
Reconstructing Road Network Graphs from both Aerial Lidar and Images

Biswas Parajuli ∗1, Ahana Roy Choudhury ∗1, and Piyush Kumar1

1Department of Computer Science, Florida State University, Tallahassee, FL.

{parajuli, roychoud, piyush}@cs.fsu.edu

Abstract

We address the problem of reconstructing road networks

as undirected graphs over large geographic regions in cold

start scenarios where neither the preliminary graph nor any

on-road trajectory information is available. The goal of this

paper is to transform bimodal aerial data in the form of 3-

dimensional Lidar scans and high resolution images into

road network graphs. We use a fully convolutional archi-

tecture that fuses the two datasets by reducing the disparity

in their modalities to segment out roads. We then apply a

simple, disk-packing based algorithm that covers the seg-

mented regions with a minimal set of variably sized disks,

connect the intersecting disks and use a provable curve re-

construction algorithm to obtain the road network graph.

We show that our method is better at removing outliers and

gives improved connectivity and topological accuracy than

the existing state of the art thinning based method.

1. Introduction

The task of accurately and efficiently detecting road net-

works has gained immense importance [30] due to the cur-

rent trend towards providing mobile location-based services

and the ongoing research for the deployment of self-driving

cars. Applications like autonomous navigation and rout-

ing [35], self-driving [12], localization [19] and others use

road networks in the form of graphs. These road network

graphs are mostly created by volunteers with manual la-

beling [28] which is a slow and expensive process and

is prone to errors. For example, one of the most widely

used open source mapping systems, OpenStreetMap (OSM)

is currently in need of improved correctness. Bastani et

al. [8] report a discrepancy of 14% between OSM and the

ground truth in TorontoCity Dataset. Thus, we consider the

problem of automatically extracting accurate road network

graphs for large geographic regions.

∗Equal contribution

Figure 1: Given the aerial RGB (top-left) and the depth (top-right)

images, we segment out roads and apply disk-packing (bottom-

right) to get the road network graph. The red circles, their cen-

ters and the green links are the packed disks, the graph nodes and

the graph edges respectively. The bottom-left image is the hand-

curated road ground truth.

In recent days, a variety of datasets are currently be-

ing used for extracting road networks. One of the com-

mon datasets comprises GPS traces due to the prolifera-

tion of portable navigation devices on cell phones and ve-

hicles [21, 11]. The collection and use of personal GPS

traces raises privacy concerns [25] and may also result in

discrepancy in coverage density because some roads in re-

mote and rural areas will have negligible traffic compared

to the roads in and around urban cores. Overall, to miti-

gate these shortcomings, we need a dataset which does not

encroach upon users’ personal privacy, provides wider road

coverage and is also cost effective to collect. We use high-

resolution multi-channeled aerial images, which are defined

by pixels, as well as air-borne Lidar, which are defined by

3-dimensional point clouds over vast swathes of geographic

regions, to extract road network graphs. At present, the cur-

rent state of remote sensing technology has made the acqui-

sition of aerial images and Lidar data cheaper, and thus, we

consider these datasets for the extraction of road networks.

1737

In this paper, we present a pipeline which automatically

builds road network graphs from publicly available bimodal

dataset containing airborne Lidar and images. In the first

step we use a deep learning architecture that fuses both Li-

dar and RGB images to obtain accurate road segmentation

while reducing the disparity in the dataset modalities. We

choose to supplement RGB images with depth information

from Lidar because in case of roads that are occluded (for

example beneath dense canopy), the last return of Lidar can

still penetrate through the gaps among the branches and cap-

ture the surface geometry of roads [5]. We also ensure larger

neighborhood context for road vs non-road classification by

selecting a suitable encoder-decoder architecture that uses

dilated convolution [39]. The output given by the trained

segmentation model consists of per-pixel road predictions.

Since these predictions are usually rasterized and noisy, we

need to translate the raw road segmentation into planar road

network graphs (Section 5) [22, 2].

We design a road network extraction algorithm that com-

bines disk-packing and provable curve reconstruction in or-

der to perform road center-line extraction. The disk-packing

approach, which generates the disk intersection graph, sam-

ples points on the approximate medial axis of the road and

connects these points based on the intersection of adjacent

disks. However, due to imperfect segmentation, sparse and

erroneous sampling of the medial axis, not all the edges in

the road network graph can be obtained by using disk in-

tersections. For this purpose, we use provable curve recon-

struction to identify the missing edges and include them in

our road network [22]. Finally, we run experiments on a

real-world dataset and show that our method performs bet-

ter than the current state of the art in various metrics.

The novelty of our technique lies in the use of a disk-

packing based method for the extraction of road networks

from the road segmentation masks. Our algorithm is imple-

mented in a way that the algorithm works for reconstruct-

ing intersections, as well as handling outliers. To the best

of our knowledge, deep learning-based segmentation, me-

dial axis approximations, and provable curve reconstruction

with outlier handling, have never been used together.

The paper is organized as follows. We discuss related

work in the following section. We formulate the problem in

Section 3. We explain our road segmentation methodology

in Section 4. We present our disk-packing based algorithm

in Section 5. In Section 6, we elaborate on the experiments

that we conducted along with their results. We discuss the

conclusion and our future plans in Section 7.

2. Related Work

Many road network graph extraction methods are related

to curve reconstruction [22, 3, 15] where the goal is to re-

trieve the road centerlines as connected line segments from

a point set sampled from the original road surface. GPS

traces provide such a sample [15, 26, 11]. Any method that

uses this dataset can take advantage of the chronological or-

dering of points in the trajectories if it chooses to. Chen et

al. [15] sample a set of points S with a (b · rmin)-net such

that all points in the input trajectories are within b · rmin

of at least one point in S and all points in S are at least

b · rmin apart. b = 2
√
6 is a constant chosen for algorith-

mic guarantees and rmin is a constant for the road width.

