.7% 93.4%
EGL 0.05% 96.1% 94.1%

EGL 0.14% 98.5% 98.4%
Ours: DEGL1 -0.10% 96.1% 94.1%
Ours: DEGL2 -0.03% 96.9 % 95.3%
Ours: DEGL3 -0.15% 97.9% 96.9 %
Ours: DEGL4 -0.07% 98.3% 97.5%
Ours: DEGLS 0.01% 98.5% 98.4%

Reference LeNet-5: Error = 0.80%, Param. = 431K, FLOPS = 4.6M

Table 1: LeNet-5 compression results on MNIST dataset

mmm CMF-current W= CMF-reduction W MMS-current s MMS-reduction

2000

40 1500

1000

CMF (MB)
8
MMS (KB)

500

o
DEGLl ~ DEGL2 DEGL3 DEGL4 DEGLS DEGLl ~ DEGL2 DEGL3 DEGL4 DEGLS
Model Model

Figure 2: LeNet-5 CMF and MMS results on MNIST

| Models | Error? | FLOPS | | Param. | |
AFP [3] 0.38% 81.4% -
AFP [3] 0.31% 79.6% -
Pruning [16] -0.15% 34.2% 64.0%
L2PF [11] 1.90% 64.5% 86.5%
Group-LASSO 0.08% 86.9% 87.8%
Group-LASSO 0.23% 88.1% 90.0%
EGL 0.03% 87.0% 88.0%
EGL 0.31% 88.1% 90.0%
Ours: DEGL1 | -0.30% 85.6% 86.7%
Ours: DEGL2 | -0.30% 87.0% 88.0%
Ours: DEGL3 | -0.18% 88.1% 90.0%

Reference VGG-16: Error = 6.75%, Param. = 15M, FLOPS = 313M

Table 2: VGG-16 compression results on CIFAR-10 dataset

mmm CMF-current mmm CMF-reduction B MMS-current mmm MMS-reduction

60
10 50
08

3 3%
(¢] Z

Lo a0
5 =

04 Z o5

02 10

0 Y

DEGL1 DEGL2 DEGL3 DEGL1 DEGL2 DEGL3
Model Model

Figure 3: VGG-16 CMF and MMS results on CIFAR-10

MMS from 2180KB to 52KB, while achieving an impres-
sive error of 0.73%. It is seen that EGL performs better than
group-LASSO, but worse than DEGL.

6.3.2 VGG-16 and ResNet-56 on CIFAR-10

CIFAR-10? dataset contains 50K training and 10K testing
images, respectively; there are 10 different classes. VGG-
16 [3] model has 15M parametres that consist of 13 convo-

3https://www.cs.toronto.edu/ kriz/cifar.html

mmm filters/units-current filters/units-reduction

Number of filters/units

convl conv2 conv3 convd onvS convé conv? convg convd convl0 convll convi2 convi3 fcl4 sm
Layer

Figure 4: DEGL2 compression results for VGG-16 on CIFAR-10

Models Errort | FLOPS | | Param. | |
Pruning [16] -0.02% 27.6% 13.7%
NISP [38] 0.03% 43.6% 42.6%
CNN-FCF [17] -0.24% 42.78% 43.1%
KSE [23] 0.15% 60% 57.6%
Group-LASSO 0.03% 37.9% 44.3%
Group-LASSO 0.24% 47.1% 59.4%
EGL 0.05% 47.8% 44.7%
EGL 0.48% 53.4% 60.0%
Ours: DEGL1 | -0.37% 38.2% 31.8%
Ours: DEGL2 | -0.31% 47.8% 44.7%
Ours: DEGL3 0.09% 53.4% 60.0%

Reference ResNet-56: Error = 6.96%, Param. = 0.85M, FLOPS = 125M

Table 3: ResNet-56 compression results on CIFAR-10 dataset

mmm MMS-current s MMS-reduction
35

= CMF-current mmm CMF-reduction

CMF (GB)

0 0.0
DEGL1 DEGL2 DEGL3 DEGL1 DEGL2 DEGL3
Model Model

Figure 5: ResNet-56 CMF and MMS results on CIFAR-10

lution layers and 2 fully connected weight layers. We apply
DEGL to VGG-16 for 300 epochs using v = 1 x 107°
and A = 107%. Compression results are given in Table 2,
where DEGL1, DEGL2 and DEGLS3 are obtained by setting
i+ 1074 1072, and 1072, respectively. Figure 3 shows
the CMFs and MMMs for DEGL1, DEGL2 and DEGL3
in Table 2. For example, DEGL3 with 90.0% parameters
pruned reduces CMF from 1.12GB to 0.81GB, and MMS
from 59MB to 6MB, while even improving generalization.
Figure 4 shows the number of current and pruned filters (or
units) for DEGL2.

