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Abstract

Generative models have achieved impressive perfor-

mance for the generalized zero-shot learning task by learn-

ing the mapping from attributes to feature space. In this

work, we propose to derive semantic inferences from im-

ages and use them for the generation, which enables us to

capture the bidirectional information i.e., visual to seman-

tic and semantic to visual spaces. Specifically, we propose

a Semantic Embedding module which not only gives image

specific semantic information to the generative model for

generation of better features, but also makes sure that the

generated features can be mapped to the correct semantic

space. We also propose an Integrated Classifier, which is

trained along with the generator. This module not only elim-

inates the requirement of additional classifier for new ob-

ject categories which is required by the existing generative

approaches, but also facilitates the generation of more dis-

criminative and useful features. This approach can be used

seamlessly for the task of few-shot learning. Extensive ex-

periments on four benchmark datasets, namely, CUB, SUN,

AWA1, AWA2 for both zero-shot learning and few-shot set-

ting show the effectiveness of the proposed approach.

1. Introduction

Zero-shot learning (ZSL) [1][2][4][16] addresses the

problem of image classification of previously unseen

classes, which is a very relevant real-world problem, since

the number of object classes is dynamically increasing. A

more generalized scenario, where the a-priori knowledge

of whether the object is seen or unseen is not available,

is addressed as generalized ZSL (GZSL) [34][35][19][24].

These approaches generally utilize the semantic descrip-

tions (manual attributes, word2vec, etc.) of both the seen

and unseen classes to bridge the gap between them. Tradi-

tional approaches [1][23][16][2][15][4] learn the transfor-

mations from the image-space to semantic space or vice-

versa in order to classify objects from unseen classes. Re-

cent advances in deep learning [19][35][29][36][24] ad-

dress this problem by generating synthetic image features

for the unseen classes for which no training data is avail-

able. A variant of ZSL and GZSL is Few-Shot Learn-

ing (FSL) [11][25][31] and FSL without forgetting [8],

where the task is to classify image samples from classes,

for which very few samples are available for training.

In this work, we propose a general framework to address

these problems by augmenting a generative model with two

novel modules, namely Semantic Embedding (SE) and In-

tegrated Classifier (IC) to further enhance its performance.

In general, a generative model learns the mapping from se-

mantic to the visual space [35][36][29][6]. In contrast, in

this work, we propose to incorporate bidirectional embed-

dings (i.e. visual to semantic and semantic to visual) to im-

prove the quality of generated image features. The SE mod-

ule, in addition to giving image specific semantic informa-

tion to the generative model for better feature generation,

also ensures that the generated features can be mapped to

the correct semantic space.

For majority of generative approaches, the generated fea-

tures are used to train a classifier, thus transforming the ZSL

task to a classical supervised classification problem. This

requires the classifier to be trained each time a new class

is encountered. Our second contribution is the IC module,

which is trained simultaneously with the generator. It is

designed to take a pair of image features as input, and iden-

tify whether they belong to the same or different classes.

Since the real images are not available for unseen classes,

we propose to utilize the generated image samples from un-

seen classes to incorporate the unseen class-discrimination

ability into the classifier. This helps in reducing the bias to-

wards the seen classes. The main contributions in this work

are summarized below.

1. We propose a bidirectional mapping using generative

adversarial networks between the visual space and se-

mantic space, to improve the quality of synthetic image

features.

2. We propose a classifier which is trained along with
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the generator and can be used directly during testing,

thereby eliminating the need of retraining a separate

classifier.

3. Our proposed approach can be extended seamlessly to

few-shot learning setting as well.

4. Extensive experiments on CUB, SUN, AWA1 and

AWA2 show the effectiveness of the framework.

The rest of the paper is organized as follows. The related

works and the proposed framework are described in Sec-

tion 2 and Section 3 respectively. Results of extensive eval-

uation are reported and analyzed in Section 4 and the paper

ends with a summary in Section 5.

2. Related work

There has been significant amount of work in the area

of ZSL and FSL reported in the recent literature. In this

section, we give pointers to the work closely related to the

proposed work.

Zero-shot Learning In this work, we address both ZSL and

GZSL problems. Early works [7][1][2] learn a linear com-

patibility function between the visual space and semantic

embedding space. [15] finds a linear mapping from visual to

semantic space with a reconstruction objective which maps

back to visual space; whereas [33][26] learn non-linear

compatibility functions from visual to semantic space. [30]

is a generative model which formulates the class conditional

distributions as Gaussians.