In reality, road widths vary [29]. They construct a Voronoi

diagram [4] with p ∈ S as the sites and select the Delaunay

edges [20] which correspond to the Voronoi edges that inter-

sect at least one input GPS trace. In our case, we do not have

the trajectory information because, CNN based road seg-

mentation outputs binary pixel classification results. More-

over, we do not have the privilege of using principled sam-

pling since we have to rely on the sampling provided to us

by the trained road segmentation model.

In cases where aerial imagery and Lidar are used as the

dataset, there are a few instances where researchers tweak

and extend some parts of their road detection method to cor-

rect the output predictions [7, 29, 42]. Bajcsy et al. [7]

use road-growing and thinning operators while detecting

the road network which also simultaneously skeletonize the

predictions to give a graph as output. Most often the cor-

rections are done independently as a post processing step.

Zhao et al. [42] use an adaptive, multi-step marching algo-

rithm with voting to replace the detected road ribbons with

centerlines. They infer the missing connections by model-

ing the type of intersection among the candidate road seg-

ments as a graph and determining the segment labels with

an MRF framework.

Currently, use of deep convolutional neural networks

(CNN) for road network detection and graph extraction

from aerial images has become common [29, 17, 27, 8].

Mnih et al. [29] use a neural network to obtain road pre-

dictions and later they employ another neural network to

exploit the structure present in the neighborhood of pre-

dicted patches to make corrections. Cheng et al. [17] use

two CNNs to segment roads and get their centerlines. These

methods address connectivity issues in the detected road

networks, but they do not translate them into graphs.

Road network graphs can be obtained from the road seg-

mentation or centerlines by executing the following steps:

(1) apply morphological thinning [40] to the segmentation

to get 1-pixel thick skeleton (2) do a generic breadth-first

search along the skeleton to trace paths as piecewise lin-

ear curves (3) transform the curves into edges (4) post-

process to either remove dangling segments or connect

nearby degree-1 vertices. Instead of thinning, Voronoi di-

agrams can also be used to calculate the medial axis of the

road segmentation polygons [32]. DeepRoadMapper [27], a

state of the art, follows these steps to arrive at a preliminary

graph which is prone to topological errors. To make cor-

1738

rections, it samples candidate links within a certain neigh-

borhood of each vertex. The bounding box of each such

link is cropped from the aerial image and another CNN is

used to predict if the link containing patch is a road. If it

is, then the link is inserted into the predicted graph. Poor

segmentation due to either occlusions or complexity of the

road topology [8], has a negative impact on the accuracy.

The more recent state-of-the-art RoadTracer [8] skips the

segmentation phase and directly extracts graphs from aerial

images. It is more suited for warm-start scenarios where

preliminary but incomplete graph is available. It does a

guided search in a depth-first manner with the help of a

decision CNN and the predicted partial graph by walking

a predefined distance along a predicted direction. Since

it requires starting locations that must lie on the road, for

cold-start cases where no pre-existing map is available, we

cannot do away with the road segmentation phase. Further-

more, in case the input image contains disconnected roads,

each road fragment should be given its own starting location

and the search algorithm should be applied as many times.

We try to address the weaknesses of the existing meth-

ods by using both aerial Lidar and images in conjunction to

enhance the road segmentation accuracy. We also improve

the output graph quality with our disk-packing based curve

reconstruction algorithm.

3. Problem Definition

Given a feature representation of a geographic terrain as

an input image, a trained road segmentation model, Mseg

labels individual pixels as either road or non-road with pixel

values 1 and 0 respectively. Mseg produces an image-like

segmentation output I , where the pixel positions form a uni-

tary integer grid that can be interpreted as a planar (two-

dimensional, Euclidean) coordinate space. All the points

in this coordinate space are grouped into two sets, Srd =
{(i, j) | I(i, j) = 1} and Snrd = {(i, j) | I(i, j) = 0}. In

essence, Mseg samples points that are most likely to be on

road surfaces and the global Intersection-Over-Union (IOU)

metric gives a measure of its sampling quality.

The core problem this paper addresses is to translate Srd

into a reconstructed undirected graph G = (V,E) that is

embedded in the Euclidean plane. Points in Srd do not form

a well-behaved geometric object. Locally, given a neighbor-

hood, the geometry is elongated that can be approximated

with a rectangular strip (See Figure 2) [18]. Globally, Srd

can be regarded as a union of such strips. The widths of the

strips vary, their perimeters may not be smooth, and they

can be disconnected owing to occlusions such as trees. Go-

ing from Srd to G involves replacing the local, approximate

rectangles with their centerlines and adding them to E while

maintaining connectivity to construct G.

4. Road Segmentation

Road Segmentation accuracy has a direct impact on the

road network extraction problem. For this paper, we chose

to improve one of the recent road segmentation CNN archi-

tectures, named TriSeg, that merges both Lidar and image

data to solve the problem [31]. Parajuli et al. [31] attempt

several methods for fusing aerial images and Lidar input

and show that the TriSeg architecture performs the best.

While architectures such as FuseNet allow the fusion of dif-

ferent types of data, the size of our GPU prevents us from

exploring such architectures. We use the LPU algorithm

proposed in [31] to convert the 3D point cloud to 2D image.

We use this technique because our dataset has ¿1 Billion 3D

points, and scaling 3D point cloud segmentation algorithms

with noise is a challenge at this scale. TriSeg consists of 3

separate units. Unit 1 and Unit 2 process RGB and Depth

images independently in parallel. Unit 3 performs late fu-

sion by concatenating the outputs of the first two units and

gives the final road segmentation.

