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Abstract

Conventional approaches to Sketch-Based Image Re-

trieval (SBIR) assume that the data of all the classes are

available during training. The assumption may not always

be practical since the data of a few classes may be unavail-

able, or the classes may not appear at the time of training.

Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) relaxes

this constraint and allows the algorithm to handle previ-

ously unseen classes during the test. This paper proposes a

generative approach based on the Stacked Adversarial Net-

work (SAN) and the advantage of Siamese Network (SN) for

ZS-SBIR. While SAN generates a high-quality sample, SN

learns a better distance metric compared to that of the near-

est neighbor search. The capability of the generative model

to synthesize image features based on the sketch reduces the

SBIR problem to that of an image-to-image retrieval prob-

lem. We evaluate the efficacy of our proposed approach on

TU-Berlin, and Sketchy database in both standard ZSL and

generalized ZSL setting. The proposed method yields a sig-

nificant improvement in standard ZSL as well as in a more

challenging generalized ZSL setting (GZSL) for SBIR.

1. Introduction

The standard approaches for retrieving related informa-

tion from a huge database of images are either based on

a query image or query text. Retrieval of images using an

image-based query is relatively easy compared to that of im-

age retrieval using text-based queries. Text-based queries

can be ambiguous, incomplete, and language-dependent.

Recent research has shown that instead of text descriptions,

sketches can be used as a query. It is more convenient to

use sketches as queries since shapes are easy to remember

than the textual description. Image retrieval using sketch-

based queries is referred to as sketch-based image retrieval

(SBIR). [2, 27, 3, 41].

SBIR aims to retrieve the images that belong to a class

using a set of query sketches from the same class. Freehand

sketches may magnify the cross-domain discrepancy be-

tween sketches and the real-world images as they can vary

significantly across persons depending upon the salient fea-

tures of the image that a person wants to emphasize. In or-

der to make retrieval robust, sketches and their correspond-

ing images are projected to a common subspace [8, 25, 29].

The major issue with this approach is that the method fails

to generalize for the test data under the unavailability of ac-

curate sketches, and its performance on unseen classes is

poor.

To address these issues recently, Dey et al.[5], Dutta et

al. [7], Verma et al. [16] Pandey et al. [24], Shen et al.[31],

and Yelamarthi et al.[40] proposed SBIR in Zero-Shot

framework(ZS-SBIR).In ZS-SBIR, the training and testing

classes are mutually exclusive. Shen et al. [31] in their

proposed ZSIH approach, combined zero-shot learning and

sketch-based image retrieval using a cross-modal hashing

scheme. Dey et al. [5] proposed a ZS-SBIR framework that

learns a common embedding space for both the sketch and

image domains. [5, 7, 31] use sketch class descriptions[26]

as side information along with sketch features for estab-

lishing the semantic relationship between the image fea-

ture space and sketch feature space. In contrast, Yelamarthi

et al.[40] proposed two similar autoencoder-based genera-

tive models, CAAE(Conditional Adversarial Autoencoder)

[19] and CVAE(Conditional Variational Autoencoder)[33]

for zero-shot SBIR without using any side information.

One of the major shortcomings of the ZSIH[31] and Doo-

dle to search [5] is that they require sketch class descrip-

tions as side information for learning semantics between the

sketches and images. Due to the explosive growth of new

categories, it is not practically possible to get class descrip-

tions for every new class. We propose a generative model

for SBIR in the zero-shot framework, which shows a sig-

nificant improvement without using any side information

among all the state-of-the-art methods for both the datasets

Sketchy[29] and Berlin[8].
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Figure 1. Overview of the proposed approach

Zero-shot learning is categorized into two settings based

on the test data. One is standard zero-shot learning(ZSL),

which assumes that the seen and unseen classes are mutu-

ally exclusive, and the test data comes only from the unseen

classes[9, 23]. The other one is generalized zero-shot learn-

ing(GZSL), which assumes that the test data may belong to

both the seen and unseen classes[1, 14, 35]. GZSL setting is

more challenging as compared to the standard ZSL setting.

So it is observed that most of the existing approaches are

biased towards the seen classes for the GZSL setting. The

prior works for ZS-SBIR, ZSIH[31], CVAE[40], Doodle to

search [5], JGAN [24] and GZS-SBIR [16] have shown ex-

periments only for standard ZSL setting, whereas our pro-

posed model has shown competitive performances on both

the ZSL and GZSL settings.

