
Structured Compression of Deep Neural Networks with Debiased Elastic Group

LASSO

Oyebade K. Oyedotun, Djamila Aouada, Björn Ottersten

Interdisciplinary Centre for Security, Reliability and Trust (SnT),

University of Luxembourg, L-1855 Luxembourg

{oyebade.oyedotun, djamila.aouada, bjorn.ottersten}@uni.lu

Abstract

State-of-the-art Deep Neural Networks (DNNs) are typ-

ically too cumbersome to be practically useful in portable

electronic devices. As such, several works pursue model

compression that seeks to drastically reduce computational

memory footprints, FLOPS and memory for storage. Many

of these works achieve unstructured compression, where the

compressed models are not directly useful since dedicated

hardware and specialized algorithms are required for stor-

age of sparse weights and fast sparse matrix-vector multi-

plication respectively. In this paper, we propose structured

compression of large DNNs using debiased elastic group

LASSO (DEGL), which is motivated by different interesting

characteristics of the individual components. That is, where

group LASSO penalty enforces structured sparsity, l2-norm

penalty promotes features grouping, and debiasing disen-

tangles sparsity and shrinkage effects of group LASSO. We

perform extensive experiments by applying DEGL to dif-

ferent DNN architectures including LeNet, VGG, AlexNet

and ResNet on MNIST, CIFAR-10, CIFAR-100 and Ima-

geNet datasets. Furthermore, we validate the effectiveness

of our proposal on domain adaptation using Oxford-102

flower species and Food-5K datasets. Results show that

DEGL can compress DNNs by several folds with small or

no loss of performance. Particularly, DEGL outperforms

conventional group LASSO and several other state-of-the-

art methods that perform structured compression.

1. Introduction

Computer vision tasks benefit from the success of DNNs,

as several interesting results have been reported for differ-

ent tasks [12, 25, 22]. Importantly, exceptional results on

challenging datasets have been obtained using large DNN

models [28, 14]. On one hand, there seems to be a positive

correlation between model size and performance for many

tasks [41, 23]; many works posit that large models allow

the expoloration of extensive solution configurations, and

thus reduces the possibly of getting stuck in poor local min-

ima. On the other hand, these high-performance models are

usually too cumbersome1 for deployment in real-life appli-

cations. A solution to the aforementioned problems of large

DNNs is to train from scratch smaller models with accept-

able computational memory footprint, FLOPS and memory

for storage. However, such small models typically incur no-

ticeable generalization loss in comparison to large models.

Consequently, model compression [29, 5] seeks to address

the problems associated with cumbersome models, but in-

cur minimal or even no performance loss in comparison to

the reference large models.

Model compression results can be classified as unstruc-

tured or structured. In unstructured compression [32], the

outcome is implicitly compressed, but the overall architec-

ture of the compressed model is the same as the original (or

reference) large model. Consequently, the aforementioned

benefits of compression are not directly obtainable; dedi-

cated hardware to store model weights with unstructured

sparsity are required to realize a reduction in memory size,

specialized algorithms are required for fast matrix-vector

multiplications to realize a reduction in computational foot-

print and faster inference in comparison to the original large

model [18]. In contrast, structured compression [44, 1]

leads to an explicitly smaller model that requires no ad-hoc

algorithms or specialized hardware for operation.

Model compression works [32, 18] have directly taken

inspiration from sparse signal processing [46, 33]. The con-

vergence and transferability of key concepts in signal pro-

cessing to neural networks (NNs) is not surprising, since

one can consider NNs as directed graphs with information

flowing through them. Several works [18, 27] on unstruc-

tured and structured model compression have relied on en-

forcing some form of sparsity in model parameters by incor-

porating various penalty terms in the model’s cost function.

1The term ‘cumbersome’is used to refer to the computer memory size

and computational footprint

2277



Depending on the specific characteristics of the penalty

term used, different forms of sparsity can be achieved for

model parameters. It is noteworthy that these sparsity-

enforcing penalty terms that are now used for model com-

pression are essentially not new; they have existed in classi-

cal signal processing for several years [33, 24]. Very good

results have been reported using such penalty terms for

compressing DNNs, and thus their characteristics deserve

to be investigated even further for improved results. For en-

forcing unstructured and structured sparsity, LASSO [33]

and group LASSO [39] penalties, respectively, have been

reported to yield interesting results. Motivated by the afor-

mentioned drawbacks of unstructured model compression,

we focus in this paper on structured model compression

based on group LASSO.

We start by examining the drawbacks of group LASSO

(which simply reduces to LASSO in the case where each

group is considered as one feature [10]) in the context of

model compression. First is the problem of LASSO satu-

ration [46, 4] that occurs when the number of model pa-

rameters is considerably larger than the number of training

data points; here, the number of features that LASSO se-

lects is at most the number of training data points. This

poses a huge limitation for application in DNNs where it

is customary that the number of model parameters are ex-

ponentially higher than available training data points. Sec-

ond is that group LASSO does not work well with corre-

lated features [46]; the work [40] discusses the problems of

ordinary least squares (OLS), LASSO and group LASSO

with correlated variables. If, for instance, sets of features

form groups, LASSO ‘randomly’ selects one set from each

group, and discards the rest [34, 37, 42]. Interestingly, fea-

tures correlation (especially among hidden units or convo-

lution filters) is highly prevalent in DNNs [13, 2]. Third

is that group LASSO simultaneously enforces both fea-

ture selection (which is desirable for model compression)

and feature shrinkage (which is not so desirable) [46]; as

such, model compression (via features selection) is entan-

gled with model regularization (via feature shrinkage). Ob-

viosuly, this is a concern since our actual interest lies in

feature selection which characterizes truly important fea-

tures (identified by non-zero valued weights), as other fea-

tures (with zero valued weights) can be discarded without

hurting model performance. In fact, the shrinkage effect of

group LASSO can be so impactful such that it causes mod-

els to underfit training data [42].