We make two changes to TriSeg. We replace Seg-

Net [6] with Deeplabv3+ [16] since it increases the size of

the neighborhood context by using atrous convolution. In-

stead of simply concatenating the output from the first two

units of TriSeg, we average the input RGB image to get a

grayscale channel and append as an additional channel to

the input of the third TriSeg unit.

We show a few output examples along with their corre-

sponding inputs in Figure 2. Our architecture, Mseg does

well even at places where the roads are covered by trees

and affirms the benefit of using aerial Lidar in conjunction

with RGB images. Table 1 shows that we can achieve

5% improvement in the global IoU metric by making the

above-mentioned changes.

Grid-shifting: Both random and deterministic shifting of

grids has been used in the past for various problems [41,

14, 10]. We apply a deterministic grid-shifting technique to

extract a small improvement in the road segmentation accu-

racy. It is applicable to any CNN problem where the input

image has to be cut down to smaller sizes because CNN

input sizes are restricted to GPU RAM sizes.

Our goal is to extract road network graphs for larger

K ×K resolution tiles from their corresponding road seg-

mentations. To obtain the road segmentation in the original

resolution, we partition the larger tile into smaller sub-tiles

of size k×k where k ≪ K and is dependent on the memory

constraints of Mseg . In our case, K = 2500 and k = 500.

We feed each k×k sub-tile into Mseg independently. Given

a sub-tile, Mseg cannot learn from the context present in the

neighboring tiles while trying to segment roads along the

tile edges. So, if there is an occlusion that covers the road

along the sub-tile margin, Mseg can assume it to be the end

of a road segment due to the absence of context. This cre-

1739

Table 1: Comparison of TriSeg with Mseg on Parajuli et al.’s [31]

dataset: G-TPR, G-TNR and G-IoU are the global true positive

rate, true negative rate and intersection over union respectively.

Architecture G-TPR G-TNR G-IoU

TriSeg 0.877 0.983 0.784

Mseg 0.93 0.984 0.834

Figure 2: Sample output by Mseg . Each row consists of 5 images

from left to right: RGB, depth, Mseg Unit 3 input, ground truth,

output segmentation.

ates gaps in the segmentation output and results in missing

links in the final road network graph. We can see a few of

such examples in Figure 3. As a solution, we perform a sec-

ond road segmentation but after shifting the original grid by
k
2

pixels along both the directions. This forces the margins

of the original sub-tiles to lie towards the middle of the new

sub-tiles and Mseg gets more context while detecting roads.

We get the final road segmentation after combining the

two segmentation outputs with and without grid-shift. For

merging the segmentations, we simply take the union of

the two where a pixel location is considered to be a road

if at least one of the two segmentation outputs labels it as a

road pixel. The Union method gives a global IoU metric of

81.2% whereas for the non-grid-shifted segmentation out-

put, it was 79% for the dataset described in Section 6.1. We

also experimented with a centrality-based approach where

the segmentation is given higher confidence based on how

far the pixel is from the center of the image. This method

performs worse than the union method (80.6%). Thus, we

use the union-merged output as our final road segmentation

to extract the road network graph.

5. Disk-Packing for Graph Extraction

In this section we present our disk-packing based method

to translate road segmentation into a road network graph.

The vertices and the edges selected for such a graph should

capture the road centerlines while preserving the road topol-

ogy and connectivity. Since we only make assumptions

about the directionality of roads and that degree > 2 vertices

cannot be adjacent in the reconstructed graph, our algorithm

is general and is applicable for other datasets.

To accomplish this goal, we greedily cover Srd with a

minimal set B = {B1, ..., Bn} of n closed disks where Bi,

Figure 3: Effect of sub-tiling: Top left: Prediction using original

tiling has gaps in road segmentation along the sub-tile margins.

Bottom left: Ground truth segmentation. Top right: Grid-shifting

covers some of the gaps. Bottom Right: Union-merging the two

outputs improves the accuracy.

ci

cj

ck

maxis

Aedge

Bedge

rci

Δrrci

Figure 4: Detecting outlier disk: Aedge and Bedge belong to

Sedge, the set containing pixels along the edges in the segmen-

tation output I . maxis is the ground truth road centerline. The

dotted circles around each disk are the corresponding shells. The

disk at cj is an outlier disk because its shell contains only a portion

of Bedge which translates to a single connected component. The

other two are valid degree two nodes since their shells contain two

connected components that lie almost opposite each other.

centered at ci = (xi, yi) has a radius rci ≥ rmin and is

equidistant to at least two points in Snrd. If dist(ci, cj) is

the Euclidean distance between ci and cj and rci + rcj ≥
dist(ci, cj), then Bi and Bj intersect. We create a planar

disk intersection graph Gdisk from a set of such intersect-

ing disks [23]. The disk centers and the lines connecting

the centers of the intersecting disks are the vertices and the

edges of Gdisk respectively. We take Gdisk as a prelimi-

nary graph as there are still missing links because Mseg is

not perfect and gives an IOU metric of < 1. Next, we de-

scribe how we select B and resolve connectivity issues in

Gdisk.

