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Abstract

Domain shift practically exists in almost all computer

vision tasks including object detection, caused by which

the performance drops evidently. Most existing methods

for domain adaptation are specially designed for classifi-

cation. For object detection, existing methods separate do-

main shift into image-level shift and instance-level shift and

align image-level feature and instance-level feature respec-

tively. However, we find that there are two problems which

remain unsolved yet. First, the scale of objects is not the

same even in an image. Second, negative transfer can affect

model performance if not handled properly. We improve

the performance of cross-domain detection from three per-

spectives: 1) using multiple dilated convolution kernels with

different dilation rate to reduce the image-level domain dis-

crepancy; 2) removing images or instances with low trans-

ferability to weaken the influence of negative transfer; 3) di-

versifying distributions by keeping instances’ feature away

from each other, and then pull them closer to the center

of each category, so that make source samples distribution

more dispersed and more robust for cross-domain detection.

We test our model with Cityscapes [5], Foggy Cityscape

[30] and SIM 10K [18] datasets, experimental results show

that our method outperforms the state-of-the-art for object

detection under the setting of unsupervised domain adapta-

tion (UDA).

1. Introduction

Object detection aims to identify and localize all interest-

ing object instances in images. Currently, many deep con-

volutional networks (CNNs) based methods [27, 11, 10, 28,

16] have been proposed which achieve impressive perfor-
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(a) Foggy Cityscapes. (b) Cityscapes.

(c) SIM 10k.

Figure 1. Illustration of some samples of different datasets: al-

though all of them are urban images, the style is very differen-

t, caused by weather, illumination, acquisition sensor and so on,

which is a problem for ordinary object detection method.

mance. This achievement is built on large amount of dense

annotations obtained by expensive human labor [7, 22].

While in realistic practice, the performance drops drastical-

ly caused by the large variance such as backgrounds, illumi-

nation, viewpoints, etc. (see in Figutre 1). The reason lies in

the different data distributions of domains, typically known

as domain shift [14]. The typical solution is to finetune the

trained deep models on task-specific datasets which may be

prohibitively expensive to collect enough labeled data. To

address this issue, unsupervised domain adaptation (UDA)

methods [8, 34, 6] transfer discriminative features from re-

lated labeled source domains to unlabeled target data with-

out extra annotations.
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This paper dedicates to cross-domain object detection

problem. The existing domain adaptation methods for ob-

ject detection [4, 36, 29] have achieved excellent perfor-

mances, they mainly focus on aligning image-level and

instance-level representations of source and target domains.

In this paper, we improve Faster R-CNN on target datasets

from three novel perspectives.

Firstly, in order to align image-level feature from dif-

ferent scales, we utilize multi-channel void convolution to

extract multi-scale features. And then a 1*1 convolution

is used for channel communication and outputting domain

prediction. Secondly, for avoiding negative transfer, we

discard the feature with low transferability on image-level

and instance-level. Low transferability denoted as that sam-

ples easy to distinguished by domain discriminator. More

specifically, target samples whose output of domain dis-

criminators lower than a threshold are rejected. Thirdly, we

extend metric learning to cross-domain object detection by

diversifying features in a batch to restrain overfitting and

centering features of the same category to preserve discrim-

ination.

In a word, our contributions are summarized as follows:

• Multi-Scale Adaptation. We adopt multi-channel

void convolutions with different void rates at image-

level adaptation to align source and target domains in

different scales.

• Reduce Negative Transfer. During the training pro-

cess, we reduce negative transfer by rejecting low

transferability target data which decided by domain

discriminators.

• Robust Discriminative distribution. A novel method

is proposed to diversify domain distribution and cen-

ter category distribution for robust discriminative dis-

tribution. The extended experiments indicate that this

composition can improve cross-domain robustness for

object detection task.

