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Abstract

We present an audio-visual multimodal approach for the

task of zero-shot learning (ZSL) for classification and re-

trieval of videos. ZSL has been studied extensively in the

recent past but has primarily been limited to visual modal-

ity and to images. We demonstrate that both audio and

visual modalities are important for ZSL for videos. Since

a dataset to study the task is currently not available, we

also construct an appropriate multimodal dataset with 33
classes containing 156, 416 videos, from an existing large

scale audio event dataset. We empirically show that the per-

formance improves by adding audio modality for both tasks

of zero-shot classification and retrieval, when using multi-

modal extensions of embedding learning methods. We also

propose a novel method to predict the ‘dominant’ modal-

ity using a jointly learned modality attention network. We

learn the attention in a semi-supervised setting and thus do

not require any additional explicit labelling for the modali-

ties. We provide qualitative validation of the modality spe-

cific attention, which also successfully generalizes to un-

seen test classes.

1. Introduction

Zero-shot learning (ZSL) refers to the setting when test

time data comes from classes that were not seen during

training. In the past few years, ZSL for classification has

received significant attention [1–9] due to the challenging

nature of the problem, and its relevance to real world set-

tings, where a trained model deployed in the field may en-

counter classes for which no examples were available dur-

ing training. Initially, ZSL was proposed and studied in the

setting where the test examples were from unseen classes

and were classified into one of the unseen classes only [6].

This however is an artificial/controlled setting. More re-

cent ZSL works thus focus on a setting where unseen test

examples are classified into both seen and unseen classes

[2, 9, 10]. The present work follows the latter setting known

as the Generalized ZSL.

The majority of work involving generalized ZSL [3, 10]
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Figure 1. Illustration of the proposed method. We jointly embed

all videos, audios and text labels into the same embedding space.

We learn the space such that the corresponding embedding vec-

tors for the same classes have lower distances than those of differ-

ent classes. Once embeddings are learned, ZSL classification and

crossmodal retrieval can be posed as a nearest neighbor search in

the embedding space.

has (i) worked with images, and (ii) used only visual repre-

sentations along with text embeddings of the classes. When

dealing with images, this is optimal. However, for the task

of video ZSL, the audio modality, if available, may help

with the task by providing complementary information. Ig-

noring the audio modality completely might even render

an otherwise easy classification task difficult, eg. if we are

looking to classify an example from the ‘dog’ class, the dog

might be highly occluded and not properly visible in the

video, but the barking sound might be prominent.

In this work, we study the problem of ZSL for videos

with general classes like, ‘dog’, ‘sewing machine’, ‘ambu-

lance’, ‘camera’, ‘rain’, and propose to use audio modality

in addition to the visual modality. ZSL for videos is rela-

tively less studied, cf. ZSL for images. There are several

works on video ZSL for the specific task of human action

recognition [11–13] but they ignored the audio modality as

well. Our focus here is on leveraging both audio and video

modalities to learn a joint projection space for audio, video

and text (class labels). In such an embedding space, ZSL

tasks can be formulated as nearest neighbor searches (Fig. 1
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illustrates the point). When doing classification, a new test

video is embedded into the space and the nearest class em-

bedding is predicted to be its class. Similarly, when doing

retrieval, the nearest video or audio embeddings are pre-

dicted to be its semantic retrieval outputs.

We propose cross-modal extensions of the embedding-

based ZSL approach based on triplet loss for learning such

a joint embedding space. We optimize an objective based

on (i) two cross-modal triplet losses, one each for ensuring

compatibility between the text (class labels) and the video,

and the text and the audio, and (ii) another loss based on

crossmodal compatibility of the audio and visual embed-

dings. While the triplet losses encourage the audio and

video embeddings to come closer to respective class em-

beddings in the common space, the audio-visual crossmodal

loss encourages the audio and video embeddings from the

same sample to be similar. These losses together ensure

that the three embeddings of the same class are closer to

each other relative to their distance from those of differ-

ent classes. The crossmodal loss term is an ℓ2 loss, and

uses paired audio-video data, the annotation being trivially

available from the videos. While the text-audio and text-

video triplet losses use class annotations available for the

seen classes during training, the crossmodal term uses the

trivial constraint that audio and video from the same exam-

ple are similar.