5.1. Disk Selection

We start with the road segmentation output I which may

contain holes, corrugated edges and outliers. We partially

address this issue by morphologically dilating I with a

neighborhood of size rmorph which updates every pixel in I

with the max value in that neighborhood. We apply Canny

edge detection algorithm [13] on I , and find the set Sedge

1740

ci

cj

ck

(a) Triangles in disk

intersection graph

q

p

v

∇q

u

(b) Candidate edge (q, v) inter-

sects disk at u

Figure 5: Disks and connections. Figure 5a: When three disks

with centers ci, cj , ck intersect, they create a triangle. If rci > rcj
and rci > rck , we remove the shortest edge (cj , ck) and keep

(ci, ck) and (ci, cj). Figure 5b: q is a degree 1 node connected to

p. (q, v) is a candidate edge because v is the nearest neighbor of

q in the cone ∇q with θ∇q = π. Although (q, v) may satisfy the

road vote count (Condition 1), it creates an incorrect topology and

is discarded since it intersects an existing disk at u (Condition 2).

that contains points along the edges in I . For efficient near-

est neighbor search, we construct a KD-tree KDTnrd with

points in Sedge. For every point p ∈ Srd, we find the near-

est q ∈ Sedge at a distance rp = dist(p, q) with the help of

KDTnrd and then insert the tuple (p, rp) into Ldisk, a list

that keeps track of candidate disks. Here, rp is the radius

of the disk centered at p. To proceed greedily, we iterate

through Ldisk in descending order with respect to the disk

radius such that we select the largest disk first. For each p

with disk radius rp, we drop all points and disks that are

covered by the disk centered at p with radius rp. We also

drop those disks whose radius is less than rmin.

Eventually, we want the selected disks to lie as close

as possible to the medial axis [37] of actual roads. If the

edges in I were perfectly smooth, each such disk would be

equidistant to two (or more in case of junctions) points in

Sedge. In reality, the edges still contain variably sized con-

cavities. So even if a disk is equidistant to two points in

Sedge, it can be far away from the road centerline. Fig-

ure 4 demonstrates an example. We want to automatically

drop such disks that predominantly lie only on one of the

half-spaces created by the closest centerline. Given a disk

(c, rc), we first find all the points in Sedge which lie within

∆r · rc of c. Here, ∆r > 1, is the radius expansion fac-

tor. We then count the number of connected components

ncomp present in the ∆r · rc shell of c. If ncomp < 2, it is

highly likely that (c, rc) is a noise disk and, thus, it can be

dropped. Our method is similar to the shell neighborhood

search described by Aanjaneya et al. [1].

5.2. Disk Intersection Graph

The disk-packing method discussed above gives a set B
of n disks. To obtain the disk intersection graph Gdisk, we

do a k = 10 nearest neighbor search for each ci of Bi ∈ B.

We assume that the upper bound for the maximum degree

of any road junction is 10 and, moreover, on a random set of

20 tiles in our dataset, we find the maximum degree of any

junction to be 4. If a pair of disks centered at ci and cj ei-

ther touch or intersect, we add a new edge (ci, cj) to Gdisk.

Although this method takes O(n log n), since the maximum

number of disks in a given square tile with the side length

of 1250 feet is ≤ 400, we do not see significant perfor-

mance penalties. While polynomial time (O(n)) approxi-

mation schemes [23] can be used in cases where bigger tiles

with larger number of disks are considered, we use smaller

tiles and can compute the exact solution without having sig-

nificantly longer execution times.

We should be careful while inserting edges based on disk

intersection. In case there are three disks that intersect each

other, ci, cj and ck, as shown in Figure 5a, the graph will

end up with a triangular loop. This loop translates to two

U-turns within a single road width which is not a feasible

scenario in road engineering [33]. So, we avoid a triangular

loop by discarding the edge which has the smallest length.

5.3. Connectivity

Owing to the imperfect segmentation, Gdisk still has

missing links. The task that remains is to predict these

links and insert them in Gdisk. In the appendix, we provide

figures to show that in case of imperfect segmentation, we

are able to use degree 0 and degree 1 vertex connections to

insert missing edges. Often there are neighboring regions

in I which are partially segmented as roads but could not

be covered by any disk in B. This allows us to apply voting

while predicting edges. Given a candidate edge e = (u, v),
we impose the following two conditions for it to be a valid

edge:

Condition 1: Consider the strip of width β pixels centered

on the segment (u, v). If γ-fraction of the pixels in this strip

are classified to be road then this predicate returns true.

Both these parameters are computed using hyper-parameter

tuning (Section 5.4).

Condition 2: If e intersects only {Bu, Bv} ∈ B then return

true (A false example is shown in Figure 5b).

In our Algorithm, Condition 2 is checked only if Condition

1 returns true. Now we are ready to explain how we

generate our candidate edges.

Choice of Nodes: For predicting the missing edges, we

consider only those candidate edges that will be incident on

degree 0 and degree 1 nodes in Gdisk. This decision is based

on the analysis of the nodes present in a randomly sampled

set of 20 tiles each covering an area of 1250 × 1250ft2.

Each of these tiles contains a node at every junction and at

every significant bend as well as at every 100 (or less) feet.

Since 91% of the nodes in the graphs are degree-2 nodes,

there is a > 0.9 probability that, for a missing edge (u, v),

1741

u and v are degree 2 nodes which appear as degree 1 or de-

gree 0 nodes in Gdisk. Out of the 258 junctions (nodes with

degree > 2) present in the graphs, 236 are degree-3, 22 are

degree-4 and no nodes have degree ≥ 5. Moreover, only 7

junction pairs in the chosen tiles lie adjacent to each other

and the rest have degree 2 nodes between two consecutive

junctions. So, even for junctions, in most cases, missing

edges result in adjacent degree 1 nodes, and inserting the

missing edge for such degree 1 nodes will automatically in-

sert the missing edge of the junctions. Thus, for predicting

the missing links, we focus on degree 0 and degree 1 nodes

in Gdisk.