Advances in generative models [9][10][6][17] have en-

abled the generation of new synthetic images to mimic a

particular input data distribution. Inspired by the these ap-

proaches, recent algorithms address the problem of lack of

training data for the unseen classes by generating synthetic

images for the same. CVAE-ZSL [19] uses conditional VAE

to generate such synthetic features. SE-GZSL [29] and [6]

use VAE and GAN respectively with regressor as a feedback

on the generated features to improve the feature generation.

f-CLSWGAN [35] uses GAN to generate features for un-

seen classes. f-VAEGAN [36] utilizes both VAE and GAN

strengths to improve the generation quality.[13] proposes to

learn class prototypes by aligning visual and semantic space

simultaneously using coupled dictionary learning approach.

Different from these approaches, ReViSE [28] and CADA-

VAE [24] propose to learn a common intermediate space

from both visual and semantic space to perform classifica-

tion.

There are different kinds of class-level semantic em-

beddings used by all these algorithms. Some of them are

obtained through human annotations [16][32], pre-trained

word2vec-model [18], sentence embeddings learned using

language model [22], etc.

Few-shot Learning In few-shot learning, very few exam-

ples for novel classes are available while training. Di-

rectly learning with such small number of examples causes

the model to over fit. Earlier approaches like Relation-

Net [27] learns deep metric representation to compare the

images by simulating few-shot scenario in episode-based

mini-batches. Siamese neural network [14] employs CNN

architecture to measure the similarity between image pairs

for final ranking. Prototypical networks [25], Matching net-

works [31] use meta-learning approaches to make infer-

ences on the few labeled instances of novel classes. [11]

proposes to generate samples of novel classes considering

the possible variations, whereas [3] utilizes GAN to trans-

fer the styles captured from base classes to generate data for

the novel classes. [21] imprints normalized image embed-

dings as classifier weights for the novel classes.

In our work, we also aim to address the problem of ZSL,

GZSL and FSL by means of a generative model. In contrast

to existing work, we propose to generate more meaningful

image features by introducing a bidirectional mapping be-

tween image and semantic spaces. However, one major dis-

advantage of all such existing generative models is the need

to train an additional classifier while testing. We aim to-

wards addressing such drawbacks. We’ll discuss the details

of our approach in the following section.

3. Proposed Approach

In this section, we discuss the proposed method for ZSL

and GZSL. This method can also be seamlessly extended

to the application of few-shot learning, which is elabo-

rated later. For ZSL, we assume the set of seen classes

as Cseen = {1, .., L} and the set of unseen classes as

Cunseen = {L+ 1, .., L+K}. As per the standard pro-

tocol, Cseen ∩ Cunseen = φ.

The training data is given as S = {(x, y)|y ∈ Cseen},
where, x ∈ R

dx denotes the image feature and y denotes

the corresponding class label. While testing, given an

image xtest ∈ R
dx , the objective is to learn a map-

ping function fzsl : R
dx → Cunseen for ZSL, and

fgzsl : Rdx
→ Cseen ∪ Cunseen for GZSL. In addition

to this, we have the attributes / class-label emeddings

for both seen and unseen classes as c(y) ∈ R
da , where

y ∈ Cseen ∪ Cunseen.

Base GAN-based Generative Network Motivated by

the success of the generative approaches [35][36] for

the task of ZSL, in this work, we propose an improved

generative framework for the same. We start the discussion

by providing a brief introduction to the base network.

In our work, we use the f-WGAN [35] as the base

generative model and propose a better approach with bi-

directional exchange of information between visual and se-

mantic domain for feature generation. f-WGAN consists
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Figure 1. Our generative model utilizes bidirectional mapping, visual to semantic (SE) and semantic to visual (G) to generate the features.

Proposed Integrated-classifier (IC) is trained along with the generator (G) and directly used to classify the test instance in contrast to the

existing approaches. Retraining of the classifier is not required for our framework.

of two modules - a conditional generator (G) and a condi-

tional discriminator (D), which are trained in an adversarial

fashion to capture the underlying distribution of the train-

ing data, denoted as Ps. Using the training data of the seen

classes S , the parameters of the generator (G) and discrim-

inator (D) are learnt by optimizing the following WGAN

loss function [10] conditioned on c(y) as in [35],

LWGAN |c(y) = E
x∼Ps

[D(x|c(y))]− E
x̃∼Pg

[D(x̃|c(y))]

− λ(GP ) (1)

Here, x̃ is the fake image feature generated by G, i.e.

x̃ = G(z|c(y)), where z is sampled from a pre-defined

noise distribution Pz and Pg is assumed to model the gener-

ator distribution. GP is the gradient-penalty term, proposed

in [10], as

GP = E
x̂∼Px̂

[(‖∇x̂D(x̂|c(y))‖2 − 1)2] (2)

Similar to [10], Px̂ is considered to be uniformly sampled

along the straight line between data-pairs sampled from Ps

and Pg . Thus, x̂ = αx + (1 − α)x̃ [10]. λ is the penalty

coefficient, and the suggested value (λ = 10) [10] is used

for our work.