As another contribution, we also propose a modality at-

tention based extension, which first seeks to identify the

‘dominant’ modality and then makes a decision based on

that modality only if possible. To clarify our intuition of

‘dominant’, we refer back to the dog video example above,

where the dog may be occluded but barking is prominent. In

this case, we would like the audio modality to be predicted

as dominant, and subsequently be used to make the class

prediction. In case the attention network is not able to de-

cide a clear dominant modality the inference then continues

using both the modalities. This leads to a more interpretable

model which can also indicate which modality it is basing

its decision on. Furthermore, we show empirically that us-

ing such attention learning improves the performance, and

brings it to be competitive to model trained on a concatena-

tion of both modality features.

A suitable dataset was not available for the task of audio-

visual ZSL. Hence, we construct a multimodal dataset with

class level annotations. The dataset is a subset of a recently

published large scale dataset, called Audioset [14], which

was primarily created for audio event detection and main-

tains a comprehensive sound vocabulary. We subsample the

dataset to allow studying the task of audiovisual ZSL in a

controlled setup. In particular, the subsampling ensures that

(i) the classes have relatively high number of examples, with

the minimum number of examples in any class being 292,

(ii) the classes belong to diverse groups, eg. animals, vehi-

cles, weather events, (ii) the set of unseen classes is such

that the pre-trained video networks could be used without

violating the zero-shot condition, ie. the pre-training did not

involve classes close to the unseen classes in our dataset.

We provide more details in Sec. 4.

In summary, our contributions are as follows. (i) We in-

troduce the problem of audiovisual ZSL for videos, (ii) we

construct a suitable dataset to study the task, (iii) we pro-

pose a multimodal embedding based ZSL method for classi-

fication and crossmodal retrieval, (iv) we propose a modal-

ity attention based method, which indicates which modality

is dominant and was used to make the decision. We thor-

oughly evaluate our method on the dataset and show that

considering audio modality, whenever appropriate, helps

video ZSL tasks. We also show our method on standard

ZSL datasets and results for some existing ZSL approaches

for single-modality in our dataset as well. We also present

qualitative results highlighting the improved cases using the

proposed methods.

2. Related Work

Zero-shot learning (ZSL). ZSL has been quite popular for

image classification [1–9, 15–18], and recently has been

used for object detection in images as well [19–21]. The

problem has been often addressed as a task of embedding

learning, where the images and their class labels are em-

bedded in a common space. The two types of class em-

beddings commonly used in the literature are based on (i)

attributes like shape, color, and pose [2, 5, 6, 9], and (ii)

semantic word embeddings [2, 4, 7, 9]. Few works have

also used both the embeddings together [1, 8, 16]. Different

from embedding learning, few recent works [2, 9, 22, 23]

have proposed to generate the data for the unseen class us-

ing a generative approach conditioned on the attribute vec-

tors. The classifiers are then learned using the original data

for the seen classes and the generated data for the unseen

classes. This line of work follows the recent success of im-

age generation methods [24, 25]. The initially-studied set-

ting in ZSL refers to the one where the test examples were

classified into unseen test classes only [6]. However, more

recently the generalized version was proposed where they

are classified into both seen and unseen classes [3]. We ad-

dress this later more practical setting1.

Work on ZSL involving audio modality is scarce. We are

aware of only one very recent work, where the idea of ZSL

has been used to recognize unseen phonemes for multilin-

gual speech recognition [26].