2. Related Work

2.1. Object Detection

With the rise of CNNs, object detection methods have

made remarkable progress. R-CNN [11] is the first mod-

el that trains a network to classify all regions of interest

(ROI) extracted by selective search from images. Fast R-

CNN [10] increases speed by sharing the feature map of all

ROIs, and presented ROI pooling which map features of d-

ifferent sizes to the same size to solve the problem of the

different sizes of ROIs. Faster R-CNN [28] firstly utilizes

Region Proposal Network (RPN) to extract ROIs, which is

much better than selective search used by [11, 10] in terms

of speed and accuracy. It achieved state-of-the-art perfor-

mance and followed by many works [9, 16, 4, 20]. How-

ever, all of those models did not consider the scenario of

cross-domain detection. Our method in this paper is based

on Faster-RCNN and further reduce domains’ discrepancy.

2.2. Domain Adaptation

For classification tasks, domain adaptation has been

widely researched. There are many methods proposed to

narrow the gap between different domains, including nar-

rowing Maximum Mean Discrepancy (MMD) [35, 24, 25],

covariance matrix alignment [32], subspace alignment [14],

geodesic flow kernel [12, 14], etc. Generative Adversarial

Networks (GANs) [13] achieved great success in generating

pictures by minimizing the JS divergence [13] or Wasser-

stein distance [1, 15] between two distributions. Domain

Adversarial Neural Network (DANN) [8] and Adversari-

al Discriminative Domain Adaptation (ADDA) [34] used

GANs to align different domains by training a domain clas-

sifier to classify the feature maps from which domain, and

enforcing feature extractor to confuse the domain classifier.

Joint Adaptation Network (JAN) [25] uses both adversarial

learning and multiple kernel learning.

Different from those works, our model beyond classifi-

cation problem and focus on object detection task.

2.3. Cross­domain Object Detection

While domain adaptation for classification has already

received a lot of attention, only a few works [4, 36, 3, 29]

consider domain adaptation for object detection. Domain

Adaptive Faster R-CNN (DA Faster R-CNN) [4] train two

domain classifier to align image-level features and instance-

level features that from different domains, and enforce con-

sistency between the outputs of two domain classifiers to

improve the cross-domain robustness of RPN. Few-Shot

Adaptive Faster R-CNN (FSA Faster R-CNN) [36] random-

ly select 9 bounding boxes with different scales and propor-

tions of each image as inputs of image-level domain classi-

fier. Mean Teacher for Cross-Domain Detection [3] firstly

use mean teacher [33] in cross-domain detection for better

cross-domain robustness. [29] mitigates negative transfer

by utilizing weak alignment of high-level features that use

focal loss [21] to reweight samples’ weights that Highlight

hard-to-distinguish domain samples.

2.4. Unsupervised Metric Learning

Metric Learning is successfully applied in unsuper-

vised learning and cross-domain person reidentification

(ReID)[39, 38]. [38] train model with unlabeled data, by

push feature vector from other vectors in the memory bank.

The model classifies data with a special classifier named

non-parametric softmax classifier that predicts the data with

k (k is a super parametric) nearest neighbor. [39] is a

method of cross-domain person reidentification. [39] di-

versify domain distribution by making every image iden-

tifiable, and [39] pulls its feature close with the k nearest
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Figure 2. Overvier of the proposed model: we narrow the domain shift with image-level and instance-level adversarial domain adaptation

modules. While instance-level module tackles multi-scale with ROI pooling, image-level address it with multi-channel void convolutions.

To reduce negative transfer, we reject target samples with low transferability. We further present diversifying-and-centering module which

diversify domain distribution and center feature vectors of each class (stars in the figure). More details can be obtained in section 4.

neighbor. But those models require a memory bank to stor-

age all feature vectors of the dataset, which is unachievable

in object detection because bounding boxes obtained by RP-

N are not fixed, and features of an instance are different for

unfixed bounding boxes, that is why an instance isn’t appro-

priate to stored as a feature vector. In this paper, we present

a novel method to diversify domain distribution and cen-

ter category distribution for cross-domain object detection

without memory bank.