In this work, given this base generative network, we pro-

pose two novel modules, namely Semantic Embedding and

Integrated Classifier to improve the quality of the generated

image features as well as the final recognition performance.

Here, we discuss these modules in detail. Figure 1 depicts a

pictorial representation of the proposed framework.

3.1. Semantic Embedding Module

Semantic Embedding (SE) module is designed to capture

meaningful semantic inferences from an input image, which

can further be utilized in the generation of fake image fea-

tures using the base f-WGAN. The generation process in the

base f-WGAN is conditioned on the attribute information of

the class (equation (1)). SE-module explores the possibility

of additionally using predicted attributes from the images,

which contains some amount of image specific information

to generate more diverse image features for each class. In

particular, we aim to learn a mapping, Esem : Rdx → R
da ,

and use the predicted semantic embedding ap = Esem(x)
as an additional input to f-WGAN.

Given a set of images with their class labels and corre-

sponding attributes, we now describe the trainining of SE to

obtain the semantic embeddings. We want the predicted at-

tributes from the images of same class should be as close as

possible. In addition, we want these embeddings to be close

to the ground-truth attributes (c(y)), which incorporate use-

ful class-specific information required for recognition. Mo-

tivated by [25], we compute the class-prediction capability

of ap using the distance-based softmax function as

Pr (y = k|x, c(k)) =
exp(−d(ap, c(k)))

∑

k′ exp(−d(ap, c(k′)))
(3)

where, d(a,b) denotes the Euclidean distance between two

vectors a and b. We define the negative log-likelihood func-

tion on this probability measure as the primary loss compo-

nent [25] for SE-module as,

Lpr = − E
x∼Ps

[log Pr (y = k|x, c(k))] (4)

We further observe experimentally, that mean squared er-

ror (MSE) loss helps to achieve better alignment of ap’s

towards their ground-truths c(y). Thus, additionally we im-

pose MSE loss as,

Lmse = E
x∼Ps

[(Esem(x)− c(y))2] (5)
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Hence, the overall loss function of this SE-module is,

LSE = Lpr + αLmse (6)

where α is a hyper-parameter, set on the basis of validation

set accuracy. In the following section, we will discuss the

training methodology of the SE-module jointly with the

WGAN-based generative network for generation of better

image features. The WGAN with the SE module is termed

as SE-GAN in the rest of the paper.

Generating image features with SE-GAN: In the

proposed framework, the SE module and the G-module

of the WGAN are trained together, in adversarial fashion

with D. Only the training set S is used for this training.

The training of G-module in addition to SE is done in an

alternate manner in two stages. In the first stage, for a

mini-batch, Esem is trained using (x, y) ∈ S by minimizing

the loss LSE . Hence, for the first stage, L
(I)
SE−GAN = LSE .

In the second stage, for the same mini-batch, Esem is frozen

and the learning of G is initiated.

For training G in the second stage, we modify the stan-

dard training of f-WGAN [35] by utilizing both the ground-

truth attributes of data c(y), as well as the inferred attributes

ap. Thus, we obtain two sets of fake image data at the gener-

ator output, one is obtained using the ground-truth attributes

as x̃c(y) = G(z|c(y)), and the other one is generated using

the predicted attributes as, x̃a = G(z|ap), while the noise

component z ∼ Pz . To ensure that the distribution of the

generated fake image features follows the actual data distri-

bution Ps as closely as possible, both x̃c(y) and x̃a are fed

to the discriminator in addition to real x ∈ S .

Also, we aim to learn features in order to be discrimi-

native across the classes. Towards that goal, we first pre-

train a soft-max classifier, Gcls on the training set S . While

training the SE-GAN, we use this pre-trained classifier to

minimize the cross-entropy loss as

Lcls = − E
x∼Ps

[log Pr
(

y|x̃c(y)

)

]− E
x∼Ps

[log Pr (y|x̃a)] (7)

where, both the probablities Pr
(

y|x̃c(y)

)

and Pr (y|x̃a) are

measured as standard soft-max function. Note that since

Gcls is pre-trained and kept frozen while training SE-GAN,

the back-propagation at this stage will update only the gen-

erator module based on the class-discrimination property of

the generated features.