Audiovisual learning. In the last few years, there has been

a significant growth in research efforts that leverage infor-

mation from audio modality to aid visual learning tasks and

1Some earlier video retrieval works were called zero-shot, however,

they are not strictly zero-shot in the current sense. Kindly see Supplemen-

tary material for a detailed discussion
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vice-versa. Audio modality has been exploited for applica-

tions such as, audiovisual correspondence learning [27–30],

audiovisual source separation [31, 32] and source localiza-

tion [33–35]. Among the representative works, Owens et

al. [28] used CNNs to predict, in a self-supervised way, if a

given pair of audio and video clip is temporally aligned or

not. The learned representations are subsequently used to

perform sound source localization, and audio-visual action

recognition. In a task of crossmodal biometric matching,

Nagrani et al. [36] proposed to match a given voice sam-

ple against two or more faces. Arandjelovic et al. [33] in-

troduced the task of audio-visual correspondence learning,

where a network comprising visual and audio subnetworks

was trained to learn semantic correspondence between au-

dio and visual data. Along the similar lines, Arandjelovic

et al. [29] and Sencoak et al. [35] investigated the prob-

lem of localizing objects in an image corresponding to a

sound input. Gao et al. [32] proposed a multi-instance

multilabel learning framework to address the audiovisual

source separation problem, where they extract different au-

dio components and associate them with the visual objects

in a video. Ephrat et al. [37] proposed a joint audiovisual

model to address the classical cocktail party problem (blind

speech source separation). Zhao et al. [31] proposed a self-

supervised learning framework to address the problem of

pixel-level (audio) source localization [38].

3. Coordinated Joint Multimodal Embeddings

We now present our method in detail. Fig. 1 illustrates

the basic idea and Fig. 2 gives the high level block diagram

of the proposed method. Our method works by projecting

all three inputs, audio, video and text, onto a common em-

bedding space such that class constraints and crossmodal

similarity constraints are satisfied. The class constraints

are enforced using bimodal triplet losses between audio and

text, and video and text embeddings. Denoting ai,vi, ti
as the audio, video and text embedding (we explain how we

obtain them shortly) for an example i, we define the bimodal

triplet losses as follows

LTA(ap, tp,aq, tq) = [d(ap, tp)− d(aq, tp) + δ]
+

(1)

LTV (vp, tp,vq, tq) = [d(vp, tp)− d(vq, tp) + δ]
+

(2)

where, (ap,vp, tp) and (aq,vq, tq) are two example videos

with tp 6= tq and both tp, tq belong to a seen class each.

These losses force the audio and video embeddings to be

closer to the correct class embedding by a margin δ > 0 cf.

the incorrect class embeddings.

We also use a third loss to ensure the crossmodal simi-

larity between the audio-video streams that come from the

same video in the common embedding space. This loss is

simply a ℓ2 loss given by

LAV (ap,vp) = ‖ap − vp‖
2
2. (3)

‘dog’: label for second example

second class example video and audio

first class example video and audio

‘cat’: label for first example

spectrogram

spectrogram

Figure 2. Block diagram of the proposed approach. Pairs of video,

audio and text networks share weights.

The full loss function is thus a weighted average of these

three losses.

L = λ
∑

p∈T

LAV + γ
∑

p,q∈T
yp 6=yq

{αvLTV + αaLTA} , (4)

where, λ, γ, αv, αa are the hyperparameters that control the

contributions of the different terms, and T is the index set

over the training examples {(ai,vi, yi)|i = 1, . . . , N} with

yi being the class label. With these three losses over all pair-

wise combinations of the modalities, ie. LTV ,LTA,LAV ,

we force the embeddings from all the three modalities to re-

spect the class memberships and similarities.

Representations and parameters. We now need to specify

the parameters over which these losses are optimized. We

represent each of the three types of inputs, ie. audio, video,

and text, using the corresponding state-of-the-art neural net-

works outputs which we denote as fa(·), fv(·), ft(·). We

project each representation with corresponding neural net-

works which are small MLPs, denoted as ga(·), gv(·), gt(·)
with parameters θa, θv, θt (we give details about all these

networks in the implementation details Sec. 5). Finally,

the representations are obtained by passing the input au-

dio/video/text through the corresponding networks sequen-

tially, ie. x = gx ◦ fx(X) where x ∈ a,v, t and X is the

corresponding raw audio/video/text input. We keep the ini-

tial network parameters fixed to be that of the pretrained

networks and optimize over the parameters of the projec-

tion networks. Hence, the full optimization is given as,

θ∗a, θ
∗
v , θ

∗
t = argmin

θa,θv,θt

L(T ). (5)

We train for the parameters using standard backpropagation

for neural networks.
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Inference. Once the model has been learned, we use nearest

neighbor in the embedding space for making predictions. In

the case of classification, the audio and video are embedded

in the space and the class embedding with the minimum

average distance with them is taken as the prediction, ie.

t
∗ = argmin

t

{d(a, t) + d(v, t)} . (6)

In the case of (crossmodal) retrieval, the sorted list of audio

or video examples are returned as the result, based on their

distance from the query in the embedding space.