Establishing Connections: Using the sampling condition

in Amenta et.al. [3], we can show that the smooth parts of

the road network can be reconstructed correctly if we con-

nect degree 0 vertices to its nearest neighbors (details are

omitted to conserve space). To handle noise in the sam-

pling, we connect each degree 0 vertex, q with its nearest

neighbor, v if the new edge (q, v) satisfies the two condi-

tions mentioned above. We drop any remaining degree 0

vertex as outliers. Next, we process the degree 1 vertices.

A degree 1 vertex q has a direction because it is an end

point of an existing edge (p, q) which is also a line segment

on the plane. For reconstructing smooth parts of the road,

with degree 1 vertices, we use a cone based nearest neigh-

bor approach [22, 24]. The axis of this cone is obtained by

extending the edge (p, q) beyond the point q. To give some

room to wiggle while searching for u, we define a cone ∇ of

angle θ∇ and length r∇ at q. If v is the nearest neighbor of

q that falls within the cone ∇, that is the angle at q made by

the segments (p, q) and (q, u) is greater than π − θ∇
2

, then

(q, v) is a candidate edge. If the two conditions are satisfied,

we insert (q, v) into Gdisk (visual examples in Appendix).

Our algorithm is based on provable curve reconstruction

algorithms [22, 24], where a set of points, P , which is an

ǫ-sample of a smooth curve C, is taken as the input and

used to generate a graph G. The graph G connects sample

points which are adjacent to each other by connecting near-

est neighbors and then considering the half-space opposite

to a degree 1 node for candidate edges. However, we use a

cone of angle θ∇ and tune it as a hyper-parameter by con-

sidering values from π
3

to 7π
6

and using increments of π
6

.

Serendipitously, we get the best results by using θ∇ = π,

which matches with the theoretically provable algorithm.

Hence, on the basis of the proofs provided in [22], for

all parts of the road (smooth curve), where the ǫ-sampling

property is satisfied, our algorithm is capable of correctly

reconstructing the curve.

5.4. Hyperparameters

There are a few hyper-parameters that govern our disk-

packing based graph extraction method. We tune them with

the Tree of Parzen Estimators algorithm [9] on a random

Table 2: Hyper-parameters for Disk-packing.

Hyper-parameter Symbol Value

Cone Angle θ∇ π

Cone radius r∇ 225 feet

Shell Expansion Factor ∆r 1.3

Minimum Disk Radius rmin 6.5 feet

Road Vote Count Width β 11 feet

Road Vote Fraction γ 0.2

Morphology Radius rmorph 4.5 feet

Table 3: The per-tile and the global counts of the graph edges

given by Disk-Mseg grouped based on how the edges were added.

Edges From Per-tile Count Global Count

Disk-intersection 357.532 149091

Degree 0 0.367 153

Degree 1 5.149 2147

Total 363.048 151391

Figure 6: Tallahassee: train (right of blue margin)/test regions.

set of 20 tiles selected from the entire dataset of 1008 tiles

and use the inverse of the Weighted Shortest Path metric

(Section 6.3) as the loss (Table 2).

6. Experiments

We run multiple experiments on the road segmentation

produced by Mseg from the aerial dataset of Tallahassee.

Each experiment used a single 11 GB GeForce GTX 1080

card on an Intel i7-based workstation with 32 GB RAM.

6.1. Dataset

Graph extraction proceeds in two stages, namely, road

segmentation and the translation of output segmentation

into graphs. Since we use the Lidar Data and the aerial

images, we cannot use any of the traditional datasets that

only have aerial images We use the same dataset described

in [31] but we split the tiles differently as shown in Figure 6.

We chose this split so as to get larger contiguous regions in-

stead of scattered, non-adjacent tiles for train and test. This

ensures road network continuity over a larger region. The

dataset has 36 and 27 10000× 10000 tiles for train and test

respectively and we split each into 500× 500 pieces. Thus,

the training and test sets include 14400 and 10800 500×500
tiles respectively. Instead of subsampling, we use the whole

1742

training set to train Mseg .

For graph extraction, we stack 25 adjacent 500 × 500
tiles to get larger 2500× 2500 tiles because larger tile sizes

improve the accuracy of graph extraction. The smaller the

tile, the higher the chances of the road regions getting split

at the edges at various angles which, in turn, gives road seg-

ments of incorrect widths and shapes.

Ground Truth Graphs: We consider two ground truth

graphs for training and evaluation (a) graph obtained from

OpenStreetMap, OSM-GT (b) graph generated from the

ground truth road segmentation by applying thinning, TLH-

GT. On visual inspection we find differences between TLH-

GT and OSM-GT. OSM-GT considers parking lots as part

of the road network whereas TLH-GT does not. In case

of multi-lane roads that do not have well defined medians,

TLH-GT ends up with a single edge owing to the thinning

algorithm whereas OSM-GT usually has an edge for every

lane. Due to these reasons there are more road edges in

OSM-GT than TLH-GT. Besides, TLH-GT is more suitable

for the extraction of road network graphs, and this is evident

from the fact that all the methods except RoadTracer trained

on OSM-GT perform better when compared to TLH-GT

rather than OSM-GT. If we compute the Weighted Shortest

Path metric (Section 6.3) between OSM-GT and TLH-GT

with OSM-GT as the ground truth and measure the num-

ber of correct paths in TLH-GT compared to OSM-GT, the

Correct percentage is only 22%, whereas, with TLH-GT as

the ground truth and the OSM-GT as the predicted graph,

the same metric is 76%. This indicates that OSM-GT has

several extra edges that are not present in TLH-GT and this

matches with our intuition based on the visual inspection.

So, the evaluation metrics will also differ when we compare

the predicted graphs with the two ground truth graphs.