Additionally, we propose to feed these fake generated

features back to Esem module to ensure that they can in-

deed give the class-specific semantic embeddings, which in

turn leads to further improvement in the image features. For

this stage also, we freeze the weights of Esem and minimize

the loss LSE computed using x̃c(y), which we refer to as

Lfeedback
SE . Please note that this minimization will only up-

date the weights in G and thus improve the feature genera-

tion performance. Hence, the SE-GAN loss function for the

second stage of training is as follows

L
(II)
SE−GAN =LWGAN |c(y) + β1LWGAN |ap

+ β2Lcls + β3L
feedback
SE (8)

Here, β1, β2, β3 are hyper-parameters, which are set exper-

imentally. We are introducing bi-directional mapping i.e.

visual to semantic via SE module (6) and semantic to visual

via the feedback-loss component (8).

While testing, such generated image features from SE-

GAN can be used to train a softmax classifier, which can

be used for predicting the class of an unseen image sam-

ple, as per the standard practice [35][36]. We further pro-

pose to eliminate the need for training a separate classifier

while testing and integrate the classification process with

SE-GAN. We will discuss the process of integrating the pro-

posed classifier in the following section.

3.2. SE­GAN with Integrated Classifier: ISE­GAN

Existing generative-approaches [35][36][19] for ZSL

work on the principle of generating samples of unseen

classes from their attributes and use such fake samples to

train a classifier. The class of the test image sample is then

predicted based on this newly trained classifier. Though ef-

fective, still this approach has a few significant drawbacks:

(1) It requires to generate sufficient number of fake sam-

ples (which is an experimental hyper-parameter in the range

of 100-2000 [35][36][6]) to be able to train the classifier. (2)

In case, a new unseen class is encountered after deploying

this model, the classifier needs to be re-trained. All of these,

in effect, increase the testing cost of the model. In contrast,

we propose to take the classification one step further, by in-

tegrating it with the generation, which overcomes both the

above limitations. In addition, only few number of gener-

ated samples (analysis shown later) are sufficient to achieve

a reasonable performance for both ZSL and GZSL.

We name proposed classification module as the Inte-

grated Classifier (IC-module), since it is trained simultane-

ously with the generator, and thus eliminates the need to

train a separate classifier at testing. The IC-module works

as a class-discriminative network, which takes a pair of im-

age features as input and outputs a similarity score (scalar

value) indicating if the features are from same class or dif-

ferent classes. We generate paired real-fake image feature

data, conditioning on the ground-truth attributes of the same

for training IC-module as

D1 = {(xi, x̃
j

c(y), c(j))|i, j ∈ Cseen} (9)

Here, we slightly modify the feature notation as xi to de-

note that the feature x belongs to ith class. Similarly,

x̃
j

c(y) denotes that the fake features x̃c(y), generated us-
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ing ground-truth attributes belongs to jth class. Addition-

ally, the semantic-embeddings for the unseen classes can

be utilized to further generalize the IC-module towards the

unseen classes by constructing a fake-fake image feature

datasets from Cunseen,

D2 = {(x̃i
c(y), x̃

j

c(y), c(j))|i, j ∈ Cunseen} (10)

We can use both D1 and D2 to train the IC-module, learn-

ing the function IC : Rdx × R
dx × R

da → (0, 1), while

minimizing the following MSE loss function

LIC = E
(xi,x̃

j

c(y)
)∼Ps,g

[(IC(xi, x̃
j

c(y), c(j))− 1(i,j))
2]

+ γ E
(x̃i,x̃

j

c(y)
)∼Pg

[(IC(x̃i
c(y), x̃

j

c(y), c(j))− 1(i,j))
2]

(11)

where, 1(i,j) represents the indicator function with value 1,

if and only if i = j. Otherwise, 1(i,j) = 0. Ps,g refers to

the joint distribution of both real and generated data. γ is

again a hyper-parameter set on the basis of validation set

accuracy.