Our proposal in this paper is aimed at tackling the afore-

mentioned problems encountered with group LASSO for

compressing DNNs. The overall framework of the proposed

compression method is shown in Figure 1. Namely, the con-

tributions in this paper can be summarized as follows:

1. Compression of DNNs using l2-norm penalty and

group LASSO, where group LASSO enforces group

sparsity of parameters, and l2-norm promotes group-

ing and selection stability of correlated features.

2. Model debiasing after pruning by eliminating group

LASSO prior to the retraining phase. This simple step

disentangles the interwoven impact of feature selection

and shrinkage, and thus ameliorate interpretability.

3. Experimental validation on various DNN architectures

using six benchmarking datasets. Improved results

over conventional group LASSO and several state-of-

the-art approaches are reported.

The rest of this paper is organized as follows. In Section 2,

related works are discussed. Section 3 presents as back-

ground conventional group LASSO and subsequntly the

problem statement. Section 4 describes the proposed ap-

proach that addresses the problems highlighted in Section

3. Section 5 contains experimental results and discussions.

The paper is concluded in Section 6.

2. Related work

High performance DNNs are typically cumbersome for

real-life applications. Consequently, several works [15, 8]

have proposed different methods of compression.

In [38], neuron importance score was defined for as-

sessing the impact of hidden neurons in trained models;

the score takes into account the reconstruction of impor-

tant responses in the layer before the classification layer. It

is argued that global pruning methods yield better results

as opposed to pruning methods that take into account only

adjoining layers. Soft filter pruning was proposed in [7],

where pruning is performed dynamically. During training,

previously pruned filters can be included again and partici-

pate in learning if it becomes necessary.

Sparse convolutional neural network was proposed that

in [18]. This work employed sparsity-inducing contraints to

impose sparsity in model parameters during training. The

original model is trimmed after training using some defined

thresholds to determine inconsequential weights. Unfor-

tunately, the compression is unstructured, and thus the re-

ported results, despite being good, are not directly usable as

discussed earlier. In [35], group LASSO is used for learning

structured sparsity in DNNs; interesting results are reported

given that they directly achieve model speedup during in-

ference without recourse to custom algorithms. In a sim-

ilar work [27], sparse group sparsity was proposed. The

idea is similar in spirit with [18]; that is, imposing unstruc-

tured sparsity among model parameters. Again, the over-

all result leads to unstructured sparsity and thus suffers the

aforementioned drawbacks. In [6], l2-norm penalty was

used to enforce model parameters to have small values. Al-

though good results were achieved, the sparsity of resulting

models were unstructured. In another work [9], LASSO

2278



penalty is used for channel selection and then subsequent

pruning. The work reported compact models with reduced

model size and accelerated inference.

3. Background and problem statement

This section discusses the simple premise that the applica-

tion of conventional group LASSO can be suboptimal for

the purpose of compressing DNNs.

3.1. Background

Consider the cost function, J(W ), for a DNN parame-
terized by W ; where W = {W1,W2, ...,Wl, ..,WL}, and
Wl is the weight matrix at layer l; and L is the total number
of weight layers in the DNN. For instance, say J(W ) is the
Mean Squared Error (MSE) given as

J(W ) = argmin
W

1

2N
‖ yd − yo ‖2, (1)

such that

yo = f(x;W ), (2)

where x is the input data; f is the mapping function defined
by the DNN; yd and yo are the desired and computed out-
put vectors, respectively; and N is the number of training
data points. Given that the group of features at layer l is
denoted W g

l and there are G groups, the new cost for the
DNN with group LASSO, Jgl(W ), can then be written as

Jgl(W ) = argmin
W

J(W ), s.t.

‖ Wl ‖2 =

G
∑

g=1

‖ W g

l ‖
2
≤ c : ∀ 1 ≤ l ≤ L.



















(3)

Note that each convolution filter or all the weights of a hid-
den unit are taken as a group; that is, g. In Langragian form,
(3) can be written explicitly as

Jgl(W ) = argmin
W

{

J(W ) + γ

G
∑

g=1

L
∑

l=1

‖ W g

l ‖
2

}

, (4)

where the relationship between γ and c is such that γ ∝ 1/c.

3.2. Problem statement

We herein discuss the problems that can impact the ap-

plication of group LASSO to the task of DNN compression.

3.2.1 Saturation

For problems where the total number of model parame-

ters, θt, is considerably larger than the number of training

samples, N , LASSO does not select more than N features

prior to saturation [46, 4]. This can severely impact the

expressiveness of the resulting compact model. A formal

treatment and proof of this scenario can be found in [26].