6.2. Baselines

We compare our disk-packing method (Disk-Mseg) de-

scribed in Section 5 with two baselines. The first is Road-

Tracer [8] for which we train two different models, namely,

RoadTracer-OSM and RoadTracer-TLH with OSM-GT and

TLH-GT as the respective ground truths. For the second

DeepRoadMapper [27] baseline, we use the implementation

provided by Bastani et al [8]. We compare with the graphs

produced after directly applying thinning on Mseg’s output

I (Thin-Mseg). Additionally, we disk-pack DeepRoadMap-

per’s segmentation output to get Disk-DeepRoadMapper.

RoadTracer is highly affected by the choice of starting

locations. To select at least one starting location per road

segment during prediction, we: (1) randomly select a node

from each connected component in the ground truth graph

(start = random) (2) apply disk-packing on I and pick all

the centers of the packed disks (start = B).

6.3. Evaluation Metrics

We evaluate the predicted graph G = (V,E) with the

corresponding ground truth graph G∗ = (V ∗, E∗) with re-

spect to vertex reachability, topology and path distance be-

tween registered vertices using three metrics. While Junc-

tion Metric [8] measures the number of Correct and Extra

junctions, TOPO metric [11] evaluates the graphs in terms

of topology using Spurious and Missing and utilizes the val-

ues of Spurious and Missing to compute the F-score, which

lies in the closed interval [0, 1].
The original Shortest Path metric [38] gives equal

weights to all source/destination pairs and keeps track of

the Correct, Short, Long and NoPath counts but the longer

shortest paths in the ground truth are more valuable for the

metric. Thus, we modify the metric by multiplying each

count with
lu,v

ldiag
, where ldiag is the length of the longer di-

agonal of the tile. In our case, ldiag = 2500
√
2 since we

have square tiles with side length 2500 pixels. Finally, we

normalize the values by dividing each score by the sum of

all the weights and report the percentage of Correct edges

in our Weighted Shortest Path metric (W-SP).

6.4. Vertex Registration and Distribution

Most of the graph similarity metrics require the registra-

tion of the ground truth vertex set with the predicted set. To

register u∗ ∈ V ∗ with one of the vertices in V , we first find

the edge (u, v) ∈ E which is nearest to u∗ and within a pre-

defined threshold rmax. We set rmax = 30 feet which is

the maximum lane width for US highways [36]. We project

u∗ onto (u, v) and get a new vertex p between u and v. If

p is within rmax of one of the end points of (u, v), say u,

then u∗ is registered with u. Otherwise, we replace the edge

(u, v) ∈ E with two new edges, (u, p) and (p, v) and then

establish correspondence between u∗ and p. If there is no

edge in E that lies within rmax of u∗, u∗ remains unreg-

istered. This procedure does not affect the topology of the

predicted graph G. The graph similarity metrics are affected

by the vertex distribution which depends on the local road

curvature [3, 34]. To make the distribution uniform, we in-

sert new, evenly spaced vertices at a distance of 50 feet into

existing edges of the graph without altering its topology.

6.5. Results

Our method (Disk-Mseg) achieves the best performance

for all the metrics when compared to TLH-GT. We present

our results in Table 4 and identify the best performing meth-

ods for each metric. In case of junction metric, we highlight

the methods that perform well for the Correct and Extra

scores individually. Besides, we identify the method (in

italics) that achieves the best balance between Extra and

Correct, indicating the ability to detect junctions correctly

without detecting too many spurious junctions. For TOPO

1743

Table 4: Comparison of graph extraction methods with two ground truths: (a) OpenStreetMap (OSM-GT) (b) Map obtained after applying

thinning to Tallahassee road masks (TLH-GT).

Method OSM-GT TLH-GT

Junction TOPO W-SP Junction TOPO W-SP

(Correct , Extra) F-Score Correct (Correct , Extra) F-Score Correct

RoadTracer-OSM [8] (start=random) (0.34 , 0.23) 0.45 0.09 (0.39 , 0.73) 0.42 0.15

RoadTracer-TLH (start=random) [8] (0.15 , 0.20) 0.34 0.04 (0.37 , 0.29) 0.45 0.14

RoadTracer-OSM (start=B) [8] (0.39 , 0.26) 0.56 0.14 (0.48 , 0.70) 0.54 0.24

RoadTracer-TLH (start=B) [8] (0.17 , 0.27) 0.50 0.06 (0.42 , 0.37) 0.61 0.20

DeepRoadMapper [27] (0.28 , 0.60) 0.60 0.13 (0.57 , 0.75) 0.64 0.40

Disk-DeepRoadMapper (DeepRoadMapper CNN [27] with our graph extraction) (0.34 , 0.46) 0.62 0.18 (0.69 , 0.65) 0.68 0.56

Thin-Mseg (Mseg segmentation with DeepRoadMapper thinning [27]) (0.31 , 0.86) 0.52 0.20 (0.81 , 0.90) 0.62 0.75

Disk-Mseg (Mseg segmentation process with our graph extraction) (0.26 , 0.32) 0.61 0.16 (0.72 , 0.39) 0.76 0.75

and W-SP too, we highlight the best performing methods.

While our method produces the best performance for

TLH-GT, it is also competitive in terms of TOPO and

Weighted Shortest Path metric for OSM-GT. In fact, the

evaluation metrics for all the reported methods are far bet-

ter when we use TLH-GT instead of OSM-GT as the ground

truth because OSM-GT has more road edges (Section 6.1)

compared to TLH-GT. So, during metric computation with

OSM-GT, a major fraction of the sampled vertices can be-

long to these extra edges and reduce the metric scores.