Simultaneous training of IC-module with SE-GAN:

For ISE-GAN, the IC-module is trained in the second-

phase of mini-batch training of SE-GAN, as explained in

Section 3.1. To enable the integrated training, the final

SE-GAN loss function is modified as below

LISE−GAN = L
(II)
SE−GAN + LIC (12)

Thus, the optimization problem becomes,

min
θSE ,θG,θIC

max
θD
LISE−GAN (13)

where, θSE , θG and θIC represent the trainable parame-

ters of the SE, generator and IC modules of SE-GAN re-

spectively. θD represents the parameters of discriminator.

Therefore, for each mini-batch, both the G and IC-modules

are updated simultaneously.

Algorithm 1 summarizes the training process of proposed

ISE-GAN. To train the SE-GAN module, we perform the

update steps till 14 in Algorithm 1. ISE-GAN differs signif-

icantly with other state-of-the-arts generative models, such

as f-VAEGAN [36] or f-WGAN [35]. Our main contribu-

tions are the SE and IC modules, which can potentially be

integrated with any base generative network for improving

its performance.

3.3. Testing

While testing, the objective is to classify a test image

sample xtest to a set of possible classes Ctest. For ZSL,

Ctest = Cunseen, while for GZSL, Ctest = Cseen ∪Cunseen.

Towards the goal of unseen image classification, we obtain

Algorithm 1 Algorithm for training ISE-GAN

1: Input: S, {c(y)|y ∈ Cseen ∪ Cunseen}
2: Initialize: Randomly initialize the parameters of the

discriminator (θD), generator (θG), SE-module (θSE)

and IC-module (θIC).

3: Requirement: Learning rate β, number of iterations of

discriminator per generator iteration = ndis, batch size

B, Pz is considered as Gaussian, N (0, 1).
4: while θD, θG, θSE , θIC have not converged, do

5: for i = 1, 2, ...., ndis do

6: Sample {xi, c(yi)}
B
i=1, {zi}

B
i=1 ∼ Pz .

7: api
= Esem(xi)

8: LD(xi) = LWGAN |c(yi) + LWGAN |api

9: Gradient: gθD ← ∇θD
1
B

B
∑

i=1

LD(xi)

10: Update: θD ← θD − βAdam(θD, gθD )

11: Gradient : gθSE
← ∇θSE

1
B

B
∑

i=1

L
(I)
SE−GAN (xi)

12: Update: θSE ← θSE − βAdam(θSE , gθSE
)

13: Gradient: gθG ← ∇θG
1
B

B
∑

i=1

L
(II)
SE−GAN (xi)|GP=0

14: Update: θG ← θG − βAdam(θG, gθG)
15: Construct D1 and D2 as equation (9) and (10)

16: Gradient : gθIC ← ∇θICLIC

17: Update: θIC ← θIC − βAdam(θIC , gθIC )

ng number of fake image samples of each class y ∈ Ctest
from its ground-truth attribute c(y) using the trained gener-

ator module. Next, we obtain one class prototype for each

class as the sample mean given below

m(y) =
1

ng

ng
∑

k=1

G(zk|c(y)) (14)

Here, zk, k = 1, ..., ng are uniformly sampled from the

same training noise distribution Pz . Finally, the test sample

xtest is paired with each of the class prototypes and their

corresponding class attributes as (xtest,m(y), c(y)) and is

fed to the IC-module to generate the class similarity score.

The class with the highest similarty score is predicted as the

target class (ytarget) of that sample. Thus,

ytarget = arg max
y∈Ctest

IC(xtest,m(y), c(y)) (15)

This IC-module eliminates the requirement of test-time

training of the classifier. Also, this target-class evaluation

methodology can be seamlessly extended to any number of

classes while testing.

Extension to Few-shot learning: The training pro-

cedure of proposed model for FSL remains the same,

However, the testing methodology is modified slightly in
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case of FSL to accommodate the existing few training

samples of novel classes. Utilizing the given training

examples, the class prototypes for the novel classes are

computed as

mfs(y) =

m(y) +
nfs
∑

i=1

xi

1 + nfs

(16)

where nfs is the number of examples available for train-

ing for class y. Following this, the prediction of ytarget is

exactly same as in the case of ZSL.

Dataset da Total classes |Cseen| |Cunseen|

CUB 312 200 100 + 50 50

SUN 102 717 580 + 65 72

AWA1 85 50 27 + 13 10

AWA2 85 50 27 + 13 10

Table 1. Datasets details in terms of dimension of attributes (da),

number of total classes and the split in terms of seen/unseen

classes. |Cseen| column contains number of seen classes in the

format no. of training classes + no. of validation classes.

