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Abstract

Domain shift practically exists in almost all computer
vision tasks including object detection, caused by which
the performance drops evidently. Most existing methods
for domain adaptation are specially designed for classifi-
cation. For object detection, existing methods separate do-
main shift into image-level shift and instance-level shift and
align image-level feature and instance-level feature respec-
tively. However, we find that there are two problems which
remain unsolved yet. First, the scale of objects is not the
same even in an image. Second, negative transfer can affect
model performance if not handled properly. We improve
the performance of cross-domain detection from three per-
spectives: 1) using multiple dilated convolution kernels with
different dilation rate to reduce the image-level domain dis-
crepancy; 2) removing images or instances with low trans-
ferability to weaken the influence of negative transfer; 3) di-
versifying distributions by keeping instances’ feature away
from each other, and then pull them closer to the center
of each category, so that make source samples distribution
more dispersed and more robust for cross-domain detection.
We test our model with Cityscapes [5], Foggy Cityscape
[30] and SIM 10K []8] datasets, experimental results show
that our method outperforms the state-of-the-art for object
detection under the setting of unsupervised domain adapta-
tion (UDA).

1. Introduction

Object detection aims to identify and localize all interest-
ing object instances in images. Currently, many deep con-
volutional networks (CNNs) based methods [27, 11, 10, 28,
16] have been proposed which achieve impressive perfor-
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(a) Foggy Cityscapes.

(c) SIM 10k.

Figure 1. Illustration of some samples of different datasets: al-
though all of them are urban images, the style is very differen-
t, caused by weather, illumination, acquisition sensor and so on,
which is a problem for ordinary object detection method.

mance. This achievement is built on large amount of dense
annotations obtained by expensive human labor [7, 22].
While in realistic practice, the performance drops drastical-
ly caused by the large variance such as backgrounds, illumi-
nation, viewpoints, etc. (see in Figutre 1). The reason lies in
the different data distributions of domains, typically known
as domain shift [14]. The typical solution is to finetune the
trained deep models on task-specific datasets which may be
prohibitively expensive to collect enough labeled data. To
address this issue, unsupervised domain adaptation (UDA)
methods [8, 34, 6] transfer discriminative features from re-
lated labeled source domains to unlabeled target data with-
out extra annotations.
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This paper dedicates to cross-domain object detection
problem. The existing domain adaptation methods for ob-
ject detection [4, 36, 29] have achieved excellent perfor-
mances, they mainly focus on aligning image-level and
instance-level representations of source and target domains.
In this paper, we improve Faster R-CNN on target datasets
from three novel perspectives.

Firstly, in order to align image-level feature from dif-
ferent scales, we utilize multi-channel void convolution to
extract multi-scale features. And then a 1*1 convolution
is used for channel communication and outputting domain
prediction. Secondly, for avoiding negative transfer, we
discard the feature with low transferability on image-level
and instance-level. Low transferability denoted as that sam-
ples easy to distinguished by domain discriminator. More
specifically, target samples whose output of domain dis-
criminators lower than a threshold are rejected. Thirdly, we
extend metric learning to cross-domain object detection by
diversifying features in a batch to restrain overfitting and
centering features of the same category to preserve discrim-
ination.

In a word, our contributions are summarized as follows:

e Multi-Scale Adaptation. We adopt multi-channel
void convolutions with different void rates at image-
level adaptation to align source and target domains in
different scales.

e Reduce Negative Transfer. During the training pro-
cess, we reduce negative transfer by rejecting low
transferability target data which decided by domain
discriminators.

e Robust Discriminative distribution. A novel method
is proposed to diversify domain distribution and cen-
ter category distribution for robust discriminative dis-
tribution. The extended experiments indicate that this
composition can improve cross-domain robustness for
object detection task.