Modality attention based learning. In the prequel, the

method learns to make a prediction (classification or re-

trieval) using both the audio as well as video modalities. We

augment our method to predict modality attention to find

the dominant modality for each sample, eg. in case when

the object is occluded or not visible, but the characteristic

sound is clearly present we want the network to be able to

make the decision based on the audio modality only. We

incorporate such attention by adding an attention predictor

network fattn(·), with parameters θattn, which takes the

concatenated audio and video features as inputs and pre-

dicts a scalar α ∈ [0, 1] which gives us the relative impor-

tance weights αv = α, αa = 1−α in eq. 4. All the network

parameters are then learned jointly.

To further guide the attention network, we use the intu-

ition that when one modality is dominant, say audio, the

correct class embedding is expected to be much closer to

the audio embedding, than the other classes cf. the video

embedding. Hence the entropy of the prediction probability

distribution over classes, for the dominant modality, should

be very low. To compute such distribution, we first com-

pute the inverse of the distances of the query embedding

to all the class embeddings, and then ℓ1 normalize the vec-

tor. We then derive a supervisory signal for α using the en-

tropies computed w.r.t. audio and video modalities, denoted

ea, ev ∈ [0, logNc] where Nc is the number of classes over

which prediction is being done, as

α =







0, if ev < ea − ξ

1, if ea < ev − ξ

0.5, otherwise

(7)

where, ξ > 0 is a threshold parameter for preferring one

of the modalities based on their entropy difference. The

modality attention objective becomes, Lattn = L+LCE−α,

where L is the objective from eq. 4, LCE−α is the cross en-

tropy loss on α based on the generated supervision above.

This loss is minimized jointly over all θa, θv, θt, θattn.

Modality selective inference with attention. While atten-

tion is interesting at training as it helps identify the domi-

nant modality and learn better models. We also use attention

to make inference using only the predicted dominant modal-

ity at test time. When the predicted attention is higher than

a threshold for one of the modalities we only compute dis-

tance for that modality in the embedding space and use that

to make the prediction.

We could also use the above computed α value based

on the difference of entropies of the prediction distributions

(eq. 7) at test time, even when not training with modality

attention. We use that as a baseline to verify that learning to

predict the attention helps improve the performance.

Calibrated stacking in generalized ZSL (GZSL). The

common problem with GZSL setting is that the classifier

is always biased to wards the seen classes. This reduces the

performance for the unseen classes as the unseen examples

are often misclassified to one of the seen classes. A sim-

ple approach to handle this was proposed in [3], where the

authors suggested to reduce the scores for the seen classes.

The amount β by which the scores are additively reduced

for the seen classes, is a parameter which needs to be tuned.

We use the approach of calibrated stacking, and as we are

working with distances instead of similarities, we use the

modified prediction rule at inference, given by

t
∗ = argmin

t,c∈{S+U}

{dc(x, t) + βI(c ∈ S)} , (8)

where, x can be audio, video or concatenated feature, I is

the indicator function which is 1 when the input condition

is true and 0 otherwise. S,U represent the set of seen and

unseen classes respectively.

4. Proposed AudioSet ZSL Dataset

A large scale audio dataset, AudioSet [14], was recently

released containing segments from in-the-wild YouTube

videos (with audio). These videos are weakly annotated

with different types of audio events ranging from human

and animal sounds to musical instruments and environmen-

tal sound. In total, there are 527 audio events, and each

video segment is annotated with multiple labels.

The original dataset being highly diverse and rich, is of-

ten used in parts to address specific tasks [32, 39].

To study the task of audiovisual ZSL, we construct a

subset of the Audioset containing 156416 video segments.