Interestingly, the case θt ≫ N is extremely prevalent in

DNNs, and thus deserves to be addressed when LASSO is

employed for enforcing parameters sparsity.

3.2.2 Correlated features and grouping

It has been shown that for correlated features, LASSO sim-

ply randomly selects a feature from the group and dis-

cards the rest [46]. This ultimately results in instability of

feature selection over different training runs. Coinceden-

tally, DNNs are popular for learning highly correlated fea-

tures [13, 2]. As such, for model compression techniques

that employ LASSO, features selection instability is a con-

cern in view of model interpretability.

3.2.3 Entangled feature selection and shrinkage

An examination of LASSO penalty in [46, 33] reveals that

LASSO performs both feature selection and shrinkage. This

combined impact could be interesting for specific applica-

tions where alleviating model overfitting is the main ob-

jective; thus, being unable to identify their individual im-

pact is of no concern. However, in model compression, our

main goal is feature selection to facilitate interpretability

and therefore compactness. As such, it becomes important

to disentangle feature selection and shrinkage when LASSO

is employed for model compression. Additionaly, LASSO

shrinkage effect can over-penalize model parameters so that

model underfits [42].

4. Proposed approach

We present in Figure 1 the proposed approach that address-

esthe challenges discussed in Section 3.2. The objective

is to obtain compact DNNs by employing a more inter-

esting penalized cost function than the conventional group

LASSO.

4.1. Debiased Elastic Group LASSO (DEGL)

We propose Debiased Elastic Group LASSO (DEGL)

that aims to separate model selection via elastic group

LASSO (EGL) from model estimation via ridge regression.

4.1.1 Elastic group LASSO

Motivated by the success of elastic net [46], the problems of
LASSO saturation and erratic selection for correlated fea-
tures discussed in Sections 3.2.1 and 3.2.2 are addressed in
this paper by incorporating l2-norm penalty into the group
LASSO cost given in (5). The Elastic group LASSO (EGL)
cost function that is proposed to enforce group sparsity, pro-
mote features grouping and alleviate selection instability is

Jegl(W ) = argmin
W

J(W ), s.t.

‖ Wl ‖2 =

G
∑

g=1

‖ W g

l ‖
2
≤ c1 : ∀ 1 ≤ l ≤ L,

‖ Wl ‖22 ≤ c2 : ∀ 1 ≤ l ≤ L.































(5)

2279



Figure 1: Overall framework for the proposed approach in Section 4. Top left: DNN is trained using the proposed elastic group LASSO cost
function, Jegl(W ), in Section 4.1.1. Top right: the non-selected filters after training translate to the black convolution channels. Bottom right:
Non-selected filters are pruned, as in Section 4.1.2. Bottom left: Pruned model is retrained without group LASSO, as in Section 4.1.3

Again, in Langragian form, (5) can be combined and written
explicitly as

Jegl(W ) = argmin
W

{

J(W )+γg

G
∑

g=1

L
∑

l=1

‖ W g

l ‖
2
+λ

L
∑

l=1

‖ Wl ‖22
}

,

(6)

where γg addresses over-penalization of small feature
groups by taking into account the length of each group, ρg ,
for any given γ as in

γg = γ
√
ρg. (7)

4.1.2 Pruning unimportant filters

Given a specific filter m out of M filters in layer l denoted
Wm

l , we assess its importance by computing the maximum
value of its individual absolute weight values, wmk

l as in

max(Wm
l ) = max{| wmk

l |}Kk=1, (8)

where k indexes the individual weights in filter Wm
l . The

set of unimportant filters in layer l that least contribute
to model performance is denoted W p

l . Given the pruning
threshold tth, W p

l is initialized as an empty set, and then
populated from Wl using the condition

max(Wm
l ) < tth : ∀ 1 ≤ m ≤ M. (9)

Hence, W p
l ⊆ Wl, and the set of remaining filters after

pruning layer l is denoted W r
l = W\W p

l . Similar proce-

dure can be repeated for all weight layers so that the overall

resulting trimmed model is now parameterized by W r as in

W r = {W r
1
, ...,W r

l , ...,W
r
L}.

4.1.3 Debiasing elastic group LASSO

To tackle the problem of entangled feature selection and
shrinkage discussed in Section 3.2.3, we completely elimi-
nate group LASSO from the cost function given in (10) by

setting γ = 0, and retraining the trimmed model now using
the cost function, Jdegl(Wr), given as

Jdegl(Wr) = argmin
Wr

{

J(Wr) + λrt

L
∑

l=1

‖ W r
l ‖2

2

}

, (10)

where λrt denotes the new l2-norm penalty weight for re-

training; and λrt = sλ : 0 < s ≤ 1, since Wr ⊆ W ; s is

chosen considering the size of W r. The new cost in (10) is

similar in spirit to LARS-OLS [4] and relaxed LASSO [20].

5. Evaluation metrics

The different metrics used for evaluating the perfor-

mance of the proposed approach are discussed as follows.