In this paper, we propose a multistage generative model

for the sketch-based image retrieval task in a zero-shot set-

ting. The model is inspired by the StackGan architecture

[44]. The output of the multistage model is fed to the

Siamese-Network(SN) [4] to learn a better embedding and

reduce the Hubness problem [6]. We believe that using mul-

tiple stages of GAN, we can generate refined features that

are more close to the original image feature space. Fur-

ther, using Siamese Network[4], we project the generated

and real image features into another space where they are

more discriminative. The Siamese network uses Contrastive

loss function to distinguish between the given pair of gen-

erated and real image features in the projected space. This

approach helps to reduce the ZS-SBIR problem into mul-

tiple subproblems: Stage1- Projection of sketch features to

image domain, Stage2- Refinement of generated image fea-

tures and Stage3- Generation of more distinctive features

using Siamese Network. The generative nature of the model

enables the synthesis of the pseudo labeled image instances

for unseen classes based on sketch features. This approach

converts the zero-shot SBIR (ZS-SBIR) problem into a con-

ventional image-to-image retrieval problem. The overview

of the proposed method is shown in Figure 1. Our contribu-

tion is summarized below:

• We propose a multi-stage GAN based generative

model for zero-shot setting that transforms the zero-

shot sketch-based image retrieval (ZS-SBIR) problem

to a conventional image-to-image retrieval problem.

• We propose to use a Maximum Mean Discrepancy

(MMD)loss[11] in GAN [10] it helps to distinguish

between the pairs of real and generated features of im-

ages of different classes.

• Unlike the previous approaches for ZS-SBIR [31, 40]

that performs a nearest neighbor search in the image

space, we use a Siamese Network based on the max-

margin loss to learn a better metric for the similarity

measured in the projected space, inspired by the prior

work Qi et.al[27].

• Our method yields significantly better results in both

the standard and generalized zero-shot setting without

using any side information (e.g., word2vec based at-

tributes of the classes[20, 26]), as compared to [40].

2. Related Work

In this section, we briefly describe the existing tech-

niques for both SBIR and zero-shot learning. Free hand-

drawn sketches fail to capture the complete information of

the images; this causes a significant cross-domain gap be-

tween the sketch and the image feature space. SBIR tries

to learn a shared representation for both the sketches and

the images to mitigate the domain gap between the two dif-

ferent spaces. The traditional methods in SBIR, such as

[18, 29, 36], used hand-crafted descriptors of sketches and

images for retrieval. The conventional deep learn frame-

works of SBIR try to project features of sketches and im-

ages into a common subspace such that the sketches and

images of the same class project close to each other, while

the projection of sketches and images of different classes

are distant. These projected features are used in the retrieval

task. Qi et.al[27] used Siamese architecture and Sangkloy

et.al [29] used triplet ranking loss for coarse-grained SBIR.

Liu et.al[18] proposed a semi-heterogeneous deep architec-

ture for extracting the binary codes from the sketches and

the images, which can be trained in an end-to-end fashion

for the coarse-grained SBIR task.

Existing SBIR approaches [18, 27, 29, 36, 42] do not

generalize in terms of learning the mapping for unseen

sketches, and the corresponding classes. Similarly, state-

of-the-art methods for SBIR work well for already seen

classes, whereas for any new class, they fail to retrieve the

same class images. The capability of zero-shot learning

(ZSL) to classify an unseen class example at the test time

has received significant attention [1, 9, 14, 23, 32]. ZSL
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aims to recognize instances of unseen classes by a transfer

of semantic information from seen to unseen classes. There

are primarily two different approaches to ZSL.

The first type is embedding-based ZSL. Embedding

based approaches [1, 21, 22, 23, 35, 37, 39] address this

issue by learning the interaction between visual space and

semantic or class attributes space. Based on the direction

of the embedding function, they are divided into three sub-

categories. The first one learns the embedding from visual

space to semantic space. The second approach learns the

embedding from the semantic space to the visual space.