We refer to this subset as the AudioSetZSL. While the

original dataset was multilabel, the example videos were

selected such that every video in AudioSetZSL has only

one label, ie. it is a multiclass dataset. Fig. 3 shows the num-

ber of examples for different classes in AudioSetZSL,

Tab. 1 gives some statistics.

We follow the steps below to create the AudioSetZSL:

(i) We remove classes with confidence score (for annota-

tion quality) less than 0.7, (ii) we then determine the group

of classes that are semantically similar, e.g. animals, vehi-

cles, water bodies. We do so to ensure that the seen and

unseen classes for ZSL have some similarities and the task
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Figure 3. Distribution of the different classes in AudioSetZSL.

Apart from these three other classes included in the dataset are

dog, bird and car containing 12646, 25153 and 38315 examples.

The unseen classes are appended with a ‘*’.

min max mean std. dev.

292 38315 4739.88 7693.10
Table 1. Statistics on the number of examples per class for the

AudioSetZSL dataset.

is feasible with the dataset. (iii) After selecting the group of

classes, we discard correlated classes and classes with very

few examples within those groups, obtaining 33 classes. we

call two classes correlated if one of them is a subclass of

other as per the ontology in original dataset. (iv) We then

remove the examples which correspond to more than one of

the 33 classes to keep the dataset multiclass. We finally re-

move the examples that are no longer available on YouTube.

Tab. 1 and Fig. 3 give some statistics and more details are

in the supplementary document.

To create the seen, unseen splits for ZSL tasks, we se-

lected a total of 10 classes spanning all the groups as the

zero-shot classes (marked with ‘*’ in Fig. 3). We ensure that

the unseen classes have minimal overlap with the Kinetics

dataset [40] training classes as we use CNNs pre-trained

on that. We do so by not choosing any class whose class

embedding similarity is greater than 0.8 with any of the Ki-

netics train class embeddings in the word2vec space.

We finally split, both the seen and unseen classes, as

60− 20− 20 into train, validation and test sets. We set the

protocol to be as follows. Train on the train classes and then

test on seen class examples and unseen class examples, both

being classified into one of all the classes. The performance

measure is mean class accuracies for seen classes and un-

seen classes and the harmonic mean of these two values,

following that in image based ZSL work [10].

5. Experiments

Implementation details The audio network fa(·) is based

on that of [41], and is trained on the spectrogram of the

audio clips in the train set of our dataset. We obtain the

audio features after seven conv layers of the network, and

average them to obtain 1024D vector. The video network,

denoted as fv(·) is an inflated 3D CNN network which is

pretrained on the Kinetics dataset [40] and a large video

dataset of action recognition. We also obtain the video fea-

tures form the layer before the classification layer and aver-

age them to get a vector of 1024D. Finally the text network,

denoted as ft(·) is the well known word2vec network pre-

trained on Wikipedia [42] with output dimension of 300D.

The projection model for text embeddings was fixed to

be a single layer network, where as for the audio and video

was fixed to be a two layer network, with the output di-

mensions matching for all. In order to find the seen/unseen

class bias parameter β we divide the maximum and min-

imum possible value of β into 25 equal intervals and then

evaluate performances on the val set. We chose the best per-

forming β among those.

Evaluation and performance metrics. We report the mean

class accuracy (% mAcc) for the classification task and the

mean average precision (% mAP) for the retrieval task. The

performance for the seen (S) and unseen (U) classes are

obtained after classification (retrieval) over all the classes

(S and U). The harmonic mean HM of S and U indicates

how well the system performs on both seen and unseen cat-

egories on average. For classification, we classify each test

example, and for retrieval, we perform leave-one-out test-

ing, ie. each test example is considered as a query with the

rest being the gallery. The performance reported is (mean

class) averaged. A less strict metric (arithmetic mean of S

and U ) is often used in case of zero-shot retrieval [43, 44],

which is not exactly correct.