3. Preliminaries

3.1. Faster R­CNN

Faster R-CNN [28], a typical and successful two-stage

detector, is the baseline model in our work. It mainly con-

sists of three major part: 1) shared backbone convolutional

network; 2) a region proposal network (RPN) that produce

region-of-interest (ROIs); 3) an ROI based classifier. The

architecture is shown in the upper left part of figure 2. At

first, a backbone network generates a feature map with a

single image as input. And then RPN produces bounding

boxes of ROIs based on the feature map. At last, ROI based

classifier predicts the category label of all feature vectors

obtained from ROI-pooling which maps bounding boxes to

feature vectors of the same size. The loss of Faster R-CNN

consists of two parts, RPN loss and ROI loss:

Ldet = Lrpn + LROI (1)

Both RPN loss and ROI loss consist of classification part

and regression part, which respectively indicate how accu-

rate the predicted category probability are and how precise

bounding boxes are. More details can be revisited in the

original paper [28].

3.2. Domain Adaptive Faster R­CNN

To the best of our knowledge, Domain Adaptive Faster

R-CNN [4] which is followed by our method is the first

work that specializes in unsupervised domain adaptation

for object detection. It mainly including image-level adver-

sarial adaptation and instance-level adversarial adaptation.

What’s more, to make RPN more robust for cross-domain

detection, it enforces consistency between the above two

domain classifiers of different levels. Therefore, it’s loss

can be written as:

L = Ldet + λ(Limg + Lins + Lcst) (2)

where Ldet is detection loss of source data as Equation (1),

Limg and Lins are adaptation loss of two levels described

above, Lcst is consistency loss of those two adversarial do-

main discriminator. More details and derivation can be ob-

tained in [4]. We represent domain label with yi, that yi =
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0 indicates the i-th training image from the source domain

and yi = 1 indicates it from the target domain. So, Limg ,

Lins, Lcst are written as:

Limg = −
∑

i

[yilogDimg(fi) + (1− yi)logDimg(1− fi)]

(3)

Lins = −
∑

i,j

[yilogDins(fi,j)+(1−yi)logDins(1−fi,j)]

(4)

Lcst =
∑

i,j

‖Dimg(fi)−Dins(fi,j)‖2 (5)

where Dimg is image-level domain discriminator, and the

i-th image feature map is denoted as fi. We denote Dins as

instance-level domain classifier, fi,j as the j-th region pro-

posal feature vector in the i-th image. And ‖ · ‖2 is L2

distance.

4. Method

4.1. Problem Setup

Under the classic setting of unsupervised domain adap-

tation, labeled data (XS ,YS) of source domain S , and un-

labeled data (XT ) of target domain T are available, where

XS and XT are input images of source domain and target

domain respectively, YS denotes bounding box and objec-

t categories annotation for XS . And our task is to learn an

object detection model to predict objects’ bounding box and

categories of target domain.

4.2. Multi­Scale Adaptation

In this section, we will introduce multi-scale image-level

domain adaptation and instance domain adaptation. As

shown in Figure 1, the scale of different objects varies great-

ly even in the same image, e.g. for picture (b) the car on

the right part is much bigger than the person and distant

cars. While instance-level adaptation can solve this prob-

lem through ROI pooling, it’s meaningful to do something

for overcoming the problem at image level.

Image-level feature refers to the feature map outputs of

the shared backbone network, i.e. the blue box in the left

part of Figure 2. As shown in the image-level DA part of

Figure 2, we apply a patch-based domain classifier to align

domain distributions. At first, the feature map of each image

input in multiple dilated convolutions with different dilation

rates that indicate multi scales. Then using a 1*1 convolu-

tion for channel communication and to predict where the

feature comes from, source domain or target. So that multi-

scale image-level adaptation loss is the same as equation 3.

We align the domain distributions through a min-max

game: domain discriminator Dimg , optimized by minimiz-

ing the above adversarial loss aims to distinguish which do-

main is the feature belongs to, meanwhile backbone net-

work, optimized by maximizing the loss aims to confuse

Dimg . To play this min-max game, we utilize the gradient

reverse layer (GRL) [8], which reverse signs while gradient

pass through GRL during the back-propagation process.