Both of these approaches suffer from the hubness problem

[6],i.e., a small number of objects (hubs) may occur as the

nearest neighbor of many categories, resulting in the dimin-

ishing of the nearest neighbor method. To address this issue,

the third type of approach learns a bilinear embedding func-

tion to project both the visual features and class prototypes

or semantic features into a shared latent space. This suffers

from the domain-shift problem.

The second type of approach is the synthesis-based ZSL

[12, 15, 22, 34, 35, 38]. These are recent generative ap-

proaches to zero-shot learning. Synthesis-Based ZSL con-

verts the zero-shot learning problem to the traditional super-

vised learning problem by synthesizing pseudo-labeled data

based on class-prototype or semantic description of unseen

classes.

Recently [5, 7, 16, 24, 31] and [40] have proposed an

approach for sketch-based image retrieval in the zero-shot

framework. [31] proposed a hashing based model for ZS-

SBIR, [5] has proposed to learn a joint distribution between

sketch and image domain, and [40] proposed two mod-

els, one is based on conditional variational auto-encoder

(CVAE). The second is based on conditional adversarial

auto-encoder(CAAE) for the ZS-SBIR task. Also, [5, 7] and

[31] use sketch class description as an additional informa-

tion whereas [40] does not use any side information to train

the model. In this paper, we propose a multi-stage condi-

tional generative adversarial network inspired by stackGan

architecture [44] followed by a Siamese network for match-

ing. Our model does not use any additional information

other than sketch features for zero-shot training similar to

[40].

3. Proposed Approach

3.1. Zero­Shot SBIR (ZS­SBIR)

In the zero-shot setting, we partition the dataset into

two mutually exclusive sets based on sketch classes: Seen

classes(S) and Unseen classes(U) i.e., S∩U = φ. The train

data belongs to the Seen Classes(S). In the Standard ZSL

setting, test data belongs to the Unseen Classes(U), and in

the Generalized ZSL setting, test data belongs to both the

Seen and Unseen Classes. The objective of zero-shot learn-

ing is to train a model that generalizes well for unseen class

sketches as well. The mathematical formulation and nota-

tions of the ZS-SBIR are given below:

Let A = {(xi
s,xi

im,yi)|yi ∈ Y} be the triplet of

sketch, image, and the class label. Here Y is the set

of all class labels. We partition the class labels in the

data into Ytrain and Ytest for the train and test respec-

tively. Let Atr = {xi
s,xi

im,yi|yi ∈ Ytrain} and Ate =
{xi

s,xi
im,yi|yi ∈ Ytest} be the partition of A into train

and test sets. We denote sketch feature xs with c and image

feature xim with x through out this paper for convenience.

Another assumption for the ZS-SBIR is Atr ∩Ate = φ.

The overall architecture of the proposed system consists

of three stages, as described below:

3.2. Stage­1

The first module consists of a Conditional Generative

Adversarial Network (CGAN). It takes sketch features and

a random vector from the unit Gaussian distribution as input

and generates the corresponding class image features. The

main task of this module is to generate the image features,

conditioned on the same class sketch feature. We call it a

generator module.

This module is composed of a generator G1 : C × Z →
X parameterized by θG1

, a discriminator D1 : X → [0, 1]
parameterized by θD1

and a regressor R1 : X → C pa-

rameterized by θR1
. Where C is a set of conditional at-

tributes(sketch features) and Z is a set of random vectors

sampled from a unit Gaussian. Generator G1 takes as input

a sketch feature c and random vector z which is sampled

from N (0, 1) and generates the image feature X̂1 of the

same class as that of the sketch. Discriminator D1 takes

input as real image feature X or generated image feature

X̂1 and attempts to distinguish between real features, and

synthesized features. Regressor R1 acts as a regularizer for

the generator G1, where it tries to reconstruct the original

sketch feature from the generated image feature X̂1. Re-

gressor R1 helps the generator G1 to generate more dis-

criminative and realistic image features. The loss functions

used are:

Lrec(θG1
) = ||X−G1(c, z; θG1

)||2 (1)

Ladv(θG1
, θD1

) =log(D1(X; θD1
))

− log(1−D1(G1(c, z; θG1
))

(2)

Lreg(θG1
, θR1

) = ||c−R1(G1(c, z; θG1
); θR1

)|| (3)

Here Lrec is the reconstruction loss, Ladv is the adversarial

loss and Lreg is the regularizer loss. The overall GAN loss

is given as :

LGAN1
(θG1

, θD1
, θR1

) = Lrec+α∗Ladv+β ∗Lreg (4)

Here α and β are hyper-parameters. In the proposed ap-

proach, instead of pure adversarial loss (Equation 2), we
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Figure 2. The Training pipeline of our proposed model. The features for images x and sketches c are extracted using same pretrained

ResNet-152 on ImageNet-1000 dataset.

include the supervised mean square error loss (Equation 1).