Results of DEGL using ResNet-56 on CIFAR-10 is given
in Table 3, where DEGL1, DEGL2 and DEGL3 are ob-
tained using the same ¢, values as in VGG-16. We partic-
ularly observe that DEGL outperforms conventional group
LASSO for ResNet architectures, where skip connections
can increase features correlations among different layers,
and therefore conventional group LASSO is struggle with
consistent feature selection; see Section 3.2.2 for details.
Figure 5 shows how pruning impacts CMF and MMS for
models reported in Table 3. Importantly, for both VGG-
16 and ResNet-56, DEGL outperforms both group-LASSO

2282

| Models | Errort | FLOPS | | Param. | |

Group-LASSO 0.07% 84.0% 83.3%
Group-LASSO 0.11% 84.2% 85.6%

EGL 0.06% 84.5% 84.0%

EGL 0.14% 84.7% 86.0%
Ours: DEGL1 | -0.01% 81.7% 82.0%
Ours: DEGL2 0.00% 84.5% 84.0%
Ours: DEGL3 0.03% 84.7% 86.0%

Reference VGG-16: Error = 27.41%, Param. = 15M, FLOPS = 313M

Table 4: VGG-16 compression results on CIFAR-100 dataset

mmm CMF-current == CMF-reduction = MMS-current W MMS-reduction

CMF (GB)
MMS (MB)
g8 8 & 8

0 0
DEGL1 DEGL2 DEGL3 DEGL1 DEGL2 DEGL3
Model Model

Figure 6: VGG-16 CMF and MMS results on CIFAR-100

mmm filters/units-current filters/units-reduction

Number of filters/units

convl onvZ conv3 convd convS convé conv? convg convd convl0 convll convi2 convl3 fcld sm
Layer

Figure 7: DEGL3 compression results for VGG-16 on CIFAR-100

and EGL.

6.3.3 VGG-16 and ResNet-56 on CIFAR-100

CIFAR-100° dataset contains 50K training and 10K testing
samples, respectively; the dataset composes 100 different
classes. The same VGG-16 architecture used for CIFAR-10
is used for CIFAR-100; the model is trained for 350 epochs
with v = 1 x 107° and A = 10~*. Table 4 shows pruning
results, where DEGL1, DEGL2 and DEGL3 are obtained
by setting i, : 1074, 5 x 1073, and 102, respectively.
As CIFAR-100 is a more challenging dataset, and the ef-
fectiveness of DEGL compared to group LASSO and EGL
clearly reflects. The impact of compression on CMF and
MMS is reported in Figure 6. Figure 7 shows the current
and pruned filters (or units) for DEGL3.

The compression results for ResNet-56 are given in the sup-
plementary material as Table Al and Figure A1, along with
discussion in Section Al. ResNet-56 results are similar
to those obtained for VGG-16; that is, DEGL outperforms
both group-LASSO and EGL.

| Models

Errort | FLOPS | | Param. | |

LiM [43] 0.57% - 76.8%
NISP [38] 0.00% 40.1% 47.1%
DFP [31] 4.08% - 45.8%
Group-LASSO 0.81% 31.4% 53.1%
Group-LASSO 1.37% 44.2% 66.7%
Group-LASSO 2.41% 51.6% 78.5%
EGL 1.10% 40.2% 57.4%
EGL 1.68% 44.4% 67.6%
EGL 2.84% 52.3% 79.3%
Ours: DEGL1 -0.02% 40.2% 57.4%
Ours: DEGL2 0.25% 42.1% 62.0%
Ours: DEGL3 0.31% 44.4% 67.6%
Ours: DEGL4 0.43% 52.3% 79.3%

Reference AlexNet: Error = 41.81%, Param. = 61M, FLOPS = 727M

Table 5: AlexNet compression results on ImageNet dataset

mmm CMF-current mmm CMF-reduction mmm MMS-current W= MMS-reduction

250
25

200
20

150

CMF (GB)
.
n

MMS (MB)