5.1. Model parameters

We consider a DNN with L weight layers, out of
which Lcnv are convolution layers. Given a convolu-

tion weight layer Wl ∈ R
fw

l
×fh

l
×cn

l−1
×cn

l that receives

an input Hl−1 ∈ R
bs×cw

l−1
×ch

l−1
×cn

l−1 and output Hl ∈

R
bs×cw

l
×ch

l
×cn

l , where wf
l , hf

l , cnl−1
, cnl are the filter width,

filter height, number of input feature channels and output
feature channels, respectively; bs, cwl−1

, chl−1
are the batch

size, incoming feature channel width and height, respec-
tively. The number of parameters in a convolution layer l,
θcnvl , can be obtained using

θcnv
l = fw

l fh
l c

n
l−1c

n
l . (11)

For a fully connected layer l, the hyperparameters fw
l , fh

l ,

cwl−1
, chl−1

, cnl−1
, cwl , chl , cnl can all be set to 1, so that the

number of parameters, θfcl , is given as

θfcl = cnl−1c
n
l . (12)

2280



Hence, the total number of model parameters, θt, is

θt =

Lcnv
∑

l=1

θcnv
l +

L−Lcnv
∑

l=1

θfcl . (13)

5.2. Float point operations per second (FLOPS)

Required Float point operations per second (FLOPS)
is a very useful criterion for assessing how fast a model
runs. The number of FLOPS for a convolution layer l,
FLOPSl

cnv , can be obtained using

FLOPScnv
l = bsf

w
l fh

l c
n
l−1c

w
l c

h
l c

n
l . (14)

Similarly, the number of FLOPS for a fully connected layer

l, referred to as FLOPSfc
l , can be computed as

FLOPSfc

l = bsc
n
l−1c

n
l . (15)

Thus, the total number of FLOPS for the model, FLOPSt,
is given as

FLOPSt =

Lcnv
∑

l=1

FLOPScnv
l +

L−Lcnv
∑

l=1

FLOPSfc

l . (16)

5.3. Computational memory footprint (CMF)

Computational memory footprints (CMF s) of compres-
sion results are quite critical, as it describes the memory
required to hold model parameters and units’ activations;
small CMF s are generally desirable. At a given layer l, the
CMF for a convolution layer and a fully connected layer

can be computed as CMF cnv
l and CMF fc

l , respectively,

CMF cnv
l = (Q/8)(θcnv

l + bsc
w
l c

h
l c

n
l ), (17)

and
CMF fc

l = (Q/8)(θfcl + bsc
n
l ), (18)

where Q is the number of bits of precision as in ‘floatQ ’.
The total CMF for the model, CMF t, is

CMFt =

Lcnv
∑

l=1

CMF cnv
l +

L−Lcnv
∑

l=1

CMF fc

l . (19)

5.4. Model memory size (MMS)

The compression results are also evaluated in view of the

required memory storage, since one of the critical objec-

tives of model compression is to obtain models that require

considerably less memory for storage. MMS is reported in

megabytes (MB) or kilobytes (KB) in this paper.

6. Experiments

6.1. Main experiments

We perform extensive experiments using six benchmark-
ing datasets. The results of our proposed DEGL are com-
pared to conventional group LASSO and several state-of-
the-art methods. Note that no comparison is made with l2-
norm penalty and LASSO since they do not on their own

yield structured sparsity for compression.
We train the different models in this paper using mini-

batch gradient descent; batch size for all experiments is
chosen in the range 256-512. The initial learning rate, lr
for all experiments are chosen in the range 0.001 to 0.1; lr
is reduced by a factor of 0.1 during training whenever the
training loss fails to improve for 5 epochs. Different suit-
able values for γ and λ in (10) are used to enforce the de-
sired sparsity levels and grouping effects respectively in the
models. For pruning, different values of tth (as in (9)) are
used to obtain different levels of compression; larger values
for tth translate to more compact models. Note that DEGL
and group LASSO are both retrained after pruning. For all
results, ‘Error ↑ ’, ‘FLOPS ↓ ’ and ‘Param. ↓ ’ denote er-
ror rate increase, FLOP percentage decrease and Parameters
percentage decrease, respectively. Error ↑ is calculated as in

Error ↑ = Errorac − Errorbc, (20)

where Errorac and Errorbc are the error rates after and be-

fore compression, respectively. Thus, a negative value for

‘Error ↑ ’ actually shows a decrease in error rate after com-

pression. The evaluated metrics for the reference (i.e. un-

compressed) models are appended at the end of each table.

6.2. Ablation studies

As ablation studies, we observe the performance loss of

elastic group LASSO without model debaising. That is, af-

ter pruning, we employ the same cost objective in (6) for

model retraining. Results of these experiments from Elas-

tic group LASSO without the debiasing step are denoted

(EGL), and are given along side DEGL and group LASSO

for all experiments. In addition, the impact of pruning

threshold values and group LASSO penalty weight hyper-

parameter, γ in (6) & (7), on model performance loss are

studied; see supplemtary material for results, including the

training times for DEGL, group LASSO and EGL.