Empirically we have found that the joint loss given in Equa-

tion 4 shows better results than the adversarial loss.

3.3. Stage­2

This module uses an architecture similar to the Stage-1,

but the task is to refine the features generated in Stage-1.

The StackGan architecture [44] inspires the combination of

Stage-1 and Stage-2, where the first GAN learns to gener-

ate high-level features, and the second GAN learns to gen-

erate low-level features. Because of the multiple stage re-

finement, StackGan generates more realistic images as com-

pared to a single GAN. The Generator G2 takes the gener-

ated feature X̂1 from the Stage-1 and its corresponding at-

tribute c as input, and generates the refined feature X̂2. The

Discriminator D2 takes the real image features X and the

generated image features X̂2 as input and classifies them

as synthetic or real. The Regressor R2 acts as a regularizer

by reconstructing the original attribute using the generated

features X̂2. This regularization step helps G2 to generate

more discriminative features that are close to that of the ac-

tual image. The loss functions used are:

Lrec(θG2
) = ||X−G2(c, X̂1; θG2

)|| (5)

Ladv(θG2
, θD2

) =log(D2(X; θD2
))

− log(1−D2(G2(c, X̂1; θG2
))

(6)

Lreg(θG2
, θR2

) = ||c−R2(G2(c, X̂1; θG2
); θR2

)|| (7)

We further add a Maximum Mean Discrepancy

loss(MMD)[11] in the generator G2. The MMD loss is a

kernel-based distance function between pairs of synthesized

and real samples. Using MMD loss, we project both the

synthesized and real image features in a high dimensional

space using a kernel function and try to preserve the prop-

erty of the image class. MMD loss also acts as a regularizer

for generator G2 to generate more discriminative and simi-

lar features to the original class image features. We compute

MMD loss between generated image features X̂2, and real

image features X. Assume x is real image feature and x̂ is

the generated image feature The overall MMD loss for all

N training samples is defined as :

Lmmd
Img (x, x̂) =

j=N
∑

j=1

j′=N
∑

j′=1

k(xj,xj′)− 2

j=N
∑

j=1

i=N
∑

i=1

k(xj, x̂i)

+

i=N
∑

i=1

i′=N
∑

i′=1

k(x̂i, x̂i′)

(8)

Here, we use a linear combination of multiple RBF kernels

(k(x, x̂)) that is defined as :

k(x, x̂) =
∑

n

ηn exp

(

−||x− x̂||2

2σn

)

(9)

where σn is the standard deviation and ηn is the weight

factor for nth RBF kernel.

The overall GAN loss for stage-2 is defined as:

LGAN2
(θG2

, θD2
, θR2

) = Lrec+α∗Ladv+β∗Lreg+γ∗Lmmd
Img

(10)

Here α, β and γ are hyper-parameters. The architecture of

this stage is similar to that of Stage-1, the only difference is

that the generator G2 takes input as c, X̂1 i.e. the original

attribute and the reconstructed sample.

3.4. Stage­3

This stage learns the joint embedding space between the

generated image features from Stage-2 and the real image

features based on class labels. This module consists of a

Siamese Network which projects the real image and the syn-

thesized image into a common subspace. The projection is

2543



made in such a way that the same class images are close to

each other while the different class images are separated by

a margin. Our ultimate goal is to generate image features

based on the sketch such that the distribution of generated

features should follow the same distribution as the real im-

age features. However, this may not be true always since

the domain shift may occur between the synthesized sam-

ples and the original samples. To reduce the domain shift,

we project the data into a common space. In this module

one network takes generated image features X̂2 as input and

second network takes real image features X as input and

tries to learn a projection such that if the generated image

feature X̂2 and real image feature belongs to the same class,

the similarity metric should be maximum. Otherwise, the

similarity metric should be small. The loss function used in

this module is as follows:

First, we define true labels Yt

Yt =

{

0 if X̂2 and X belongs to the different class;

1 if X̂2 and X belongs to the same class.