Instance-level feature refers to the feature vectors ob-

tained from ROI pooling (i.e. the orange rectangle in Figure

2). Owing to ROI pooling, instance-level features are inde-

pendent of scale, because all instances’ feature with differ-

ent scales is mapped to the same size. So, for instance-level

adaptation (equation 4) we follow DA Faster R-CNN [4],

and use consistency (equation 5) to align RPN.

4.3. Sample Selection

Negative transfer is a problem of domain adaptation that

cannot be ignored [26]. On this problem, [23, 37] reweight

the adaptation loss that give samples hard to distinguish

which category it belongs to low weight, samples easy

to distinguish high weight, for that difficult to distinguish

means low transferability. On the other side, [17, 2, 19]

reject target samples if their transferability score low than

a threshold. In this paper, we define a dynamic threshold

γ, which is initially close to 0.5, and gradually down to a

constant β (0 < β < γ).

Because with the training going on, the domain differ-

ences will become smaller, and we expect more data to par-

ticipate in training. If a sample’s (image-level feature or

instance-level) transferability score is not greater than the

threshold γ, only the corresponding domain discriminator

will be optimized by the sample’s adaptation loss instead of

both backbone network and domain discriminator.

[23, 37] denote transferability score as entropy criterion

H(C) = −
∑n

i Cn logCn, where n is the number of class-

es and Cn is the probability of model predicting an image

to class n. Low entropy means that the model is confident in

predicting the image, so the image has a high transferability

score. Under open set domain adaption (OSDA) setting that

both domains contain unknown classes, [17, 2, 19] denote

transferability score as the output of domain classifier and

reject these easy-to-distinguish samples as unknown class-

es.

For Faster R-CNN model [28], it’s not suitable to denote

transferability as entropy. Because unlike the classification

task, prediction of ROI based classifier is greatly affected

by the bounding box. We use two domain classifiers’ pre-

diction to measure transferability of images and instances

(see in figure 2).

4.4. Robust Discriminative Distribution

In this section, we will introduce Robust Discriminative

Distribution of our model. This module contains two part-

s, diversifying operation and centering operation (DaC). As

shown in the right upper part in Figure 2, the long orange

1327



Figure 3. A comparison of General CNNs, diversifying and diversifying-and-centering. (a) General CNNs: samples of source domain

may be dense (i.e. distribution is small) so is not robustness for domain shift. (b) Diversifying: we push samples away from each other

to diversify domain distribution, however, it may cause category confusion. (c) Diversifying-and-Centering: combining diversifying with

centering, the category confusion is weakened. Model (c) is outperforming model (a) in cross-domain robustness.

rectangle is a feature vector of an instance, and the square

denotes the average value of each class. For diversifying

operation (see the box named Ldiv), blue squares and red

triangles denote as instances of an image, we measure their

distance by cosine distance inspired by [38], and push them

away from each other. The red two-way arrow means push-

ing away. Hence, diversifying loss can be written as:

Ldiv =
∑

i

∑

j 6=i

cos(Oi, Oj) (6)

where Oi and Oj are the i-th and j-th instance’s vector re-

spectively of the image.

For centering operation (see the box named Lcen), the

blue square is an instance’s feature vector and the blue star

is the average value of the class that the instance belongs

to, red star denotes centers of other classes. While red two-

way arrow means pushing away, green means pulling close.

centering loss is written as:

Lcen =
∑

i

∑

j 6=yi

cos(Oi,Mj)−
∑

i

cos(Oi,Myi
) (7)

where yi is the category label of i-th instance, and Mj is

the mean of j-th class vectors. However, we have no idea

to use memory bank to store all objects’ feature vector of

dataset just like [39, 38]. Because one image’s bounding

boxes produced by RPN are not fixed, we can’t storage all

instances’ feature vector. That is why directly computing

average of every class is not easy, so we use the momentum

method to estimate them. For each instance Oi in an image,

we update averages by:

Myi
= m(Myi

) + (1−m)Oi (8)

where m is the momentum scalar between 0 and 1. Let’s

make m close to 1, so that Myi
approximate to the average

of yi-th class. In order to better explain DaC we show the

comparison of general CNN and DaC in Figure 3

4.5. Overview

Figure 2 shows an overview of our method. Our work

is based on Faster R-CNN [28], and we improve it with

several domain alignment components so that our model

is applicable to cross-domain object detection task. Com-

pared with Domain Adaptive Faster R-CNN model [4], our

method takes into consideration the problem of multi-scale

and negative transfer. The left upper of Figure 2 is the struc-

ture of Faster R-CNN. The multi-scale image-level domain

module is added after the image-level feature map (blue par-

allelogram of Figure 2). The instance-level domain classi-

fier is used to align the ROI-wise feature vectors (orange

rectangle). And then a consistency component links above

two domain classifiers to make RPN perform better in the

target domain. The right upper part of Figure 2 is robust

discriminative distribution component, which pushes fea-

ture vector away from each other and pulls them close to

the class center. So that we can diversify the domain distri-

bution as well as centering each class’s distribution. At last,

to narrow the influence of negative transfer, we reject those

images and instances whose transferability score is lower

than the threshold γ (sample selection in figure 2).

For labeled source images, we utilize original Faster R-

CNN loss:

Lsdet = E(x,y)∈SLdet(x, y) (9)

As 4.3 mentioned, we divide target domain T into two
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Mul Rej DaC person rider car truck bus train mcycle bicycle mAP

Faster R-CNN [28] 24.1 29.9 32.7 10.9 13.8 5.0 14.6 27.9 19.9

ADDA [34] 25.7 35.8 38.5 12.6 25.2 9.1 21.5 30.8 24.9

FSA Faster R-CNN [36] 29.1 39.7 42.9 20.8 37.4 24.1 26.5 29.9 31.3

Strong-Weak DA [29] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.0 34.3

DA Faster R-CNN [4](baseline) 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

ours X 27.4 39.7 41.6 20.7 35.4 27.1 22.1 32.2 30.8

ours X X 30.3 42.4 44.8 18.8 41.3 39.6 28.6 33.8 35.1

ours X X X 32.3 44.0 46.8 20.8 43.3 45.8 29.7 33.4 37.0

Table 1. Quantitative results of our method and baselines on weather transfer scenario. Mul denotes multi-scale domain adaptation com-

ponent, Sel means sample selection, DaC is diversifying-and-centering.

parts, T sel whose transferability score is higher than γ, and

T rej that are rejected for low transferability score. So do-

main adaptation loss can be described as:

Lsel
d = E(x∈S∪T sel)(Limg(x) +Lins(x) +Lcst(x)) (10)

L
rej
d = E(x∈T rej)(Limg(x) + Lins(x) + Lcst(x)) (11)

where Limg , Lins and Lcst can be obtained from equation

3, 4, 5 respectively.

For DaC described at 4.4, we do not use centering opera-

tion in the unlabeled target domain because bounding boxes

and categories of target domain aren’t labeled. So DaC loss

is:

LDaC = E(x,y)∈S(Ldiv(x) + Lcen(x, y)) + Ex∈T Ldiv(x)
(12)

Ldiv and Lcen are shown in equation 6 and 7.

Over all, the final objective of our model is delivering the

optimal (θ̂f , θ̂c , θ̂d) by:

(θ̂f , θ̂c) = arg min
θf ,θc

Lsdet + αLDaC − λLsel
d (13)

θ̂d = argmin
θd

λ(Lsel
d + L

rej
d ) (14)

where θf , θc , θd denote the parameters of the backbone

network, category classifier, and the two domain discrimi-

nators respectively. α and λ are super parameters to balance

those above losses.

5. Experiments

In this section, we will exhibit the results of our model

and baselines with several datasets to demonstrate the ef-

fectiveness of our method. In experiments, VGG16 [31] is

the backbone network of Faster R-CNN, and VGG16 is pre-

trained in ImageNet.

5.1. Setting

Unless otherwise stated, all images of both train domain

and target domain are resized as 600*800 pixels, if it less

then the size. For all experiments, we judge bounding box

is correctly located if it’s IOU higher then 0.5, and we show

mean average precisions (mAP) of all models.