RoadTracer performs poorly for almost all the metrics in

case of TLH-GT and only achieves good performance for

junction metric in case of OSM-GT. However, RoadTracer

has the advantage of utilizing existing graphs, and can be

trained separately for OSM-GT and TLH-GT. Our dataset

covers a vegetation rich geographic region with a small ur-

ban core because of which it is not guaranteed that the se-

lected starting locations or the locations selected by its de-

cision CNN will fall exactly on the roads. If such a location

happens to fall on the canopy, RoadTracer directly termi-

nates its search missing out on detecting significant portions

of the roads. It also excludes regions around the tile edges

because its decision CNN uses a window of a fixed size.

Table 4 shows that RoadTracer’s performance is affected by

the choice and the number of starting locations. The met-

rics are better if we use all disk centers in B instead of one

randomly selected point per connected component because

number of connected components ≪ |B| and points in B
are more likely to be on visibly cleaner road regions. Deep-

RoadMapper and Mseg can only be trained on segmentation

masks, which are available for TLH-GT only and causes the

segmentation to be performed in accordance with TLH-GT.

From the results in Table 4, we observe that the qual-

ity of the output graph depends on the IoU metric given by

the road segmenter. Mseg with grid-shifting (81.2% IoU) is

better than DeepRoadMapper (68.3% IoU). So, irrespective

of which graph extraction method we use, the majority of

the metrics are higher for Mseg’s output.

Our Disk-packing based graph extraction approach per-

forms better than thinning and has several advantages over

thinning. Between Thinning and Disk-packing for the same

Mseg road segmentation, both give almost equal accuracy

in terms of connectivity and correct paths. As we see in Ta-

ble 3, Disk-Mseg on average adds at least 5 missing edges

per tile. Thin-Mseg , by design, does not add any new edges

but still performs as good as Disk-Mseg in the Weighted

Shortest Path metric. This can be attributed to the fact that

Thin-Mseg preserves the road continuity even when there is

just a single road pixel along the path whereas Disk-Mseg

does not place disks on regions that are thinner than rmin

which results in missing links. Since Thin-Mseg is better in

this regard, we can borrow connections into the disk-packed

graph from the thinned graph where possible. As thinning

allows outliers and unwanted branching, it predicts spurious

edges which adversely affect the F -score in case of TOPO

and increase the number of extra junctions in Junction met-

rics. Our disk-packing method captures significantly fewer

number of erroneous junctions (a margin of 51%) and per-

forms 14% better in TOPO’s F-score.

7. Conclusion & Future Work

The aim of this paper was to use both aerial Lidar and im-

ages to extract roads as graphs. We presented an algorithm

based on disk-packing to transform road segmentation out-

put to a road network graph where the edges of the graph

lie along the road centerlines. We observed that our method

is better at discarding outliers and is able to capture the net-

work topology more accurately while being close to the ex-

isting method that uses thinning in terms of connectivity.

As our approach decouples segmentation from graph recon-

struction and since better segmentation always translates to

a more accurate graph, we can aim for optimizing road seg-

mentation with the best available CNN architecture. Mseg

and our graph extraction method can be incorporated with

existing road graph extraction methods like DeepRoadMap-

per and RoadTracer, in order to improve their performance.

There are still ambiguities related to the ground truth

graphs due to parking lots, medians and lane discrimination.

In future, we plan to address these issues by segmenting

each ambiguous object separately and building the graph

in a fine-grained fashion. Another aspect that we will ex-

plore is the reconstruction of directed graphs, especially us-

ing a reduction from problems in TSP, linear programming

or convex quadratic programming.

1744

References

[1] M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. Guibas,

and D. Morozov. Metric graph reconstruction from noisy

data. International Journal of Computational Geometry &

Applications, 22(04):305–325, 2012.

[2] E. Althaus and K. Mehlhorn. Tsp-based curve reconstruction

in polynomial time. In Proceedings of the Eleventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’00,

pages 686–695, Philadelphia, PA, USA, 2000. Society for

Industrial and Applied Mathematics.

[3] N. Amenta, M. Bern, and D. Eppstein. The crust and the

β-skeleton: Combinatorial curve reconstruction. Graphical

models and image processing, 60(2):125–135, 1998.

[4] F. Aurenhammer. Voronoi diagrams - a survey of a funda-

mental geometric data structure. ACM Computing Surveys

(CSUR), 23(3):345–405, 1991.

[5] Z. Azizi, A. Najafi, and S. Sadeghian. Forest road detection

using lidar data. Journal of forestry research, 25(4):975–980,

2014.

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017.

[7] R. Bajcsy and M. Tavakoli. Computer recognition of roads

from satellite pictures. IEEE Transactions on Systems, Man,

and Cybernetics, (9):623–637, 1976.

[8] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan,

S. Chawla, S. Madden, and D. DeWitt. Roadtracer: Auto-

matic extraction of road networks from aerial images. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4720–4728, 2018.

[9] J. Bergstra, D. Yamins, and D. Cox. Making a science of

model search: Hyperparameter optimization in hundreds of

dimensions for vision architectures. In International Confer-

ence on Machine Learning, pages 115–123, 2013.

[10] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh

generation. J. Comput. Syst. Sci., 48(3):384–409, June 1994.

[11] J. Biagioni and J. Eriksson. Inferring road maps from global

positioning system traces: Survey and comparative evalua-

tion. Transportation research record, 2291(1):61–71, 2012.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,

J. Zhang, et al. End to end learning for self-driving cars.

arXiv preprint arXiv:1604.07316, 2016.

[13] J. Canny. A computational approach to edge detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

(6):679–698, 1986.

[14] T. M. Chan. Closest-point problems simplified on the ram.