2. Related Work
2.1. Object Detection

With the rise of CNNs, object detection methods have
made remarkable progress. R-CNN [11] is the first mod-
el that trains a network to classify all regions of interest
(ROI) extracted by selective search from images. Fast R-
CNN [10] increases speed by sharing the feature map of all
ROIs, and presented ROI pooling which map features of d-
ifferent sizes to the same size to solve the problem of the
different sizes of ROIs. Faster R-CNN [28] firstly utilizes
Region Proposal Network (RPN) to extract ROIs, which is
much better than selective search used by [1 1, 10] in terms
of speed and accuracy. It achieved state-of-the-art perfor-
mance and followed by many works [9, 16, 4, 20]. How-
ever, all of those models did not consider the scenario of

cross-domain detection. Our method in this paper is based
on Faster-RCNN and further reduce domains’ discrepancy.

2.2. Domain Adaptation

For classification tasks, domain adaptation has been
widely researched. There are many methods proposed to
narrow the gap between different domains, including nar-
rowing Maximum Mean Discrepancy (MMD) [35, 24, 25],
covariance matrix alignment [32], subspace alignment [14],
geodesic flow kernel [12, 14], etc. Generative Adversarial
Networks (GANs) [13] achieved great success in generating
pictures by minimizing the JS divergence [!3] or Wasser-
stein distance [1, 15] between two distributions. Domain
Adversarial Neural Network (DANN) [§] and Adversari-
al Discriminative Domain Adaptation (ADDA) [34] used
GAN:Ss to align different domains by training a domain clas-
sifier to classify the feature maps from which domain, and
enforcing feature extractor to confuse the domain classifier.
Joint Adaptation Network (JAN) [25] uses both adversarial
learning and multiple kernel learning.

Different from those works, our model beyond classifi-
cation problem and focus on object detection task.

2.3. Cross-domain Object Detection

While domain adaptation for classification has already
received a lot of attention, only a few works [4, 306, 3, 29]
consider domain adaptation for object detection. Domain
Adaptive Faster R-CNN (DA Faster R-CNN) [4] train two
domain classifier to align image-level features and instance-
level features that from different domains, and enforce con-
sistency between the outputs of two domain classifiers to
improve the cross-domain robustness of RPN. Few-Shot
Adaptive Faster R-CNN (FSA Faster R-CNN) [36] random-
ly select 9 bounding boxes with different scales and propor-
tions of each image as inputs of image-level domain classi-
fier. Mean Teacher for Cross-Domain Detection [3] firstly
use mean teacher [33] in cross-domain detection for better
cross-domain robustness. [29] mitigates negative transfer
by utilizing weak alignment of high-level features that use
focal loss [21] to reweight samples’ weights that Highlight
hard-to-distinguish domain samples.

2.4. Unsupervised Metric Learning

Metric Learning is successfully applied in unsuper-
vised learning and cross-domain person reidentification
(ReID)[39, 38]. [38] train model with unlabeled data, by
push feature vector from other vectors in the memory bank.
The model classifies data with a special classifier named
non-parametric softmax classifier that predicts the data with
k (k is a super parametric) nearest neighbor. [39] is a
method of cross-domain person reidentification. [39] di-
versify domain distribution by making every image iden-
tifiable, and [39] pulls its feature close with the k nearest
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Figure 2. Overvier of the proposed model: we narrow the domain shift with image-level and instance-level adversarial domain adaptation
modules. While instance-level module tackles multi-scale with ROI pooling, image-level address it with multi-channel void convolutions.
To reduce negative transfer, we reject target samples with low transferability. We further present diversifying-and-centering module which
diversify domain distribution and center feature vectors of each class (stars in the figure). More details can be obtained in section 4.

neighbor. But those models require a memory bank to stor-
age all feature vectors of the dataset, which is unachievable
in object detection because bounding boxes obtained by RP-
N are not fixed, and features of an instance are different for
unfixed bounding boxes, that is why an instance isn’t appro-
priate to stored as a feature vector. In this paper, we present
a novel method to diversify domain distribution and cen-
ter category distribution for cross-domain object detection
without memory bank.