False labels Yf is defined as : Yf = 1−Yt

Og = NN1(X̂2, θN)

Or = NN2(X, θN)

d = ||Or −Og||2

LC = Yt ∗ d+Yf ∗ (max[(m− d), 0])2 (11)

Here NN1 and NN2 are the neural networks from the

Siamese Network with shared weight. θN is the param-

eter of the Siamese Network and m is the margin hyper-

parameter. The projected features Or and Og correspond to

real image features and features generated from G2 in stage-

2 respectively. Or and Og are used for image retrieval task.

d is the Euclidean distance between Or and Og.

Image retrieval methodology

During the test, we have sketches features of unseen

classes. We aim to retrieve the same class images as

sketches from an image database. Following are the steps

involved in retrieving real images using sketches:

• We pass the sketch features as the conditional variable

c and a random vector Z to the trained generator G1

which generates the corresponding image features X̂1.

• The generated features X̂1 along with its sketch fea-

tures are passed to the trained generator G2 which gen-

erates refined features X̂2.

• Using trained Siamese network projected features Of

and Or are obtained corresponding to the generated

features X̂2 and real image features X respectively.

• The real images are ranked according to the Euclidean

distance d(Of ,Or) for retrieval.

4. Experiments Setting and Results

4.1. Dataset and Visual Feature

We evaluate our proposed model on two widely used

datasets for the task of ZS-SBIR: Sketchy [29] and TU-

Berlin [8], along with the additional images provided by

the [18]. Both the datasets are a collection of sketches and

corresponding real images from several different categories.

The visual features for images and sketches are extracted

using ResNet-152 [13] network pre-trained on ImageNet-

1000 dataset. No fine-tuning was performed. We forward

pass the images and sketches in the pre-trained ResNet-

152 model and extract 2048-dimensional features from the

last fully connected layer. Visual features for the sketch is

used as conditioning attributes for our proposed generative

model.

4.1.1 Sketchy Dataset(Extended)

The Sketchy dataset [29] contains sketch-image pairs from

125 different categories. Initially, there were 100 images

from each category in the dataset. Hand-drawn sketches

corresponding to the objects in these 12500 images were

collected, resulting in 75471 sketches. Later [18] intro-

duced 60502 more real images from all 125 classes resulting

in a total of 73,002 images. We use a test-train split similar

to [40] for the Sketchy dataset that contains 104 classes in

the train set, and 21 classes in the test set. The split pro-

posed by [40] ensures that none of the classes in the test

set are present in the Imagenet-1000 classes. To form the

sketch-image pair for training, we randomly select images

and sketches from the same class and pair them. We make

1000 such pairs from each class to form the training set.

4.1.2 TU Berlin Dataset(Extended)

TU Berlin [8] (extended) contains 250 different categories

of sketches and images. It is a collection of 20000 sketches

and 204489 images extended by [18, 43]. We randomly se-

lect 30 classes for the test set and the remaining 220 classes

for training. The dataset has some classes with large sam-

ples and some with only a few. To reduce the bias during

training, we sample an equal number of sketches and im-

ages from each category. Following [31], during the test,

we select only those classes with more than 400 samples.

To form the image-sketch pairs for training, we follow the

same strategy as the Sketchy dataset.

4.2. Implementation details

Our proposed network has following of 3 stages-

Stage-1: Stage1 consists of a Generator, a Discriminator,
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Type
Method

Sketchy Dataset TU Berlin Dataset

Precision@200 mAP@200 Precision@200 mAP@200

Baseline 0.176 0.099 0.139 0.083

Siamese-1 [4] 0.243 0.134 0.127 0.061

Siamese-2 [27] 0.251 0.149 0.133 0.067

SBIR Fine-Grained Triplet [29] 0.155 0.081 0.086 0.050

Coarse-Grained Triplet [30] 0.169 0.083 0.128 0.057

Direct Regression 0.066 0.022 0.117 0.062

ESZSL[28] 0.187 0.117 0.131 0.072

DAP [17] 0.078 0.071 0.075 0.067

ZSL-SBIR SAE [14] 0.238 0.136 0.152 0.084

CAAE [40] 0.240 0.146 0.159 0.094

CVAE [40] 0.269 0.159 0.182 0.109

SAN(Ours) 0.322 0.236 0.218 0.141

CAAE [40] 0.186 0.124 0.162 0.0912

GZSL-SBIR CVAE[40] 0.202 0.134 0.177 0.0985

SAN(Ours) 0.304 0.227 0.203 0.124

Table 1. Precision@200 and mAP@200 results on the traditional SBIR and ZSL method in the ZS-SBIR setup. Note that for a fair