In Proceedings of the Thirteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’02, pages 472–473,

Philadelphia, PA, USA, 2002. Society for Industrial and Ap-

plied Mathematics.

[15] D. Chen, L. J. Guibas, J. Hershberger, and J. Sun. Road net-

work reconstruction for organizing paths. In Proceedings of

the twenty-first annual ACM-SIAM symposium on Discrete

Algorithms, pages 1309–1320. Society for Industrial and Ap-

plied Mathematics, 2010.

[16] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 801–

818, 2018.

[17] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan.

Automatic road detection and centerline extraction via cas-

caded end-to-end convolutional neural network. IEEE Trans-

actions on Geoscience and Remote Sensing, 55(6):3322–

3337, 2017.

[18] S.-W. Cheng, S. Funke, M. Golin, P. Kumar, S.-H. Poon,

and E. Ramos. Curve reconstruction from noisy samples. In

Proceedings of the Nineteenth Annual Symposium on Com-

putational Geometry, SCG ’03, pages 302–311, New York,

NY, USA, 2003. ACM.

[19] D. Costea and M. Leordeanu. Aerial image geolocalization

from recognition and matching of roads and intersections.

arXiv preprint arXiv:1605.08323, 2016.

[20] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-

mars. Computational Geometry: Algorithms and Applica-

tions. Springer Publishing Company, Incorporated, 3rd edi-

tion, 2010.

[21] D. Delling, A. V. Goldberg, M. Goldszmidt, J. Krumm,

K. Talwar, and R. F. Werneck. Navigation made personal: In-

ferring driving preferences from gps traces. In Proceedings

of the 23rd SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems, page 31. ACM,

2015.

[22] T. K. Dey and P. Kumar. A simple provable algorithm for

curve reconstruction. In In Proc. 10th ACM-SIAM Sympos.

Discrete Algorithms. Citeseer, 1999.

[23] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time

approximation schemes for geometric intersection graphs.

SIAM Journal on Computing, 34(6):1302–1323, 2005.

[24] S. Funke and E. A. Ramos. Reconstructing a collection of

curves with corners and endpoints. In Proceedings of the

Twelfth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’01, pages 344–353, Philadelphia, PA, USA,

2001. Society for Industrial and Applied Mathematics.

[25] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Preserving

privacy in gps traces via uncertainty-aware path cloaking. In

Proceedings of the 14th ACM conference on Computer and

communications security, pages 161–171. ACM, 2007.

[26] S. Karagiorgou and D. Pfoser. On vehicle tracking data-

based road network generation. In Proceedings of the 20th

International Conference on Advances in Geographic Infor-

mation Systems, pages 89–98. ACM, 2012.

[27] G. Máttyus, W. Luo, and R. Urtasun. Deeproadmapper: Ex-

tracting road topology from aerial images. In International

Conference on Computer Vision, volume 2, 2017.

[28] G. Miller. The huge, unseen operation behind the accuracy

of google maps. https://www.wired.com/2014/12/google-

maps-ground-truth/.

[29] V. Mnih and G. Hinton. Learning to detect roads in high-

resolution aerial images. Computer Vision–ECCV 2010,

pages 210–223, 2010.

1745

[30] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli.

A survey of motion planning and control techniques for self-

driving urban vehicles. IEEE Transactions on intelligent ve-

hicles, 1(1):33–55, 2016.

[31] B. Parajuli, P. Kumar, T. Mukherjee, E. Pasiliao, and S. Jam-

bawalikar. Fusion of aerial lidar and images for road seg-

mentation with deep cnn. In Proceedings of the 26th ACM

SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems, pages 548–551. ACM, 2018.

[32] R. Ramamurthy and R. T. Farouki. Voronoi diagram and me-

dial axis algorithm for planar domains with curved bound-

aries i. theoretical foundations. Journal of Computational

and Applied Mathematics, 102(1):119–141, 1999.

[33] J. Reid, L. Sutherland, B. Ray, A. Daleiden, P. Jenior,

J. Knudsen, et al. Median u-turn intersection: informational

guide. Technical report, United States. Federal Highway Ad-

ministration. Office of Safety, 2014.

[34] A. Saalfeld. Topologically consistent line simplification

with the douglas-peucker algorithm. Cartography and Ge-

ographic Information Science, 26(1):7–18, 1999.

[35] G. Siegle, J. Geisler, F. Laubenstein, H.-H. Nagel, and

G. Struck. Autonomous driving on a road network. In In-

telligent Vehicles’ 92 Symposium., Proceedings of the, pages

403–408. IEEE, 1992.

[36] W. J. Stein and T. R. Neuman. Mitigation strategies for

design exceptions. Technical Report FHWA-SA-07-011,

CH2M HILL, Inc., Mendota Heights, Minnesota, July 2007.

[37] S. Tsogkas and S. Dickinson. Amat: Medial axis transform

for natural images. In The IEEE International Conference on

Computer Vision (ICCV), Oct 2017.

[38] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler. A

higher-order crf model for road network extraction. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1698–1705, 2013.

[39] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

[40] T. Zhang and C. Y. Suen. A fast parallel algorithm for

thinning digital patterns. Communications of the ACM,

27(3):236–239, 1984.

[41] G. Zhao, J. Wang, and Z. Zhang. Random shifting for cnn:

a solution to reduce information loss in down-sampling lay-

ers. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI-17, pages 3476–

3482, 2017.

[42] J. Zhao and S. You. Road network extraction from air-

borne lidar data using scene context. In Computer Vision

and Pattern Recognition Workshops (CVPRW), 2012 IEEE

Computer Society Conference on, pages 9–16. IEEE, 2012.

1746