3. Preliminaries
3.1. Faster R-CNN

Faster R-CNN [28], a typical and successful two-stage
detector, is the baseline model in our work. It mainly con-
sists of three major part: 1) shared backbone convolutional
network; 2) a region proposal network (RPN) that produce
region-of-interest (ROIs); 3) an ROI based classifier. The
architecture is shown in the upper left part of figure 2. At
first, a backbone network generates a feature map with a
single image as input. And then RPN produces bounding
boxes of ROIs based on the feature map. At last, ROI based
classifier predicts the category label of all feature vectors
obtained from ROI-pooling which maps bounding boxes to
feature vectors of the same size. The loss of Faster R-CNN

consists of two parts, RPN loss and ROI loss:
Lget = Lrpn + Lror (D

Both RPN loss and ROI loss consist of classification part
and regression part, which respectively indicate how accu-
rate the predicted category probability are and how precise
bounding boxes are. More details can be revisited in the
original paper [28].

3.2. Domain Adaptive Faster R-CNN

To the best of our knowledge, Domain Adaptive Faster
R-CNN [4] which is followed by our method is the first
work that specializes in unsupervised domain adaptation
for object detection. It mainly including image-level adver-
sarial adaptation and instance-level adversarial adaptation.
What’s more, to make RPN more robust for cross-domain
detection, it enforces consistency between the above two
domain classifiers of different levels. Therefore, it’s loss
can be written as:

L= Ldet + )\(Lzmg + Lins + Lcst) (2)

where Lg.; is detection loss of source data as Equation (1),
Ljmg and L;,,, are adaptation loss of two levels described
above, L. is consistency loss of those two adversarial do-
main discriminator. More details and derivation can be ob-
tained in [4]. We represent domain label with y;, that y; =
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0 indicates the i-th training image from the source domain
and y; = 1 indicates it from the target domain. So, L;,,
Lins, Lest are written as:

Limg = — Z[yilogDimg(fi) + (1 = yi)logDimg (1 — fi)]

7

(3)

Lips = — Z[yil()gDinS(fi,j) + (1 - yi)ZOQDinS(l - fi,j)}
@]

“4)

Lcst = Z ||Dimg(fi) - Dins(fi,j)”Z (5)
,J

where D;,,, 4 is image-level domain discriminator, and the
i-th image feature map is denoted as f;. We denote D;,,5 as
instance-level domain classifier, f; ; as the j-th region pro-
posal feature vector in the i-th image. And || - ||z is L2
distance.

4. Method
4.1. Problem Setup

Under the classic setting of unsupervised domain adap-
tation, labeled data (Xg,Yg) of source domain S, and un-
labeled data (X7) of target domain T are available, where
Xgs and X7 are input images of source domain and target
domain respectively, Y g denotes bounding box and objec-
t categories annotation for Xg. And our task is to learn an
object detection model to predict objects’ bounding box and
categories of target domain.

4.2. Multi-Scale Adaptation

In this section, we will introduce multi-scale image-level
domain adaptation and instance domain adaptation. As
shown in Figure 1, the scale of different objects varies great-
ly even in the same image, e.g. for picture (b) the car on
the right part is much bigger than the person and distant
cars. While instance-level adaptation can solve this prob-
lem through ROI pooling, it’s meaningful to do something
for overcoming the problem at image level.

Image-level feature refers to the feature map outputs of
the shared backbone network, i.e. the blue box in the left
part of Figure 2. As shown in the image-level DA part of
Figure 2, we apply a patch-based domain classifier to align
domain distributions. At first, the feature map of each image
input in multiple dilated convolutions with different dilation
rates that indicate multi scales. Then using a 1*1 convolu-
tion for channel communication and to predict where the
feature comes from, source domain or target. So that multi-
scale image-level adaptation loss is the same as equation 3.

We align the domain distributions through a min-max
game: domain discriminator D;,,, 4, optimized by minimiz-
ing the above adversarial loss aims to distinguish which do-

main is the feature belongs to, meanwhile backbone net-
work, optimized by maximizing the loss aims to confuse
Djmg. To play this min-max game, we utilize the gradient
reverse layer (GRL) [8], which reverse signs while gradient
pass through GRL during the back-propagation process.