100

o

50

o
o

0.0 0
DEGL1 DEGL2 DEGL3 DEGL4 DEGL1 DEGL2 DEGL3 DEGL4
Model Model

Figure 8: AlexNet CMF and MMS results on ImageNet

mm filters/units-current filters/units-reduction

2675

tayer

Figure 9: DEGL4 compression results for AlexNet on ImageNet

6.3.4 AlexNet and ResNet-50 on ImageNet

The ImageNet dataset* contains about 1.2M training and
50K testing samples, respectively. The dataset has 1000 dif-
ferent categories. AlexNet has 61M parameters that consist
of 5 convolution layers and 3 fully connected weight layers
including the softmax layer. The model is trained for 70
epochs with v = 5 x 1076 and A = 10~*. ResNet-50 has
25.6M parameters, and the same values of v and A used for
AlexNet are employed for training. ResNet50 is trained for
90 epochs, since it is much deeper than AlexNet.

The results of using the proposed DEGL for compress-
ing AlexNet are given in Table 5, where DEGL1, DEGL2
and DEGL3 are obtained by setting ¢, 1074, 5 x
1073, and 5 x 10~2, respectively; similar values are used
for ResNet experiments. It is seen that based on achieved
error rates, DEGL4 with 67.6% of model parameters pruned
incurs no performance loss, while with group LASSO with
66.7% of model parameters pruned and EGL with 67.6% of
model parameters pruned incur performance loss of 0.17%

“http://image-net.org/challenges/LSVRC/2012/index

2283

| Models | Errort | FLOPS | | Param. | |

ThiNet-50 [19] 1.15% 36.8% 33.8%
ThiNet-30 [19] 6.12% 71.5% 66.1%
NIPS [38] 0.89% 44.0% 43.8%
DCP [45] 1.06% 55.6% 51.5%
CNN-FCF [17] 0.47% 46.1% 42.4%
CNN-FCF [17] 2.62% 66.2% 61.0%
KSE [23] 0.84% 78.5% 65.8%
Group-LASSO 1.18% 44.3% 43.5%
Group-LASSO 1.55% 59.2% 54.1%
EGL 1.06% 47.6% 44.4%
EGL 1.79% 59.3% 54.4%
Ours: DEGL1 0.11% 47.6 % 44.4%
Ours: DEGL2 0.23% 59.3% 54.4%
Ours: DEGL3 0.52% 79.2% 67.0%

Reference ResNet-50: Error = 24.02%, Param. = 25.06M, FLOPS = 4.1B

Table 6: ResNet-50 compression results on ImageNet dataset

mmm CMF-current mmm CMF-reduction = MMS-current MMS-reduction
012
0.03 004 80
010 0.06
@ @ 60
2 008 g
w I
006 z
g o
004
20
002
00 0
DEGL1 DEGL2 DEGL3 DEGLL DEGL2 DEGL3

Model Model

Figure 10: ResNet50 CMF and MMS results on ImageNet

and 0.28%, respectively. It is observed that further com-
pression using group LASSO or EGL leads to larger per-
formance loss. The current CMF and MMS along with the
reductions after compression for the DEGL models (given
in Table 5) are shown in Figure 8. For instance, DEGL4
reduces FLOPS from 727M to 347M, CMF from 2.57GB
to 2.23GB and MMS 238.4MB to 47.5MB, with a test error
increase of only 0.07%. In addition, the current number of
filters or units in the different layers of DEGL2 are reported
in Figure 9.

Compression results for ResNet-50 are given in Table 6.
DEGL2 with 54.4% of model parameters pruned clearly
outperforms group-LASSO with 39.6% of model parame-
ters pruned, EGL with 54.4% of model parameters pruned
and several state-of-the-art methods. Further compression
leads to DEGL3 with 67.0% of model parameter pruned;
DEGL3 is competitive with group-LASSO with 39.6% of
model parameters pruned and EGL with 38.6%. The current
CMF and MMS along with the reductions after compres-
sion for the DEGL models (given in Table 6) are presented
in Figure 10.