For our model, we set α and λ as 0.1 and 1.0 respec-

tively. We optimize parameters of each model with stochas-

tic gradient descent method (SGD), and the learning rate is

set as 0.002 for the first 30k iterations and then reduces to

0.0002 for anther 30k iterations, 0.00002 for last 30k iter-

ations. The momentum scalar of equation 8 is 0.98 of all

experiments. One batch is composed of a source domain

image and a target domain image.

Baselines Our method is compared with following sever-

al baselines: (1) Faster R-CNN [28]. This model is trained

only using source data, without any domain adaptive op-

eration. (2) Adversarial discriminative domain adaptation

(ADDA) [34]. ADDA is a classical adversarial domain

adaptive model of classifier task, and just aligns image-

level feature map under the setting of UDA object detec-

tion. (3) Domain adaptive Faster R-CNN [4]. DA Faster R-

CNN aligns image-level features and instance-level features

with adversarial domain adaptation. (4) Few-shot Adaptive

Faster R-CNN (FSA Faster R-CNN) [36]. FSA Faster R-

CNN randomly selects 9 bounding boxes to align the image-

leave feature map. (5)Strong-Weak Distribution Alignment

(Strong-Weak DA) [29]. Strong-Weak DA proposed that

strong alignment of high-level features can degrade model

performance so that it does strong alignment of low-level

features and weak alignment of high-level features.

5.2. Experiments

5.2.1 Transfer from Normal to Foggy Weather

Weather differences is a common domain shift between ur-

ban scene datasets. Therefore the first experiment focus on

this scenario. We use Cityscapes [5] dataset as source do-

main and Foggy Cityscapes [30] as target domain.

Datasets The Cityscapes dataset is an popular benchmark

in urban scene dataset. Cityscapes is photographed in nor-
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mal weather, contains 8 category annotations: bus, bicycle,

car, mcycle, person, rider, train, truck.

For the Foggy Cityscapes dataset, it is a synthetic dataset

generated from Cityscapes, that simulate fog on real scenes.

Foggy images are synthesized based on depth maps and real

images, more details can be obtained in [30]. Following [4],

we denote box envelope of instance mask in Cityscapes as

bounding box annotations because Cityscapes is not made

to detection.

Results Our model and other baselines results of the

Normal-to-Foggy weather transfer experiment are shown in

table 1. As summarized in table 1, ADDA aligns image-

level feature map can improve Faster R-CNN which trains

only with source domain by 5.0 mAP. Compare with AD-

DA, DA Faster R-CNN takes into account instance-level

alignment and the relationship between image-level domain

discriminator and instance-level discriminator, due to which

DA Faster R-CNN further generates 2.7 mAP improvemen-

t. By solving the problem of different scale of objects, our

model brings 3.1 mAP boost over DA Faster R-CNN. Fur-

ther combining operation that rejects low transferability im-

ages, our model’s performance achieves 35.1 mAP. Strong-

Weak DA [29] reduces negative transfer by reducing the

weight of low transferability samples and get 34.3 mAP.

And combining all components, our method enhances the

detector by 17.1 mAP over Faster R-CNN or by 9.4 mAP

over baseline DA Faster R-CNN model. To summarise, our

model greatly outperforms than previous methods and get

new state-of-art performance under the setting of unsuper-

vised domain adaptive object detection.

5.2.2 Synthetic Data to Real

Manually annotate images with bounding boxes and cate-

gories is a time-consuming and expensive job. Fortunately,

with the development of the computer graphics technique,

labeled synthetic data is easily synthesized. So learning

from synthetic data is meaningful and our second experi-

ment is to compare our model and baselines in this scenario.

Datasets In this experiment, SIM 10K [18] is source do-

main dataset, and Cityscapes [5] is target domain dataset.