6.3. Results

6.3.1 LeNet-5 on MNIST

The MNIST2 dataset contains 60K training and 10K test-

ing samples, respectively. LeNet-5 [6] is a DNN with

two convolution layers and three fully connected weight

layers including the softmax layer; it has 431K param-

eters. LeNet-5 is trained for 100 epochs with γ =
5 × 10−3 and λ = 10−4. Table 1 shows the com-

pression results of LetNet-5, and comparison with state-

the-of-art methods. DEGL1, DEGL2, DEGL3, DEGL4,

DEGL5 are obtained by setting the pruning threshold val-

ues, tth : 10−5, 10−4, 10−3, 10−2 and 2.5×10−2, respec-

tively. Figure 2 shows the CMF and MMS of compressed

models using DEGL. For example, DEGL5 with 98.4% pa-

rameters pruned reduces CMF from 57MB to 27.58MB and

2http://yann.lecun.com/exdb/mnist/

2281



Models Error ↑ FLOPS ↓ Param. ↓

LTPWC [6] -0.03% 83.7% 91.7%
AFP [3] -0.06% 93.3% 93.0%

TSN [32] 0.01% – 95.8%
LiM [43] 0.08% – 98.4%

Group-LASSO [3] 0.00% 87.0% 86.4%
Group-LASSO [3] 0.20% 93.7% 93.4%

EGL 0.05% 96.1% 94.1%
EGL 0.14% 98.5% 98.4%

Ours: DEGL1 -0.10% 96.1% 94.1%
Ours: DEGL2 -0.03% 96.9% 95.3%
Ours: DEGL3 -0.15% 97.9% 96.9%
Ours: DEGL4 -0.07% 98.3% 97.5%
Ours: DEGL5 0.01% 98.5% 98.4%

Reference LeNet-5: Error = 0.80%, Param. = 431K, FLOPS = 4.6M

Table 1: LeNet-5 compression results on MNIST dataset

Figure 2: LeNet-5 CMF and MMS results on MNIST

Models Error ↑ FLOPS ↓ Param. ↓

AFP [3] 0.38% 81.4% –
AFP [3] 0.31% 79.6% –

Pruning [16] -0.15% 34.2% 64.0%
L2PF [11] 1.90% 64.5% 86.5%

Group-LASSO 0.08% 86.9% 87.8%
Group-LASSO 0.23% 88.1% 90.0%

EGL 0.03% 87.0% 88.0%
EGL 0.31% 88.1% 90.0%

Ours: DEGL1 -0.30% 85.6% 86.7%
Ours: DEGL2 -0.30% 87.0% 88.0%
Ours: DEGL3 -0.18% 88.1% 90.0%

Reference VGG-16: Error = 6.75%, Param. = 15M, FLOPS = 313M

Table 2: VGG-16 compression results on CIFAR-10 dataset

Figure 3: VGG-16 CMF and MMS results on CIFAR-10

MMS from 2180KB to 52KB, while achieving an impres-

sive error of 0.73%. It is seen that EGL performs better than

group-LASSO, but worse than DEGL.

6.3.2 VGG-16 and ResNet-56 on CIFAR-10

CIFAR-103 dataset contains 50K training and 10K testing

images, respectively; there are 10 different classes. VGG-

16 [3] model has 15M parametres that consist of 13 convo-

3https://www.cs.toronto.edu/ kriz/cifar.html

Figure 4: DEGL2 compression results for VGG-16 on CIFAR-10

Models Error ↑ FLOPS ↓ Param. ↓

Pruning [16] -0.02% 27.6% 13.7%
NISP [38] 0.03% 43.6% 42.6%

CNN-FCF [17] -0.24% 42.78% 43.1%
KSE [23] 0.15% 60% 57.6%

Group-LASSO 0.03% 37.9% 44.3%
Group-LASSO 0.24% 47.1% 59.4%

EGL 0.05% 47.8% 44.7%
EGL 0.48% 53.4% 60.0%

Ours: DEGL1 -0.37% 38.2% 31.8%
Ours: DEGL2 -0.31% 47.8% 44.7%
Ours: DEGL3 0.09% 53.4% 60.0%

Reference ResNet-56: Error = 6.96%, Param. = 0.85M, FLOPS = 125M

Table 3: ResNet-56 compression results on CIFAR-10 dataset

Figure 5: ResNet-56 CMF and MMS results on CIFAR-10

lution layers and 2 fully connected weight layers. We apply

DEGL to VGG-16 for 300 epochs using γ = 1 × 10−5

and λ = 10−6. Compression results are given in Table 2,

where DEGL1, DEGL2 and DEGL3 are obtained by setting

tth : 10−4, 10−3, and 10−2, respectively. Figure 3 shows

the CMFs and MMMs for DEGL1, DEGL2 and DEGL3

in Table 2. For example, DEGL3 with 90.0% parameters

pruned reduces CMF from 1.12GB to 0.81GB, and MMS

from 59MB to 6MB, while even improving generalization.

Figure 4 shows the number of current and pruned filters (or

units) for DEGL2.

Results of DEGL using ResNet-56 on CIFAR-10 is given

in Table 3, where DEGL1, DEGL2 and DEGL3 are ob-

tained using the same tth values as in VGG-16. We partic-

ularly observe that DEGL outperforms conventional group

LASSO for ResNet architectures, where skip connections

can increase features correlations among different layers,

and therefore conventional group LASSO is struggle with

consistent feature selection; see Section 3.2.2 for details.