6.3.5 Model compression for domain adaptation

We consider the effectiveness of our compression method
for domain adaptation using Oxford-102 [21] flower species
datasets and Food-5k [30] datasets, which contain 102 dif-
ferent flower species and food/non-food images, respec-
tively. Oxford-102 flower species dataset has 6149, 1020
and 1020 training, validation and testing samples, respec-

| Dataset | Models | Errort | FLOPS | | Param. | |
Group-LASSO 0.93% 36.9% 34.7%
Group-LASSO 1.26% 59.5% 55.2%
EGL 0.89% 44.4% 43.9%
Oxford-102 EGL 1.52% 68.0% 62.9%
Ours: DEGL1 0.01% 44.4% 43.9%
Ours: DEGL2 | 0.22% 68.0% 62.9%
Group-LASSO 1.18% 39.9% 39.4%
Group-LASSO 2.29% 69.5% 64.6%
EGL 1.35% 42.1% 40.2%
Food-5K EGL 2.62% 69.7% 65.8%
Ours: DEGL1 0.53% 42.1% 40.2%
Ours: DEGL2 1.31% 69.7 % 65.8%

Oxford-102 ResNet-50: Error = 3.43%, Param. = 25.06M, FLOPS = 4.1B
Food-5K ResNet-50: Error = 0.50%, Param. = 25.06M, FLOPS = 4.1B

Table 7: ImageNet pre-trained ResNet-50 compression results

tively; for this dataset, we follow the training and testing
protocols in [36]. Food-5K dataset contains 2500 food im-
ages and 2500 non-food images; the training and testing
protocols in [30] are employed for this dataset. Namely,
we evaluate the original pre-trained and compressed models
for performance loss. Our compression results using pre-
trained ResNet-50 are given in Table 7, where DEGL1 and
DEGL2 are obtained by setting ¢, : 5x1073 and 5x 104,
respectively. All models are trained using the same hy-
perparameters to support fair comparison. It is seen that
the proposed DEGL models significantly outpeform Group-
LASSO and EGL models. As such, DEGL is well-suited for
domain adaptation tasks.

7. Conclusion

In this paper, we address structured compression of deep
neural networks by taking inspiration from sparse signal
processing. Directly motivated by the drawbacks of apply-
ing conventional group LASSO for compressing deep neu-
ral networks (DNNs), we propose ‘debiased elastic group
lasso (DEGL)’ that is applied to several state-of-the-art
DNNs using six benchmarking datasets. Compression re-
sults are evaluated based on the percentage of pruned pa-
rameters, FLOPS, computational memory footprint and
memory for storage. Results of extensive compression ex-
periments show that DEGL performs better than conven-
tional group LASSO and several state-of-the-art methods.
Overall, the results reveal that considerable model compres-
sion can be achieved using DEGL with little performance
loss or even improved generalization.

Acknowledgments

This work was funded by the National Research
Fund (FNR), Luxembourg, under the project refer-
ence R-AGR-0424-05-D/Bjorn Ottersten and and CPPP17/
1S/11643091/IDform/Aouada. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of
the GPUs used for this research.

2284

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

S. Anwar, K. Hwang, and W. Sung. Structured prun-
ing of deep convolutional neural networks. ACM Journal
on Emerging Technologies in Computing Systems (JETC),
13(3):32, 2017.

M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-
tra. Reducing overfitting in deep networks by decorrelating
representations. In International Conference on Learning
Representations(ICLR), 2016.

X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced fil-
ter pruning for efficient convolutional neural networks. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

B. Efron, T. Hastie, 1. Johnstone, R. Tibshirani, et al. Least
angle regression. The Annals of statistics, 32(2):407-499,
2004.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for
efficient dnns. In Advances In Neural Information Process-
ing Systems, pages 1379-1387, 2016.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances
in neural information processing systems, pages 1135-1143,
2015.

Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter
pruning for accelerating deep convolutional neural networks.
In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, pages 2234-2240. AAAI Press, 2018.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:
Automl for model compression and acceleration on mobile
devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 784-800, 2018.

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-
ing very deep neural networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1389—

1397, 2017.

J. Huang, P. Breheny, and S. Ma. A selective review of group
selection in high-dimensional models. Statistical science:
a review journal of the Institute of Mathematical Statistics,

27(4), 2012.

Q. Huang, K. Zhou, S. You, and U. Neumann. Learning
to prune filters in convolutional neural networks. In 2078
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 709-718. IEEE, 2018.

V. Jayasundara, S. Jayasekara, H. Jayasekara, J. Rajasegaran,
S. Seneviratne, and R. Rodrigo. Textcaps: Handwritten
character recognition with very small datasets. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 254-262. IEEE, 2019.

M. M. Kabir, M. M. Islam, and K. Murase. A new wrapper
feature selection approach using neural network. Neurocom-
puting, 73(16-18):3273-3283, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

2285

D. Li, X. Wang, and D. Kong. Deeprebirth: Accelerating
deep neural network execution on mobile devices. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient convnets. In International Con-
ference on Learning Representations(ICLR), 2017.