comparison, we reproduce the results using the same ResNet-152 features for all the baselines. [40] proposed two models CAAE and

CVAE.

and a Regressor Network. We use a series of fully con-

nected (FC) layers in all these networks and apply ReLU af-

ter each layer except the last layer. A 300-dimensional noise

vector z, concatenated with a 2048-dimensional condition-

ing variable c, is fed into the generator G1. The condition-

ing variables c is a 2048-dimension features of sketches, ob-

tained from ResNet-152 [13]. G1 passes the input features

through a series of 4 FC layers having 1024, 512, 1024,

2048 neurons respectively, and outputs 2048-dimensional

feature vector X̂1 of the corresponding real image. Dis-

criminator module D1 tries to distinguish between the fea-

tures of real images X, and features generated X̂1 from G1.

It takes 2048 dimension feature vectors and passes through

a series of 3 FC layers having 1024, 512, and 128 neurons,

respectively. It outputs the probability of the features being

real. Regressor Network R1 takes features generated from

G1 and tries to regenerate the features of the conditioning

variable c. It passes the input through a series of 4 FC

layers having 1024, 512, 1024, and 2048 neurons, respec-

tively. The output of the network is 2048-dimensional fea-

ture vector ĉ. We train our network using Adam Optimizer

on LGAN1
loss (Equation 4) with learning rate = 0.00001,

batch size = 50 keeping hyperparameters α = 0.01 and β =
0.0001. We tune the α and β hyper-parameters via a grid

search from 10−6 to 103. While training, we first train the

discriminator separately for two epochs and then train the

entire network end-to-end for LGAN1
loss. We observe that

the validation performance saturates after 30 epochs.

Stage-2: The network architecture of this stage is the same

as that of Stage-1. The generator G2, of this stage, takes

the output of G1 concatenated with a conditioning variable

c and outputs more refined features X̂2 closer to the real

image features than the previous stage. This network is also

trained using Adam Optimizer on LGAN2
loss (Equation

10) with learning rate = 0.00001, batch size = 50 keeping

hyperparameters α = 0.01, β = 0.0001 and γ = 0.01. We

tune the α β and γ hyper-parameters via a grid search from

10−6 to 103. The training is done in a similar way, as de-

scribed above for Stage1. We observe that the validation

performance saturates after 35 epochs.

Stage-3: This stage uses Siamese Network to find the simi-

larity between the features generated in stage-2, namely, X̂2

and the features of real image X. It uses two similar neural

networks NN1 and NN2 with shared weights to process

both the input features. NN1 and NN2 has an input FC

layer with 1024 neurons followed by a ReLU layer and an

output FC layer with two neurons. We minimize the con-

trastive divergence loss between Xg and Xr features ob-

tained by passing input features X̂2 and X through NN1

and NN2 respectively. We train the network using Adam

optimizer on the contrastive divergence loss LC (Equation

11) setting hyperparameter m = 5 with learning rate 0.01

and batch size 32. We tune the hyper-parameter m via a grid

search from 1 to 100. We train the network for 20 epochs

and observe that the validation performance saturates after

15 epochs.

4.3. Comparison with existing methods

We compare our proposed model with the existing state-

of-the-art of SBIR, ZSL baselines, and recently proposed

ZS-SBIR approaches.

4.3.1 Comparison with SBIR baseline

The baseline models of SBIR includes Siamese-1[4],

Siamese-2[27], Fine-Grain Triplet(FGT)[29] and Coarse-

grained triplet(CGT)[30]. All the models were built accord-

ing to the description in the original paper and trained under
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Figure 3. Top 5 Retrieval results of our proposed model. Here

we can see that a retrieved object fails when the sketch outline is

very close to the image outline. N indicates false-positive retrieval

results.

the zero-shot setting. We use the same seen-unseen splits of

categories for all the experiments for a fair comparison. A

baseline also added for comparison. We take a ResNet-152

network pre-trained on ImageNet-1K as the baseline. The

score for a given sketch-image pair is given by the cosine

similarity between their ResNet-152 features.