SIM 10K dataset contains 10,000 synthetic images are ren-

dered by computer game Grand Theft Auto V (GTA 5). For

SIM 10K dataset, there are 58,701 bounding boxes of car

in 10,000 images all of which are training sets. Cityscapes

dataset contains around 5,000 accurately annotated training

images and 500 validation set images which taken by a car-

mounted camera. Although there are 8 categories are anno-

tated in Cityscapes dataset, we only use one category (car)

in this scenario, because only car class labeled in SIM 10K

dataset.

Mul Rej DaC car AP

Faster R-CNN [28] 33.5

ADDA [34] 36.1

DA Faster R-CNN [4] 38.9

FS Faster R-CNN [36] 41.2

ours X 40.8

ours X X 43.2

ours X X X 43.4

Table 2. Quantitative results of our method and baselines on

Synthetic-to-Real transfer scenario.

Results Table 2 shows the results of our model and base-

lines on the Synthetic-to-Real scenario. Similar to the

Normal-to-Foggy weather transfer scenario, combining the

Mul part and Rej part, our model outperforms than previous

methods and achieves the best performance with all three

constituents. Comparing 1.9 mAP improvement in the first

scenario, it seems that the DaC constituent makes little d-

ifference to performance in this scenario. Perhaps it was

because only one category is used in this experiment.

5.2.3 Visualization of DaC

To better explain what DaC does, we show the visualization

of cosine similarity between instance-level feature vectors

in each image and cosine similarity between every instance-

level feature vector and all class central points (excluding

background). Because models that did not combine DaC

haven’t record central points after training. Before calcu-

lating cosine similarity, for all models, we estimate central

points of each category with the momentum method as E-

quation 8. We set a momentum scale m as 0.98, and train

with 3,000 steps, each step contains one source domain im-

age and a target domain image, and every figure is calculat-

ed with 500 images.

We make this experiment in Normal-to-Foggy weath-

er transfer scenario (i.e. Cityscapes → Foggy Cityscapes).

Faster R-CNN [28] and DA Faster R-CNN [4] are baseline

models.

Results In figure 4, the first line are cosine similarity ma-

trixes of the source domain and the second line are matrixes

of the target domain. As we can see, for the Faster R-CNN

model only trained with source domain, the cosine similar-

ities between vectors and central of other classes are too

high, some even higher than the similarity between vectors

and the center of its class, which is bad for correctly classi-

fying. What’s more, the difference between the source sim-

ilarity matrix and target similarity matrix is large, which in-

dicates to serious domain shift. For DA Faster R-CNN, due

to adversarial domain adaptation, the difference between t-

wo domain similarity matrix is smaller. However, the simi-
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Faster R-CNN DA Faster R-CNN ours w/o DaC ours

Figure 4. Average cosine similarity between instances feature vectors and central point of 8 categories. Better viewed in color and zoom in

for details.

Faster R-CNN DA Faster R-CNN ours

Figure 5. Average cosine similarity between instances feature vectors of each images of target domain.

larity score between feature vectors and the center of other

classes are still too high. With multi-scale adaptation and

sample selections, in our model (w/o DaC) the difference of

two domains is smaller than DA Faster R-CNN. As for our

model, similar to we noted above 4.4, the domain difference

is even smaller, and feature vectors are far from other cate-

gories’ center, which proves the cross-domain robustness of

DaC.

As shown in figure 5, Faster R-CNN model’s cosine dis-

tances between features are similar to DA Faster R-CNN,

while our model’s cosine distances remarkable higher. Just

as stated above, DaC can diversify source domain and target

domain distribution.

6. Conclusion

In this paper, we present a novel and effective model

for cross-domain object detection. Our approach extends

DA Faster R-CNN [28] by taking into account the multi-

scale adaptation and reducing negative transfer. The pro-

posed method solve these two problems by multi-channel

void convolutions and removing negative samples respec-

tively. Moreover, diversifying-and-centering learning is de-

rived to achieve better cross-domain robustness for cross-

domain object detection. The proposed method is an end-to-

end model and can robustly align source domain and target

domain with unlabeled target images. Experiments on C-

ityscapes, Foggy Citycapes, SIM 10K shown that our model

outperforms the state-of-the-art for UDA object detection.
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