4. Experiments

In this section, we discuss the details of experiments per-

formed to evaluate the effectiveness of the proposed frame-

work. We begin with a brief description of the datasets and

the features used for the experiments.

4.1. Datasets and Features Used

We evaluate the proposed approach on four

widely used benchmark datasets, namely Caltech-

UCSD Birds (CUB)-200-2011 [32], SUN [20], Animals

with Attributes1 (AWA1) [16] and Animals with At-

tributes2 (AWA2) [34] for both ZSL and GZSL settings.

For all our experiments, we use the features (2048-d)

extracted from final pooling layer of ResNet-101 [12],

pre-trained on ImageNet [5], to represent the images. The

manual attribute annotations of images in all four datasets

are used as the semantic embedding to generate the results

in all cases, unless specified otherwise.

Caltech-UCSD Birds 200-2011 (CUB) [32] is a fine-

grained dataset, with 11,788 images of 200 different birds,

annotated with 312-d manual attributes.

SUN [20] is another fine-grained dataset, with 14,340 scene

images from 717 classes annotated with 102-d attributes.

Animals with Attributes1 (AWA1) [16] has 30,475

images from 50 classes, annotated with 85 attributes.

Animals with Attributes2 (AWA2) [34] is a newly re-

leased dataset with 37,322 images (non-overlapping with

AWA1) from 50 classes annotated with 85 attributes.

The data-splits for ZSL are done following [34]. The

summary of the split is depicted in Table 1.

4.2. Implementation Details

In our implementation, the generator and discriminator

are multilayer perceptron (MLP) with two hidden layers

and 4096 hidden units. The IC and SE-modules are imple-

mented as single hidden layer MLP with 4096 nodes. All

the hidden nodes are activated with LeakyRelu except for

final layer in the generator, where ReLU-activation is used

to match with the ResNet101 final layer features. We use

a batch size of 64, Adam optimizer with a learning rate of

0.0001. We explicitly mention all hyper-parameter values

in Table 3 for ease of replicating the results.

Dataset α β1 β2 β3 γ

AWA1 & AWA2 0.2 1 0.1 0.2 0.5

CUB 0.05 0.01 0.01 0.1 0.75

SUN 0.1 0.05 0.01 0.1 0.25

Table 3. Hyper-parameter values used in our work.

4.3. Generalized Zero­Shot Learning

Here, we report the experiments for GZSL protocol as

used in [34] for the proposed framework. To demonstrate

the effectiveness of the proposed approach, we compare

with the recent state-of-the-art methods :

• Non-deep traditional methods : CMT [26], SJE [2],

ALE [1], LATEM [33], ESZSL [23], SYNC [4];

• Deep learning based methods: DeViSE [7],

f-CLSWGAN [35], SE [29], ReViSE [28], f-

VAEGAN [36], CADA-VAE [24] etc.

The summary of the experiments on all the four datatsets are

tabulated in Table 2. The results for all the other approaches

are reported directly from [36] and [24].

We perform all the experiments with two variants of our

proposed framework. First, we use SE-GAN module to

generate high-quality synthetic image features for unseen

classes and then train a softmax classifier for final clas-

sification. This variation of the model is referred to as

‘SE-GAN+SM’ in Table 2. On the other hand, the com-

plete framework has been denoted as ‘ISE-GAN’. We ob-

serve that for all four datasets, we are able to achieve high-

est Harmonic-mean value compared to the state-of-the-art

CADA-VAE [24]. We also observe that in general, the ISE-

GAN with the integrated classifier module performs better

than the other version (SE-GAN+SM), signifying the effec-

tiveness of the integrated classifier in generating more use-

ful and discriminative image features. To further evaluate

the effectiveness of the proposed approach, we also perform

experiments for the ZSL settings. Here we follow the same

experimental protocol as [34] and use the same features. As

before, we experimented with both the variants of the pro-

posed framework. The results in terms of top-1% accuracy
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CUB SUN AWA1 AWA2