4.3.2 Comparison with ZSL baseline

We select a set of state-of-art zero-shot learning approaches

as the benchmark and implement the same for the sketch-

based image retrieval task. The selected ZSL algorithms

involves Direct Regression, ESZSL[28], DAP[17], and

SAE[14]. The Semantic Autoencoder (SAE) proposes an

autoencoder framework to encourage the re-constructibility

of the sketch vector from the generated image vector.

ESZSL[28] learns a bilinear compatibility matrix between

images and attribute vectors in the context of zero-shot clas-

sification. We adapt the model to the ZS-SBIR task by map-

ping the sketch features to the image features using labeled

training data from the seen classes. In Direct-Regression,

the ZS-SBIR task is formulated as a simple regression prob-

lem where each image feature vector is predicted from the

sketch features. This is similar to the direct attribute pre-

diction method that is a widely used baseline for zero-shot

image classification.

4.3.3 Comparison with ZS-SBIR

Recently ZSIH [31], CVAE [40] and Doodle to search [5]

methods are proposed for ZS-SBIR. Both these methods

[5, 31] use side information(word vector [26] for sketch

classes) along with sketch features to train the model. [40]

proposed two generative models, CVAE [40] and CAAE

[40] that use only sketches features as a condition to syn-

thesize image features(without using any side informa-

tion). CAVE[40] and CAAE[40] have performed experi-

ments only on the sketchy dataset in a new split of seen and

unseen classes, whereas ZSIH [31] and Doodle to search

[5] have shown experiments on both the Berlin and Sketchy

datasets. However, all these methods have shown experi-

ments only in the standard zero-shot setting(ZSL). So, for

a fair comparison, we compare our proposed model with

CVAE[40] and CAAE[40].

4.4. Results and Analysis

From Table 1, we observe that all the SBIR and ZSL

baselines are not able to generalize well for unseen class

sketches. The reason for their failure is that these methods

have been trained in a supervised setting and hence have not

used any transfer learning techniques for unseen classes.

For a fair comparison we reproduce the results of

CVAE[40] and CAAE[40] for ResNet-152 features on

Sketchy(on realistic split) and Berlin(on random split)

dataset. We perform experiments in both standard and gen-

eralized ZSL settings. We observe that in Standard ZSL

setting, our model outperforms CVAE by 5.3%, 7.7%, and

3.6%, 3.2% absolute improvement in precision@200 and

mAP@200 in Sketchy and Berlin dataset respectively. For

GZSL, we randomly sampled 10% examples per class from

seen classes and included with unseen class examples to

create test data for our proposed model. Our model out-

performs CVAE by 10.2%, 9.3%, and 2.6%, 2.5% absolute

improvement in precision@200 and mAP@200 in Sketchy

and Berlin dataset respectively. We observe that our model

without using any side information outperforms the Doodle

to search[5] in the Berlin dataset that uses the sketch class

description as side information to train the model.

Figure 3 shows the top-5 retrieval results of our model

for sketches of unseen classes. The retrieved images show

that our proposed approach is robust for unseen classes, and

it learns a better mapping from sketch space to image space.

5. Ablation Analysis

In this section, we show some ablation studies to prove

the plausibility of our proposed model. Tables 2 and 3

clearly show the significance of each stage in our proposed

model.

Ablation with multi­stage GAN

Our model generates more robust features with two

stages G1+G2 for unseen classes based on sketches, the im-

provement of performance in G1+G2 over G1 justifies our

claim. With G1 + G2 there is 2.1%, 1.8% and 1.3%, 1.6%
absolute performance improvement in precision@200 and
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Berlin Dataset

Type Method Precision@200 mAP@200

G1 SAN-SBIR(our) 0.170 0.101

G1 +G2 SAN-SBIR(our) 0.191 0.119

Improvement With G2 2.1% 1.8%

G1 +G2 SAN-SBIR(our) 0.191 0.119

G1 +G2 + MMD SAN-SBIR(our) 0.204 0.128

Improvement With MMD 1.3% 0.9%

G1 +G2 + MMD SAN-SBIR(our) 0.204 0.128

G1 +G2 +MMD + P SAN-SBIR(our) 0.218 0.141

Improvement With P 1.4% 1.3%

Table 2. Precision@200 and mAP@200 results of our pro-

posed approach on ZS-SBIR setup for Berlin Dataset.