T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu. Com-
pressing convolutional neural networks via factorized con-
volutional filters. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3977—
3986, 2019.

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.
Sparse convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 806-814, 2015.

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level prun-
ing method for deep neural network compression. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 5058-5066, 2017.

N. Meinshausen. Relaxed lasso. Computational Statistics &
Data Analysis, 52(1):374-393, 2007.

M.-E. Nilsback and A. Zisserman. Automated flower classi-
fication over a large number of classes. In 2008 Sixth Indian
Conference on Computer Vision, Graphics & Image Process-
ing, pages 722-729. IEEE, 2008.

0. K. Oyedotun, G. Demisse, A. El Rahman Shabayek,
D. Aouada, and B. Ottersten. Facial expression recognition
via joint deep learning of rgb-depth map latent representa-
tions. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3161-3168, 2017.

0. K. Oyedotun, A. El Rahman Shabayek, D. Aouada, and
B. Ottersten. Highway network block with gates constraints
for training very deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pages 1658-1667, 2018.

T. Poggio and F. Girosi. Regularization algorithms for learn-
ing that are equivalent to multilayer networks. Science,
247(4945):978-982, 1990.

W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-
H. Yang. Gated fusion network for single image dehazing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3253-3261, 2018.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized
path to a maximum margin classifier. Journal of Machine
Learning Research, 5(Aug):941-973, 2004.

S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini.
Group sparse regularization for deep neural networks. Neu-
rocomputing, 241:81-89, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Learning Representations(ICLR), 2015.

P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.
Stability based filter pruning for accelerating deep cnns. In
2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1166-1174. IEEE, 2019.

A. Singla, L. Yuan, and T. Ebrahimi. Food/non-food im-
age classification and food categorization using pre-trained

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

googlenet model. In Proceedings of the 2nd International
Workshop on Multimedia Assisted Dietary Management,
pages 3—-11. ACM, 2016.

S. Srinivas and R. V. Babu. Data-free parameter pruning for
deep neural networks. In British Machine Vision Conference
(BMVC), 2015.

S. Srinivas, A. Subramanya, and R. Venkatesh Babu. Train-
ing sparse neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 138-145, 2017.

R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267-288, 1996.

H. Wang, B. J. Lengerich, B. Aragam, and E. P. Xing. Pre-
cision lasso: accounting for correlations and linear depen-
dencies in high-dimensional genomic data. Bioinformatics,
2018.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, pages 2074-2082,
2016.

Y. Wu, X. Qin, Y. Pan, and C. Yuan. Convolution neural
network based transfer learning for classification of flowers.
In 2018 IEEE 3rd International Conference on Signal and
Image Processing (ICSIP), pages 562-566. IEEE, 2018.

H. Xu, C. Caramanis, and S. Mannor. Sparse algorithms are
not stable: A no-free-lunch theorem. /EEE transactions on
pattern analysis and machine intelligence, 34(1):187-193,
2011.

R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. 1. Morariu, X. Han,
M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-
works using neuron importance score propagation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9194-9203, 2018.

M. Yuan and Y. Lin. Model selection and estimation in re-
gression with grouped variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 68(1):49—
67, 2006.

M. Yunus, A. Saefuddin, and A. M. Soleh. Characteristics of
group lasso in handling high correlated data. Applied Math-
ematical Sciences, 11(20):953-961, 2017.

S. Zagoruyko and N. Komodakis. Wide residual networks.
In British Machine Vision Conference (BMVC), volume 8,
pages 35-67, 2012.

P. Zhao and B. Yu. On model selection consistency of lasso.
Journal of Machine learning research, 7(Nov):2541-2563,
2006.

H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards
compact cnns. In European Conference on Computer Vision,
pages 662—677. Springer, 2016.

Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,
J. Huang, and J. Zhu. Discrimination-aware channel pruning
for deep neural networks. In Advances in Neural Information
Processing Systems, pages 875-886, 2018.

Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,
J. Huang, and J. Zhu. Discrimination-aware channel pruning
for deep neural networks. In Advances in Neural Information
Processing Systems, pages 875-886, 2018.

[46] H. Zou and T. Hastie. Regularization and variable selection

2286

via the elastic net. Journal of the royal statistical society:
series B (statistical methodology), 67(2):301-320, 2005.