Figure 5 shows how pruning impacts CMF and MMS for

models reported in Table 3. Importantly, for both VGG-

16 and ResNet-56, DEGL outperforms both group-LASSO

2282



Models Error ↑ FLOPS ↓ Param. ↓

Group-LASSO 0.07% 84.0% 83.3%
Group-LASSO 0.11% 84.2% 85.6%

EGL 0.06% 84.5% 84.0%
EGL 0.14% 84.7% 86.0%

Ours: DEGL1 -0.01% 81.7% 82.0%
Ours: DEGL2 0.00% 84.5% 84.0%
Ours: DEGL3 0.03% 84.7% 86.0%

Reference VGG-16: Error = 27.41%, Param. = 15M, FLOPS = 313M

Table 4: VGG-16 compression results on CIFAR-100 dataset

Figure 6: VGG-16 CMF and MMS results on CIFAR-100

Figure 7: DEGL3 compression results for VGG-16 on CIFAR-100

and EGL.

6.3.3 VGG-16 and ResNet-56 on CIFAR-100

CIFAR-1003 dataset contains 50K training and 10K testing

samples, respectively; the dataset composes 100 different

classes. The same VGG-16 architecture used for CIFAR-10

is used for CIFAR-100; the model is trained for 350 epochs

with γ = 1 × 10−5 and λ = 10−4. Table 4 shows pruning

results, where DEGL1, DEGL2 and DEGL3 are obtained

by setting tth : 10−4, 5 × 10−3, and 10−2, respectively.

As CIFAR-100 is a more challenging dataset, and the ef-

fectiveness of DEGL compared to group LASSO and EGL

clearly reflects. The impact of compression on CMF and

MMS is reported in Figure 6. Figure 7 shows the current

and pruned filters (or units) for DEGL3.

The compression results for ResNet-56 are given in the sup-

plementary material as Table A1 and Figure A1, along with

discussion in Section A1. ResNet-56 results are similar

to those obtained for VGG-16; that is, DEGL outperforms

both group-LASSO and EGL.

Models Error ↑ FLOPS ↓ Param. ↓

LiM [43] 0.57% – 76.8%
NISP [38] 0.00% 40.1% 47.1%
DFP [31] 4.08% – 45.8%

Group-LASSO 0.81% 31.4% 53.1%
Group-LASSO 1.37% 44.2% 66.7%
Group-LASSO 2.41% 51.6% 78.5%

EGL 1.10% 40.2% 57.4%
EGL 1.68% 44.4% 67.6%
EGL 2.84% 52.3% 79.3%

Ours: DEGL1 -0.02% 40.2% 57.4%
Ours: DEGL2 0.25% 42.1% 62.0%
Ours: DEGL3 0.31% 44.4% 67.6%
Ours: DEGL4 0.43% 52.3% 79.3%

Reference AlexNet: Error = 41.81%, Param. = 61M, FLOPS = 727M

Table 5: AlexNet compression results on ImageNet dataset

Figure 8: AlexNet CMF and MMS results on ImageNet

Figure 9: DEGL4 compression results for AlexNet on ImageNet

6.3.4 AlexNet and ResNet-50 on ImageNet

The ImageNet dataset4 contains about 1.2M training and

50K testing samples, respectively. The dataset has 1000 dif-

ferent categories. AlexNet has 61M parameters that consist

of 5 convolution layers and 3 fully connected weight layers

including the softmax layer. The model is trained for 70

epochs with γ = 5 × 10−6 and λ = 10−4. ResNet-50 has

25.6M parameters, and the same values of γ and λ used for

AlexNet are employed for training. ResNet50 is trained for

90 epochs, since it is much deeper than AlexNet.

The results of using the proposed DEGL for compress-

ing AlexNet are given in Table 5, where DEGL1, DEGL2

and DEGL3 are obtained by setting tth : 10−4, 5 ×
10−3, and 5 × 10−2, respectively; similar values are used

for ResNet experiments. It is seen that based on achieved

error rates, DEGL4 with 67.6% of model parameters pruned

incurs no performance loss, while with group LASSO with

66.7% of model parameters pruned and EGL with 67.6% of

model parameters pruned incur performance loss of 0.17%

4http://image-net.org/challenges/LSVRC/2012/index

2283



Models Error ↑ FLOPS ↓ Param. ↓

ThiNet-50 [19] 1.15% 36.8% 33.8%
ThiNet-30 [19] 6.12% 71.5% 66.1%

NIPS [38] 0.89% 44.0% 43.8%
DCP [45] 1.06% 55.6% 51.5%

CNN-FCF [17] 0.47% 46.1% 42.4%
CNN-FCF [17] 2.62% 66.2% 61.0%

KSE [23] 0.84% 78.5% 65.8%
Group-LASSO 1.18% 44.3% 43.5%
Group-LASSO 1.55% 59.2% 54.1%

EGL 1.06% 47.6% 44.4%
EGL 1.79% 59.3% 54.4%

Ours: DEGL1 0.11% 47.6% 44.4%
Ours: DEGL2 0.23% 59.3% 54.4%
Ours: DEGL3 0.52% 79.2% 67.0%

Reference ResNet-50: Error = 24.02%, Param. = 25.06M, FLOPS = 4.1B

Table 6: ResNet-50 compression results on ImageNet dataset

Figure 10: ResNet50 CMF and MMS results on ImageNet

and 0.28%, respectively. It is observed that further com-

pression using group LASSO or EGL leads to larger per-

formance loss. The current CMF and MMS along with the

reductions after compression for the DEGL models (given

in Table 5) are shown in Figure 8. For instance, DEGL4

reduces FLOPS from 727M to 347M, CMF from 2.57GB

to 2.23GB and MMS 238.4MB to 47.5MB, with a test error

increase of only 0.07%. In addition, the current number of

filters or units in the different layers of DEGL2 are reported

in Figure 9.