Model S U H S U H S U H S U H

CMT [26] 49.8 7.2 12.6 21.8 8.1 11.8 87.6 0.9 1.8 90.0 0.5 1.0

SJE [2] 59.2 23.5 33.6 30.5 14.7 19.8 74.6 11.3 19.6 73.9 8.0 14.4

ALE [1] 62.8 23.7 34.4 33.1 21.8 26.3 76.1 16.8 27.5 81.8 14.0 23.9

LATEM [33] 57.3 15.2 24.0 28.8 14.7 19.5 71.7 7.3 13.3 77.3 11.5 20.0

ESZSL [23] 63.8 12.6 21.0 27.9 11.0 15.8 75.6 6.6 12.1 77.8 5.9 11.0

SYNC [4] 70.9 11.5 19.8 43.3 7.9 13.4 87.3 8.9 16.2 90.5 10.0 18.0

DeViSE [7] 53.0 23.8 32.8 27.4 16.9 20.9 68.7 13.4 22.4 74.7 17.1 27.8

CDL [13] 55.2 23.5 32.9 34.7 21.5 26.5 73.5 28.1 40.6 - - -

f-CLSWGAN [35] 57.7 43.7 49.7 36.6 42.6 39.4 61.4 57.9 59.6 68.9 52.1 59.4

SE [29] 53.3 41.5 46.7 30.5 40.9 34.9 67.8 56.3 61.5 68.1 58.3 62.8

ReViSE [28] 28.3 37.6 32.3 20.1 24.3 22.0 37.1 46.1 41.1 39.7 46.4 42.8

f-VAEGAN [36] 60.1 48.4 53.6 38.0 45.1 41.3 - - - 70.6 57.6 63.5

CADA-VAE [24] 53.5 51.6 52.4 35.7 47.2 40.6 72.8 57.3 64.1 75.0 55.8 63.9

SE-GAN+SM 57.6 48.4 52.6 37.0 44.7 40.5 68.3 53.9 60.3 61.9 55.1 58.3

ISE-GAN 55.4 52.4 53.8 34.7 51.3 41.4 74.4 58.7 65.6 79.3 55.9 65.5

Table 2. Evaluation of SE-GAN+Soft-max (SM) classifier and ISE-GAN using average per-class top-1 accuracy (%) for GZSL protocol.

The results have been compared with the state-of-the-art. “H” denotes the harmonic mean of the classification performance evaluated using

the accuracy for unseen (“U” ) and seen (“S”) classes.

and comparisons with state-of-the-art approaches are sum-

marized in Table 4. All the results for the other approaches

are directly reported from [24]. We observe that the pro-

posed framework gives state-of-the-art results for ZSL task

for three out of the four datasets and gives comparable per-

formance for AWA2 dataset.

4.4. Few­shot Learning

We further conduct experiments for few-shot learning

(FSL) setting on CUB and SUN datasets. We compare the

results for the same with the most recent relevant work re-

ported in [24]. Let us denote the number of samples avail-

able for the novel classes as nfs. For comparison, we use all

the unseen classes (Cunseen) with nfs = 0, 2, 5 and 10, thus

evaluating the algorithm for Cunseen-way nfs-shot proto-

col in FSL setting. The results and comparison with state-

of-the-art are shown in Figure 2. All the results for FSL

are generated using our full proposed framework ISE-GAN.

We observe that on CUB dataset, the proposed method ISE-
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Figure 2. Comparing the performance of ISE-GAN with state-of-

the-art CADA-VAE [24] and ReViSE [28] with respect to increas-

ing number of training examples for few-shot learning.

GAN outperforms both the algorithms with noticable mar-

gin. On SUN dataset, ReViSE [28] performs slightly better

compared to the proposed method for nfs = 0. However,

the accuracy of the proposed method improves significantly

over both [28] and [24] even with nfs = 2.

Model CUB SUN AWA1 AWA2

CMT [26] 34.6 39.9 39.5 37.9

SJE [2] 53.9 53.7 65.6 61.9

ALE [1] 54.9 58.1 59.9 62.5

LATEM [33] 49.3 55.3 55.1 55.8

ESZSL [23] 53.9 54.5 58.2 58.6

SYNC [4] 55.6 56.3 54.0 46.6

CDL [13] 54.5 63.6 69.9 -

DeViSE [7] 52.0 56.5 54.2 59.7

f-CLSWGAN [35] 57.3 60.8 68.2 -

SE [29] 59.6 63.4 69.5 69.2

f-VAEGAN [36] 61.0 64.7 - 71.1

CADA-VAE [24] 60.4 61.8 62.3 64.0

SE-GAN+SM 60.8 61.8 70.2 68.8

ISE-GAN 63.9 64.7 68.4 65.6

Table 4. Evaluation of SE-GAN+SM-classifier and ISE-GAN us-

ing average per-class top-1 accuracy (%) and comparison with the

state-of-the-art for ZSL protocol.

4.5. Analysis

In this section, we perform detailed analysis of the pro-

posed framework. We report the results of all the analysis
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on the CUB dataset, unless specified otherwise.