Methods reported. We report performances of audio and

video only methods, ie. only the respective modality is used

to test and train. We also report a naive combination by

concatenation of features from audio and video modalities

before learning the projection to the common space. This

method allows zero-shot classification and retrieval only

when both the modalities are available, and it does not allow

crossmodal retrieval at all. We then report performances

with the proposed Coordinated Joint Multimodal Embed-

dings (CJME) method, when modality attention is used and

when it is not used. In either of the cases, we can choose

dominant modality (or not) based on the α value (eq. 7). We

report with both the cases.

We also compare our approach to two other baseline

methods, namely pre-trained features and GCCA. In ‘Pre-

trained’ method the raw features obtained from the individ-

ual modality pre-trained network are directly used for re-

trieval as both are of same dimensions. This can be consid-

ered as one of the lower bound since no common projection

is learned for the different modalities in this case. GCCA
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Figure 4. Effect of classification performance for model M1 (left)

and model M2 (right) with different values of bias parameter.

Train Modality Test Modality S U HM

audio audio 28.35 18.35 22.22

CJME audio 25.58 20.30 22.64

video video 43.27 27.11 33.34

CJME video 41.53 28.76 33.99

both (concat) both 45.83 27.91 34.70

CJME both 30.29 31.30 30.79

CJME (no attn) audio or video 31.72 26.31 28.76

CJME (w/ attn) audio or video 41.07 29.58 34.39

Table 2. Zero-shot classification performances (% mAcc) achieved

with audio only, video only, and both audio and video used for

training and test. Note that the audio and video concatenation

model requires both the modalities to be available during testing.

[45] or Generalized Canonical Correlation Analysis is the

standard extension of the Canonical Correlation Analysis

(CCA) method from two-set method to multi-set method,

where the correlation between the example pair from each

sets are maximized. We use here the GCCA to maximize

the correlation between all the three modalities (text, audio

and video) for every example triplet in the dataset.

5.1. Quantitative Evaluation

Evaluation of calibrated stacking performance. We have

shown the improvement in performance with the approach

of calibrated stacking in Fig. 4. This shows the perfor-

mances with different values of the bias parameter, ie. accu-

racies for seen and unseen classes, as well as their harmonic

means. We observe that the performance increases with the

initial increase in bias, and then falls after a certain point as

expected. We choose the best performing value of the class

bias on the val set and then fix it for the experiments on test

set.

Zero-shot audio-visual classification. Tab. 2 gives the

performances of the different models for the task of zero-

shot classification. We make multiple observations here.

The video modality performs better than the audio modality

for the task (33.34 vs. 22.22 HM), which is interesting as the

original dataset was constructed for audio event detection.

We also observe that when both audio and video modalities

are used by simply concatenating the feature from the re-

spective pre-trained networks, the performance increases to

34.70. This shows that adding the audio modality is help-

ful for zero-shot classification. Our coordinated joint mul-

Model Test S U HM

pre-trained T→ A 3.83 1.66 2.32

GCCA [45] T→ A 49.84 2.39 4.56

audio T→ A 43.16 3.34 6.20

CJME T→ A 48.24 3.32 6.21

pre-trained T→ V 3.83 2.53 3.05

GCCA [45] T→ V 57.67 3.54 6.67

video T→ V 48.62 5.25 9.47

CJME T→ V 59.39 5.55 10.15

both (concat) T→ AV 63.13 7.80 13.88

CJME T→ AV 65.45 5.40 9.97

CJME (no attn) T→ A or V 65.74 5.09 9.45

CJME (w/ attn) T→ A or V 62.97 5.67 10.41

Table 3. Zero-shot retrieval performances (% mAP) achieved by

models when audio only, video only, and both audio and video

modalities are used for training and test. Note that the audio and

video concatenation based model requires both modalities at test

time also and can not predict using any single one.

timodal embeddings (denoted CJME in the table) improves

the performance of video and audio only models on the re-

spective test sets by modest but consistent margins. This

highlights the efficacy of the proposed method to learn joint

embeddings which are comparable (slightly better) than in-

dividually trained models.

The performance of the proposed method is lower with-

out attention learning and selective modality based test

time prediction cf. the concatenated input model (30.79 vs.