Compression results for ResNet-50 are given in Table 6.

DEGL2 with 54.4% of model parameters pruned clearly

outperforms group-LASSO with 39.6% of model parame-

ters pruned, EGL with 54.4% of model parameters pruned

and several state-of-the-art methods. Further compression

leads to DEGL3 with 67.0% of model parameter pruned;

DEGL3 is competitive with group-LASSO with 39.6% of

model parameters pruned and EGL with 38.6%. The current

CMF and MMS along with the reductions after compres-

sion for the DEGL models (given in Table 6) are presented

in Figure 10.

6.3.5 Model compression for domain adaptation

We consider the effectiveness of our compression method

for domain adaptation using Oxford-102 [21] flower species

datasets and Food-5k [30] datasets, which contain 102 dif-

ferent flower species and food/non-food images, respec-

tively. Oxford-102 flower species dataset has 6149, 1020

and 1020 training, validation and testing samples, respec-

Dataset Models Error ↑ FLOPS ↓ Param. ↓

Group-LASSO 0.93% 36.9% 34.7%
Group-LASSO 1.26% 59.5% 55.2%

EGL 0.89% 44.4% 43.9%
Oxford-102 EGL 1.52% 68.0% 62.9%

Ours: DEGL1 0.01% 44.4% 43.9%
Ours: DEGL2 0.22% 68.0% 62.9%

Group-LASSO 1.18% 39.9% 39.4%
Group-LASSO 2.29% 69.5% 64.6%

EGL 1.35% 42.1% 40.2%
Food-5K EGL 2.62% 69.7% 65.8%

Ours: DEGL1 0.53% 42.1% 40.2%
Ours: DEGL2 1.31% 69.7% 65.8%

Oxford-102 ResNet-50: Error = 3.43%, Param. = 25.06M, FLOPS = 4.1B
Food-5K ResNet-50: Error = 0.50%, Param. = 25.06M, FLOPS = 4.1B

Table 7: ImageNet pre-trained ResNet-50 compression results

tively; for this dataset, we follow the training and testing

protocols in [36]. Food-5K dataset contains 2500 food im-

ages and 2500 non-food images; the training and testing

protocols in [30] are employed for this dataset. Namely,

we evaluate the original pre-trained and compressed models

for performance loss. Our compression results using pre-

trained ResNet-50 are given in Table 7, where DEGL1 and

DEGL2 are obtained by setting tth : 5×10−3 and 5× 10−4,

respectively. All models are trained using the same hy-

perparameters to support fair comparison. It is seen that

the proposed DEGL models significantly outpeform Group-

LASSO and EGL models. As such, DEGL is well-suited for

domain adaptation tasks.

7. Conclusion

In this paper, we address structured compression of deep

neural networks by taking inspiration from sparse signal

processing. Directly motivated by the drawbacks of apply-

ing conventional group LASSO for compressing deep neu-

ral networks (DNNs), we propose ‘debiased elastic group

lasso (DEGL)’ that is applied to several state-of-the-art

DNNs using six benchmarking datasets. Compression re-

sults are evaluated based on the percentage of pruned pa-

rameters, FLOPS, computational memory footprint and

memory for storage. Results of extensive compression ex-

periments show that DEGL performs better than conven-

tional group LASSO and several state-of-the-art methods.

Overall, the results reveal that considerable model compres-

sion can be achieved using DEGL with little performance

loss or even improved generalization.

Acknowledgments

This work was funded by the National Research

Fund (FNR), Luxembourg, under the project refer-

ence R-AGR-0424-05-D/Björn Ottersten and and CPPP17/

IS/11643091/IDform/Aouada. We gratefully acknowledge

the support of NVIDIA Corporation with the donation of

the GPUs used for this research.

2284



References

[1] S. Anwar, K. Hwang, and W. Sung. Structured prun-

ing of deep convolutional neural networks. ACM Journal

on Emerging Technologies in Computing Systems (JETC),

13(3):32, 2017.

[2] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-

tra. Reducing overfitting in deep networks by decorrelating

representations. In International Conference on Learning

Representations(ICLR), 2016.

[3] X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced fil-

ter pruning for efficient convolutional neural networks. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[4] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least

angle regression. The Annals of statistics, 32(2):407–499,

2004.

[5] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances In Neural Information Process-

ing Systems, pages 1379–1387, 2016.

[6] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[7] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter

pruning for accelerating deep convolutional neural networks.

In Proceedings of the 27th International Joint Conference on

Artificial Intelligence, pages 2234–2240. AAAI Press, 2018.

[8] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:

Automl for model compression and acceleration on mobile

devices. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 784–800, 2018.