G1,G2,P,MMD corresponds to Stage-1, Stage-2, Stage-

3 and maximum mean discrepancy respectively.

Sketchy Dataset

Type Method Precision@200 mAP@200

G1 SAN-SBIR(our) 0.284 0.189

G1 +G2 SAN-SBIR(our) 0.297 0.205

Improvement With G2 1.3% 1.6 %

G1 +G2 SAN-SBIR(our) 0.297 0.205

G1 +G2 +MMd SAN-SBIR(our) 0.314 0.218

Improvement With MMD 1.7% 1.3 %

G1 +G2 +MMD SAN-SBIR(our) 0.314 0.218

G1 +G2 +MMD + P SAN-SBIR(our) 0.322 0.236

Improvement With P 0.8% 1.8%

Table 3. Precision@200 and mAP@200 results of our pro-

posed approach on ZS-SBIR setup for Sketchy dataset.

G1,G2,P,MMD correspond to Stage-1, Stage-2, Stage-3 and

maximum mean discrepancy respectively.

mAP@200 for Berlin and Sketchy datasets respectively as

compared to only G1.

Effect of MMD Loss

Our ablation shows that adding MMD loss in the Gener-

ator of the second stage (G2) has boosted the model per-

formance. The MMD loss enforces the model to maxi-

mize the margin between generated samples of a differ-

ent class, therefore increases the robustness of the retrieval

task. We found an absolute improvement of 1.3%, 0.9%
and 1.7%, 1.3% in precision@200, and mAP@200 as com-

pare to without using MMD for Berlin and Sketchy datasets

respectively.

Ablation with Siamese Network

Hubness may occur on applying the nearest neighbor

search on generated features for the task of image retrieval

that may degrade the performance of our model. [6] shows

that the probability of becoming a hub node is high if we

compute the KNN in the original space, whereas if we com-

pute it in a mapped space, the hubness problem reduces as

compared to previous one. We address this issue in stage-3

(transformation stage) of our model. In this stage, the fea-

tures generated by stage2 and the real image features are

Figure 4. tSNE-Visualization of the original and synthesized sam-

ples. We can see the generated samples follow the same distri-

bution as the original one, and the projected features for unseen

classes are discriminative and class-wise well separated.

projected to a common space by similarity using a Siamese

Network. The projection is made such that the features of

the same class are close, while a significant margin sepa-

rates the features of different classes. This approach pro-

vides more class-wise discriminative features. Tables 2 and

3 do establish that the inclusion of stage-3 does improve

performance significantly. Including stage-3, the absolute

performance of our model improves by 1.4%, 1.3% and

0.8%, 1.8% in precision@200 and mAP@200 as compare

to 2 stage model (G1+G2+MMD) for Berlin and Sketchy

datasets respectively. Figure 4 shows the tSNE visualization

of original features and synthesized features in projected

space, and we can observe that the projected features are

well class-wise separated.

6. Conclusion

In this paper, we propose to use a multi-stage GAN

based framework called SAN to solve the SBIR problem

in a zero-shot setting. The proposed approach uses SAN

to synthesize refined image samples from the sketch fea-

tures and hence reduces the SBIR problem to an image-

to-image retrieval problem. The proposed method is based

on a multi-stage GAN to synthesize refined samples. The

nearest neighbor search technique for the SBIR task suffers

from the hubness [6] problem. To address this issue, we

project the data to another space using Siamese Network,

where hubness has its minimal effect. In the ablation study,

we found that all the proposed components (Stage-1, Stage-

2, Stage-3) have a significant contribution to improving the

performance of the ZS-SBIR task. We perform an exten-

sive experiment on Sketchy and TU-Berlin datasets for the

ZS-SBIR in both ZSL and GZSL settings. Our proposed

approach shows the state-of-the-art result without using any

additional information to train the model.
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