Effect of number of synthetic features generated: In

ISE-GAN, the synthetic image features generated are used

to compute the prototype (m(y)) for each class, which are

finally used to determine the class of test image. Thus the

final performance depends on the quality of the prototypes,

which in turn depends on the quality and quantity of the syn-

thetic features. We analyze the performance of ISE-GAN

with varying number of synthetic features used to compute

the prototype. The classification accuracy in terms of top-

1% accuracy (for ZSL) and Harmonic mean (for GZSL) for

fine-grained CUB and coarse-grained AWA1 datasets are

shown in Figure 3. We observe that the number of generated
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Figure 3. Number of samples required (ng) to generate mean vec-

tor (m(y)) vs. classification performance of ISE-GAN.

features required for the proposed ISE-GAN is very less

compared to the separate softmax-classifier. For instance,

the number of samples to be generated for SE-GAN with

softmax-classifier (SE-GAN+SM) is ∼ 2000 per class for

AWA1 under GZSL protocol, whereas using ISE-GAN, it

is 200. Using ISE-GAN, even with a single generated fea-

ture, on AWA1 dataset, we obtain an accuracy of 64.5% for

ZSL and 62.9% for GZSL.

Effect of different class embeddings: Here, we explore

the effect of different attribute representations on the pro-

posed framework. In CUB dataset, in addition to the man-

ual attributes, each image is also annotated with 10-sentence

long textual description. Figure 4 reports the results using

sentence-embeddings (stc) [22] of the textual description

and Word2Vec (w2v) [18] embeddings extracted using class

names. We observe that ISE-GAN performs better using

S U H
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Figure 4. For GZSL protocol on CUB dataset: (a) Effect of dif-

ferent semantic embeddings on the classification performance of

ISE-GAN; (b): With sentence-embeddings as c(y), performance

comparison of ISE-GAN with recent state-of-the-art.

stc-embeddings as compared to the other representations.

ISE-GAN outperforms all the other state-of-the-arts irre-

spective of class embeddings, justifying the robustness of

our method under different class embeddings.

Ablation Study: Here, we analyze the behavior of pro-

posed model subject to different variation of the proposed

loss function and the results are summarized in Table 5.

First, we train our model (V1) using the synthetic fea-

tures generated with only the ground-truth attributes (c(y))
and the classification loss component (LSE−GAN (β1 =
0, β3 = 0)). This essentially makes the model simi-

lar to [35]. Next, we incorporate the proposed SE mod-

ule with [35], but remove the loss components Lcls and

Lfeedback
SE (β2 = 0, β3 = 0 in equation (8)). We refer to

this part of the framework as V2. We observe that the re-

sults improve over [35]. Next, we add only Lfeedback
SE to

V2 to obtain V3 and observe further boost in performance,

specially for GZSL. This reflects the effectiveness of feed-

back loss component in capturing the coherency between

semantic space and generated features. To observe the ef-

fect of Lcls, we remove Lfeedback
SE from V3 and train the

model (V4). We observe an improvement of performance,

which validates our idea of discriminative feature genera-

tion. Finally, the full framework ISE-GAN yields the best

performance over all of the above variations with both soft-

max classifier as well as IC-module.

Model Classifier GZSL ZSL

V1: f-CLSWGAN [35] SM 49.7 57.3

V2: LSE−GAN (β2 = 0, β3 = 0) SM 50.9 58.5

V3: LSE−GAN (β2 = 0) SM 51.4 58.8

V4: LSE−GAN (β3 = 0) SM 51.9 59.5

LSE−GAN SM 52.6 60.8

LSE−GAN IC 53.8 63.9

Table 5. Ablation study of the proposed framework on CUB

dataset for both ZSL (Top-1 acc (%)) and GZSL (Harmonic mean

of “S” and “U” (%)).

5. Conclusion

In this work, we proposed two novel deep network-

modules to enhance the performance of generative ap-

proaches for the task of ZSL, GZSL and FSL. SE mod-

ule introduces a bi-directional mapping between the seman-

tic space and the image feature space to boost the genera-

tion performance of f-WGAN. In comparison to the existing

model used for the same, our method has the advantage of

an integrated classifier, which eliminates the requirement of

training of a separate classifier, while testing. Our exten-

sive experimental evaluation on four datasets shows that the

proposed framework either outperforms or performs com-

parably to the state-of-the-art. A detailed ablation study of

the model shows the effectiveness of each module and loss

component in the network.
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