Instance-level feature refers to the feature vectors ob-
tained from ROI pooling (i.e. the orange rectangle in Figure
2). Owing to ROI pooling, instance-level features are inde-
pendent of scale, because all instances’ feature with differ-
ent scales is mapped to the same size. So, for instance-level
adaptation (equation 4) we follow DA Faster R-CNN [4],
and use consistency (equation 5) to align RPN.

4.3. Sample Selection

Negative transfer is a problem of domain adaptation that
cannot be ignored [26]. On this problem, [23, 37] reweight
the adaptation loss that give samples hard to distinguish
which category it belongs to low weight, samples easy
to distinguish high weight, for that difficult to distinguish
means low transferability. On the other side, [17, 2, 19]
reject target samples if their transferability score low than
a threshold. In this paper, we define a dynamic threshold
v, which is initially close to 0.5, and gradually down to a
constant 5 (0 < 8 < ).

Because with the training going on, the domain differ-
ences will become smaller, and we expect more data to par-
ticipate in training. If a sample’s (image-level feature or
instance-level) transferability score is not greater than the
threshold ~, only the corresponding domain discriminator
will be optimized by the sample’s adaptation loss instead of
both backbone network and domain discriminator.

[23, 37] denote transferability score as entropy criterion
H(C) = -3 Cylog C,, where n is the number of class-
es and C,, is the probability of model predicting an image
to class n. Low entropy means that the model is confident in
predicting the image, so the image has a high transferability
score. Under open set domain adaption (OSDA) setting that
both domains contain unknown classes, [17, 2, 19] denote
transferability score as the output of domain classifier and
reject these easy-to-distinguish samples as unknown class-
es.

For Faster R-CNN model [28], it’s not suitable to denote
transferability as entropy. Because unlike the classification
task, prediction of ROI based classifier is greatly affected
by the bounding box. We use two domain classifiers’ pre-
diction to measure transferability of images and instances
(see in figure 2).

4.4. Robust Discriminative Distribution

In this section, we will introduce Robust Discriminative
Distribution of our model. This module contains two part-
s, diversifying operation and centering operation (DaC). As
shown in the right upper part in Figure 2, the long orange
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Figure 3. A comparison of General CNNs, diversifying and diversifying-and-centering. (a) General CNNs: samples of source domain
may be dense (i.e. distribution is small) so is not robustness for domain shift. (b) Diversifying: we push samples away from each other
to diversify domain distribution, however, it may cause category confusion. (c) Diversifying-and-Centering: combining diversifying with
centering, the category confusion is weakened. Model (c) is outperforming model (a) in cross-domain robustness.

rectangle is a feature vector of an instance, and the square
denotes the average value of each class. For diversifying
operation (see the box named Lg;,), blue squares and red
triangles denote as instances of an image, we measure their
distance by cosine distance inspired by [38], and push them
away from each other. The red two-way arrow means push-
ing away. Hence, diversifying loss can be written as:

Lgiw = Z Z COS(Oia O])

i jF£i

(6)

where O; and O; are the i-th and j-th instance’s vector re-
spectively of the image.

For centering operation (see the box named L ey), the
blue square is an instance’s feature vector and the blue star
is the average value of the class that the instance belongs
to, red star denotes centers of other classes. While red two-
way arrow means pushing away, green means pulling close.
centering loss is written as:

Leen, = Z Z cos(0;, M) — Zcos(Oi,Myi) 7

i jAY;

where y; is the category label of i-th instance, and M; is
the mean of j-th class vectors. However, we have no idea
to use memory bank to store all objects’ feature vector of
dataset just like [39, 38]. Because one image’s bounding
boxes produced by RPN are not fixed, we can’t storage all
instances’ feature vector. That is why directly computing
average of every class is not easy, so we use the momentum
method to estimate them. For each instance O; in an image,
we update averages by:

My, = m(My,) + (1 —m)O; ®)

where m is the momentum scalar between 0 and 1. Let’s
make m close to 1, so that M, approximate to the average
of y;-th class. In order to better explain DaC we show the
comparison of general CNN and DaC in Figure 3

4.5. Overview

Figure 2 shows an overview of our method. Our work
is based on Faster R-CNN [28], and we improve it with
several domain alignment components so that our model
is applicable to cross-domain object detection task. Com-
pared with Domain Adaptive Faster R-CNN model [4], our
method takes into consideration the problem of multi-scale
and negative transfer. The left upper of Figure 2 is the struc-
ture of Faster R-CNN. The multi-scale image-level domain
module is added after the image-level feature map (blue par-
allelogram of Figure 2). The instance-level domain classi-
fier is used to align the ROI-wise feature vectors (orange
rectangle). And then a consistency component links above
two domain classifiers to make RPN perform better in the
target domain. The right upper part of Figure 2 is robust
discriminative distribution component, which pushes fea-
ture vector away from each other and pulls them close to
the class center. So that we can diversify the domain distri-
bution as well as centering each class’s distribution. At last,
to narrow the influence of negative transfer, we reject those
images and instances whose transferability score is lower
than the threshold v (sample selection in figure 2).

For labeled source images, we utilize original Faster R-
CNN loss:

)

As 4.3 mentioned, we divide target domain 7 into two

Lsget = E(z,y)eSLdet(-T7 y)
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Mul Rej DaC person rider car truck bus train mcycle bicycle mAP

Faster R-CNN [28] 24.1 299 327 109 13.8 50 14.6 279 199
ADDA [34] 25.7 35.8 385 12.6 25.2 9.1 21.5 30.8 249
FSA Faster R-CNN [36] 29.1 39.7 429 20.8 374 24.1 265 299 313
Strong-Weak DA [29] 29.9 42.3 435 24.5 36.2 326 300 350 343
DA Faster R-CNN [4](baseline) 25.0 31.0 40.5 22.1 353202 200 27.1 276
ours v 27.4 39.7 41.6 20.7 354 27.1 22.1 322 30.8
ours v v 30.3 424 448 18.8 41.3 39.6 286 33.8 35.1
ours vV v v 323 44.0 46.8 20.8 43.3 458 29.7 334 37.0

Table 1. Quantitative results of our method and baselines on weather transfer scenario. Mul denotes multi-scale domain adaptation com-
ponent, Sel means sample selection, DaC is diversifying-and-centering.

parts, 7°¢! whose transferability score is higher than -y, and
T that are rejected for low transferability score. So do-
main adaptation loss can be described as:

Liel = E(xGSUTSEl)(Lng(m) + Lins(z) + Lest(z)) (10)

Lgej — ]E(zETT'ej)(Limg(x) —+ Lins (-’17) + Lcst(x)) (1 1)

where Liyg, Lins and L can be obtained from equation
3, 4, 5 respectively.

For DaC described at 4.4, we do not use centering opera-
tion in the unlabeled target domain because bounding boxes
and categories of target domain aren’t labeled. So DaC loss
is:

Lp.c = E(m,y)eS(Ldiv (.CE) + Lcen(za y)) + Eze7 Laiv (x)
(12)

Lg;, and L, are shown in equation 6 and 7.
Over all, the final objective of our model is delivering the

optimal (6 , .., 64) by:

(6¢,6.) = arg min Lyge; +aLpac — ALSEL (13)
fiYe

0, = arg H;in ML + Lgej) (14)
d

where 0y , 0. , 84 denote the parameters of the backbone
network, category classifier, and the two domain discrimi-
nators respectively. « and )\ are super parameters to balance
those above losses.

5. Experiments

In this section, we will exhibit the results of our model
and baselines with several datasets to demonstrate the ef-
fectiveness of our method. In experiments, VGG16 [31] is
the backbone network of Faster R-CNN, and VGG16 is pre-
trained in ImageNet.