[9] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1389–

1397, 2017.

[10] J. Huang, P. Breheny, and S. Ma. A selective review of group

selection in high-dimensional models. Statistical science:

a review journal of the Institute of Mathematical Statistics,

27(4), 2012.

[11] Q. Huang, K. Zhou, S. You, and U. Neumann. Learning

to prune filters in convolutional neural networks. In 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 709–718. IEEE, 2018.

[12] V. Jayasundara, S. Jayasekara, H. Jayasekara, J. Rajasegaran,

S. Seneviratne, and R. Rodrigo. Textcaps: Handwritten

character recognition with very small datasets. In 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 254–262. IEEE, 2019.

[13] M. M. Kabir, M. M. Islam, and K. Murase. A new wrapper

feature selection approach using neural network. Neurocom-

puting, 73(16-18):3273–3283, 2010.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[15] D. Li, X. Wang, and D. Kong. Deeprebirth: Accelerating

deep neural network execution on mobile devices. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. In International Con-

ference on Learning Representations(ICLR), 2017.

[17] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu. Com-

pressing convolutional neural networks via factorized con-

volutional filters. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3977–

3986, 2019.

[18] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 806–814, 2015.

[19] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level prun-

ing method for deep neural network compression. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 5058–5066, 2017.

[20] N. Meinshausen. Relaxed lasso. Computational Statistics &

Data Analysis, 52(1):374–393, 2007.

[21] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In 2008 Sixth Indian

Conference on Computer Vision, Graphics & Image Process-

ing, pages 722–729. IEEE, 2008.

[22] O. K. Oyedotun, G. Demisse, A. El Rahman Shabayek,

D. Aouada, and B. Ottersten. Facial expression recognition

via joint deep learning of rgb-depth map latent representa-

tions. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3161–3168, 2017.

[23] O. K. Oyedotun, A. El Rahman Shabayek, D. Aouada, and

B. Ottersten. Highway network block with gates constraints

for training very deep networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pages 1658–1667, 2018.

[24] T. Poggio and F. Girosi. Regularization algorithms for learn-

ing that are equivalent to multilayer networks. Science,

247(4945):978–982, 1990.

[25] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-

H. Yang. Gated fusion network for single image dehazing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3253–3261, 2018.

[26] S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized

path to a maximum margin classifier. Journal of Machine

Learning Research, 5(Aug):941–973, 2004.

[27] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini.

Group sparse regularization for deep neural networks. Neu-

rocomputing, 241:81–89, 2017.

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations(ICLR), 2015.

[29] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.

Stability based filter pruning for accelerating deep cnns. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 1166–1174. IEEE, 2019.

[30] A. Singla, L. Yuan, and T. Ebrahimi. Food/non-food im-

age classification and food categorization using pre-trained

2285



googlenet model. In Proceedings of the 2nd International

Workshop on Multimedia Assisted Dietary Management,

pages 3–11. ACM, 2016.

[31] S. Srinivas and R. V. Babu. Data-free parameter pruning for

deep neural networks. In British Machine Vision Conference

(BMVC), 2015.

[32] S. Srinivas, A. Subramanya, and R. Venkatesh Babu. Train-

ing sparse neural networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 138–145, 2017.

[33] R. Tibshirani. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996.

[34] H. Wang, B. J. Lengerich, B. Aragam, and E. P. Xing. Pre-

cision lasso: accounting for correlations and linear depen-

dencies in high-dimensional genomic data. Bioinformatics,

2018.

[35] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances

in neural information processing systems, pages 2074–2082,

2016.

[36] Y. Wu, X. Qin, Y. Pan, and C. Yuan. Convolution neural

network based transfer learning for classification of flowers.

In 2018 IEEE 3rd International Conference on Signal and

Image Processing (ICSIP), pages 562–566. IEEE, 2018.

[37] H. Xu, C. Caramanis, and S. Mannor. Sparse algorithms are

not stable: A no-free-lunch theorem. IEEE transactions on

pattern analysis and machine intelligence, 34(1):187–193,

2011.

[38] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-

works using neuron importance score propagation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 9194–9203, 2018.

[39] M. Yuan and Y. Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 68(1):49–

67, 2006.

[40] M. Yunus, A. Saefuddin, and A. M. Soleh. Characteristics of

group lasso in handling high correlated data. Applied Math-

ematical Sciences, 11(20):953–961, 2017.

[41] S. Zagoruyko and N. Komodakis. Wide residual networks.

In British Machine Vision Conference (BMVC), volume 8,

pages 35–67, 2012.

[42] P. Zhao and B. Yu. On model selection consistency of lasso.

Journal of Machine learning research, 7(Nov):2541–2563,

2006.

[43] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. In European Conference on Computer Vision,

pages 662–677. Springer, 2016.

[44] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel pruning

for deep neural networks. In Advances in Neural Information

Processing Systems, pages 875–886, 2018.

[45] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel pruning

for deep neural networks. In Advances in Neural Information

Processing Systems, pages 875–886, 2018.

[46] H. Zou and T. Hastie. Regularization and variable selection

via the elastic net. Journal of the royal statistical society:

series B (statistical methodology), 67(2):301–320, 2005.

2286