34.70), but is comparable to it when trained and tested with

attention (34.39). Also, when we do not train for atten-

tion but use selective modality based prediction the perfor-

mance falls (28.76). Both these comparisons validate that

the modality attention learning is an important addition to

the base multimodal embedding learning framework.

Zero-shot audio-visual retrieval. Tab. 3 compares the per-

formances of different models for the task of zero-shot re-

trieval. The performance on the unseen classes are quite

poor, albeit it is approximately three times the baseline pre-

trained performance. This is because of the bias towards

the seen classes in generalized ZSL. This happens for clas-

sification setting as well but is corrected for explicitly by

reducing the scores of the seen classes. However, in a re-

trieval scenario, since the class of the gallery set member is

not known in general, such correction can not be applied.

We tried classifying the gallery sets first and then apply-

ing the seen/unseen class bias correction, however that did

not improve results possibly because of erroneous classifi-

cations.

We observe, from Tab. 3, similar trends as with zero-

shot classification. The proposed CJME performs similar

to audio only (6.20 vs. 6.21) and slightly better than video

only (9.47 vs. 10.15) models but consistently outperforms

both pre-trained and GCCA model. Compared to the au-

dio and video features concatenated model, the performance

without modality attention based training are lower (13.88
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Model Test S U HM

pre-trained audio → video 3.61 2.37 2.86

GCCA [45] audio → video 22.12 3.65 6.26

CJME audio → video 26.87 4.31 7.43

pre-trained video → audio 4.22 2.57 3.19

GCCA [45] video → audio 26.68 2.98 5.26

CJME video → audio 29.33 4.35 7.58

Table 4. Zero-shot crossmodal retrieval performances (% mAP).

LAV LTA LTV S U HM

✗ ✗ ✓ 1.26 10.13 2.24

✗ ✓ ✗ 3.00 4.18 3.49

✗ ✓ ✓ 31.20 28.47 29.77

✓ ✗ ✓ 30.39 27.31 28.76

✓ ✓ ✗ 30.07 25.06 27.33

✓ ✓ ✓ 33.29 28.18 30.53

Table 5. Ablation study to verify the contribution of different loss

terms on val set. Performances for proposed CJME (with atten-

tion) method on zero-shot classification (% mAcc)

vs. 9.47) which improve upon using attention at training

(10.41), albeit staying a little lower cf. similar in the classi-

fication case. We thus conclude that CJME is as good as au-

dio only or video only model and is competitive cf. concate-

nated features model, while allowing crossmodal retrieval,

which we evaluate next.

Crossmodal retrieval. Since CJME learns to embed both

audio and video modality in a common space, it allows for

doing crossmodal retrieval from audio to video and vice-

versa. Tab. 4 gives the performances of such crossmodal

retrieval from audio and video domains. We observe that

the retrieval accuracy in the case of crossmodal retrieval are

7.43 and 7.58 for audio to video and video to audio respec-

tively. Due to the inability to do seen/unseen class bias cor-

rection, we observe a large gap between the retrieval perfor-

mance of seen classes cf. unseen classes, which stays true in

the case of crossmodal retrival as well. The performance is

still three times better than the raw pre-trained features. We

believe these are encouraging initial results on the challeng-

ing task of audio-visual crossmodal retrieval on real world

unconstrained videos in zero-shot setting.

Ablation of the different loss components. Tab. 5 gives

the performances on val set in the different cases when we

selectively turn off different combination of losses in the op-

timization objective eq. 4. We observe that all three losses

contribute positively towards the performance. When ei-

ther of the triplet loss is turned off, the performance dras-

tically fall to ∼ 3, but when the crossmodal audio-video

loss is added with one of the triplet losses turned off, they

recover to reasonable values ∼ 28. Compared to the final

performance of 30.53, when the text-audio, text-video and

audio-video losses are turned off, the performances fall to

28.76, 27.33 and 29.77 respectively. Thus we conclude that

each component in the loss function is useful and that the

networks (which are already pre-trained on auxiliary classi-

fication tasks) need to be trained for the current task to give

meaningful results.