5.1. Setting

Unless otherwise stated, all images of both train domain
and target domain are resized as 600*800 pixels, if it less

then the size. For all experiments, we judge bounding box
is correctly located if it’s IOU higher then 0.5, and we show
mean average precisions (mAP) of all models.

For our model, we set o and A as 0.1 and 1.0 respec-
tively. We optimize parameters of each model with stochas-
tic gradient descent method (SGD), and the learning rate is
set as 0.002 for the first 30k iterations and then reduces to
0.0002 for anther 30k iterations, 0.00002 for last 30k iter-
ations. The momentum scalar of equation 8 is 0.98 of all
experiments. One batch is composed of a source domain
image and a target domain image.

Baselines Our method is compared with following sever-
al baselines: (1) Faster R-CNN [28]. This model is trained
only using source data, without any domain adaptive op-
eration. (2) Adversarial discriminative domain adaptation
(ADDA) [34]. ADDA is a classical adversarial domain
adaptive model of classifier task, and just aligns image-
level feature map under the setting of UDA object detec-
tion. (3) Domain adaptive Faster R-CNN [4]. DA Faster R-
CNN aligns image-level features and instance-level features
with adversarial domain adaptation. (4) Few-shot Adaptive
Faster R-CNN (FSA Faster R-CNN) [36]. FSA Faster R-
CNN randomly selects 9 bounding boxes to align the image-
leave feature map. (5)Strong-Weak Distribution Alignment
(Strong-Weak DA) [29]. Strong-Weak DA proposed that
strong alignment of high-level features can degrade model
performance so that it does strong alignment of low-level
features and weak alignment of high-level features.

5.2. Experiments
5.2.1 Transfer from Normal to Foggy Weather

Weather differences is a common domain shift between ur-
ban scene datasets. Therefore the first experiment focus on
this scenario. We use Cityscapes [5] dataset as source do-
main and Foggy Cityscapes [30] as target domain.

Datasets The Cityscapes dataset is an popular benchmark
in urban scene dataset. Cityscapes is photographed in nor-

1329



mal weather, contains 8 category annotations: bus, bicycle,
car, mcycle, person, rider, train, truck.

For the Foggy Cityscapes dataset, it is a synthetic dataset
generated from Cityscapes, that simulate fog on real scenes.
Foggy images are synthesized based on depth maps and real
images, more details can be obtained in [30]. Following [4],
we denote box envelope of instance mask in Cityscapes as
bounding box annotations because Cityscapes is not made
to detection.

Results Our model and other baselines results of the
Normal-to-Foggy weather transfer experiment are shown in
table 1. As summarized in table 1, ADDA aligns image-
level feature map can improve Faster R-CNN which trains
only with source domain by 5.0 mAP. Compare with AD-
DA, DA Faster R-CNN takes into account instance-level
alignment and the relationship between image-level domain
discriminator and instance-level discriminator, due to which
DA Faster R-CNN further generates 2.7 mAP improvemen-
t. By solving the problem of different scale of objects, our
model brings 3.1 mAP boost over DA Faster R-CNN. Fur-
ther combining operation that rejects low transferability im-
ages, our model’s performance achieves 35.1 mAP. Strong-
Weak DA [29] reduces negative transfer by reducing the
weight of low transferability samples and get 34.3 mAP.
And combining all components, our method enhances the
detector by 17.1 mAP over Faster R-CNN or by 9.4 mAP
over baseline DA Faster R-CNN model. To summarise, our
model greatly outperforms than previous methods and get
new state-of-art performance under the setting of unsuper-
vised domain adaptive object detection.

5.2.2 Synthetic Data to Real

Manually annotate images with bounding boxes and cate-
gories is a time-consuming and expensive job. Fortunately,
with the development of the computer graphics technique,
labeled synthetic data is easily synthesized. So learning
from synthetic data is meaningful and our second experi-
ment is to compare our model and baselines in this scenario.