5.2. Comparison with state of the art methods

We address both possible issues, ie. (i) our implementa-

tion is competitive w.r.t. other methods on standard datasets,

and (ii) how do other methods compare on the proposed

AudioSetZSL dataset, by providing additional results.

Tab. 6 gives the performance of our implementation on

other datasets (existing method performances are taken

from Xian et al. [10]).

We observe that our method is competitive to other meth-

ods on an average. Tab. 7 gives the classification perfor-

mance of other methods using our features on the proposed

dataset. We see that our method performs better than many

existing methods (eg. ALE 33.0 vs. CJME 34.4). Hence we

conclude that our implementation and method, both, per-

form comparable to existing appearance based ZSL meth-

ods. Tab. 7 also shows that adding audio improves the video

only ZSL from 33.3 to 34.4 HM.

In these comparisons, we have not included some of

the recent generative approaches [2, 9] which handles the

task by conditional generation of examples form the unseen

classes. Although these approaches increase the perfor-

mance but they come with the drawback of soft-max clas-

sification, which requires the classifier to be trained form

scratch once again if a new class is added to the existing

setup at test time. This also requires saving all the training

data for generative approaches while in the projection based

methods, this is not required.

5.3. Qualitative evaluation

Fig. 5 shows qualitative crossmodal retrieval results for

all three pairs of modalities, ie. text to audio/video, audio

to video and video to audio. We see that method makes

acceptable mistakes, eg. for the car text query one of the

audio retrieval contains motorbike due to the similar sound,

for the bird video query the wrong retrieval is a cat purring

sound which is similar to a pigeon sound. In the unseen

class case, the bus text query return car, train and truck

audio as the top false positives. Easier and distinct cases

such as gunshot audio query gives very good video re-

trievals. We encourage the readers to look at the result

videos available at https://www.cse.iitk.ac.in/

users/kranti/avzsl.html for a better understand-

ing of qualitative results.

6. Conclusion

We presented a novel method, which we call Coordi-

nated Crossmodal Joint Embeddings (CJME), for the task of

audio visual zero-shot classification and retrieval of videos.

The method learns to embeds audio, video and text into a
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SUN CUB AWA1 AWA2

Method U S HM U S HM U S HM U S HM

CONSE [7] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0

DEVISE [4] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8

SAE [17] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2

ESZSL [5] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0

ALE [8] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9

CJME 30.2 23.7 26.6 35.6 26.1 30.1 29.8 47.9 36.7 51.9 36.8 43.1

Table 6. Comparison with existing methods on standard datasets (projection based methods

only, see Sec. 5.2 for details)

Modality

Method train test S U HM

CONSE [7] video video 48.5 19.6 27.9

DEVISE [4] video video 39.8 26.0 31.5

SAE [17] video video 29.3 19.3 23.2

ESZSL [5] video video 33.8 19.0 24.3

ALE [8] video video 47.9 25.2 33.0

CJME video video 43.2 27.1 33.3

CJME both video 41.5 28.8 33.9

CJME both both 41.0 29.5 34.4

Table 7. Comparison with existing methods

on proposed dataset (projection based meth-

ods only, see Sec. 5.2 for details)
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Figure 5. Qualitative crossmodal retrieval results with the proposed method. Each block of two rows from top to bottom corresponds to text

to audio, text to video, audio to video and video to video respectively. The small icons on the left top of each image indicates the modality

considered for that specific video. Please see detailed results video in the supplementary material.

common embedding space and then performs nearest neigh-

bor retrieval in that space for classification and retrieval.

The loss function we propose has three components, two bi-

modal text-audio and text-video triplet losses, and an audio-

video crossmodal similarity based loss. Motivated by the

fact that the two modalities might carry different amount

of information for different examples, we also proposed a

modality attention learning framework. The attention part

learns to predict the dominant modality for the task, ie. if the

object is occluded but the audio is clear, and base the pre-

diction on that modality only. We reported extensive exper-

iments to validate the method and showed advantages of the

method over baselines, as well as demonstrated crossmodal

retrieval which is not possible with the baseline methods.

We also constructed a dataset appropriate for the task which

is a subset of a large scale unconstrained dataset for audio

event detection in video.
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