Datasets In this experiment, SIM [0K [18] is source do-
main dataset, and Cityscapes [5] is target domain dataset.
SIM 10K dataset contains 10,000 synthetic images are ren-
dered by computer game Grand Theft Auto V (GTA 5). For
SIM 10K dataset, there are 58,701 bounding boxes of car
in 10,000 images all of which are training sets. Cityscapes
dataset contains around 5,000 accurately annotated training
images and 500 validation set images which taken by a car-
mounted camera. Although there are 8 categories are anno-
tated in Cityscapes dataset, we only use one category (car)
in this scenario, because only car class labeled in SIM 10K
dataset.

Mul Rej DaC car AP
Faster R-CNN [28] 335
ADDA [34] 36.1
DA Faster R-CNN [4] 38.9
FS Faster R-CNN [36] 41.2
ours v 40.8
ours v v 43.2
ours v v v 43.4

Table 2. Quantitative results of our method and baselines on
Synthetic-to-Real transfer scenario.

Results Table 2 shows the results of our model and base-
lines on the Synthetic-to-Real scenario. Similar to the
Normal-to-Foggy weather transfer scenario, combining the
Mul part and Rej part, our model outperforms than previous
methods and achieves the best performance with all three
constituents. Comparing 1.9 mAP improvement in the first
scenario, it seems that the DaC constituent makes little d-
ifference to performance in this scenario. Perhaps it was
because only one category is used in this experiment.

5.2.3 Visualization of DaC

To better explain what DaC does, we show the visualization
of cosine similarity between instance-level feature vectors
in each image and cosine similarity between every instance-
level feature vector and all class central points (excluding
background). Because models that did not combine DaC
haven’t record central points after training. Before calcu-
lating cosine similarity, for all models, we estimate central
points of each category with the momentum method as E-
quation 8. We set a momentum scale m as 0.98, and train
with 3,000 steps, each step contains one source domain im-
age and a target domain image, and every figure is calculat-
ed with 500 images.

We make this experiment in Normal-to-Foggy weath-
er transfer scenario (i.e. Cityscapes — Foggy Cityscapes).
Faster R-CNN [28] and DA Faster R-CNN [4] are baseline
models.

Results In figure 4, the first line are cosine similarity ma-
trixes of the source domain and the second line are matrixes
of the target domain. As we can see, for the Faster R-CNN
model only trained with source domain, the cosine similar-
ities between vectors and central of other classes are too
high, some even higher than the similarity between vectors
and the center of its class, which is bad for correctly classi-
fying. What’s more, the difference between the source sim-
ilarity matrix and target similarity matrix is large, which in-
dicates to serious domain shift. For DA Faster R-CNN, due
to adversarial domain adaptation, the difference between t-
wo domain similarity matrix is smaller. However, the simi-
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Figure 5. Average cosine similarity between instances feature vectors of each images of target domain.

larity score between feature vectors and the center of other
classes are still too high. With multi-scale adaptation and
sample selections, in our model (w/o DaC) the difference of
two domains is smaller than DA Faster R-CNN. As for our
model, similar to we noted above 4.4, the domain difference
is even smaller, and feature vectors are far from other cate-
gories’ center, which proves the cross-domain robustness of
DaC.

As shown in figure 5, Faster R-CNN model’s cosine dis-
tances between features are similar to DA Faster R-CNN,
while our model’s cosine distances remarkable higher. Just
as stated above, DaC can diversify source domain and target
domain distribution.

6. Conclusion

In this paper, we present a novel and effective model
for cross-domain object detection. Our approach extends
DA Faster R-CNN [28] by taking into account the multi-
scale adaptation and reducing negative transfer. The pro-
posed method solve these two problems by multi-channel

void convolutions and removing negative samples respec-
tively. Moreover, diversifying-and-centering learning is de-
rived to achieve better cross-domain robustness for cross-
domain object detection. The proposed method is an end-to-
end model and can robustly align source domain and target
domain with unlabeled target images. Experiments on C-
ityscapes, Foggy Citycapes, SIM 10K shown that our model
outperforms the state-of-the-art for UDA object detection.
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