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Andrés F. Pérez1, Valentina Sanguineti1,2, Pietro Morerio1, Vittorio Murino1,3,4

andres.perez@mail.polimi.it {valentina.sanguineti, pietro.morerio, vittorio.murino}@iit.it
1Pattern Analysis & Computer Vision - Istituto Italiano di Tecnologia, 2Università degli Studi di Genova, Italy,

3Computer Science Department - Università di Verona, Italy, 4Huawei Technologies Ltd., Ireland Research Center

Abstract

In this paper, we investigate how to learn rich and ro-

bust feature representations for audio classification from vi-

sual data and acoustic images, a novel audio data modality.

Former models learn audio representations from raw sig-

nals or spectral data acquired by a single microphone, with

remarkable results in classification and retrieval. How-

ever, such representations are not so robust towards vari-

able environmental sound conditions. We tackle this draw-

back by exploiting a new multimodal labeled action recog-

nition dataset acquired by a hybrid audio-visual sensor that

provides RGB video, raw audio signals, and spatialized

acoustic data, also known as acoustic images, where the

visual and acoustic images are aligned in space and syn-

chronized in time. Using this richer information, we train

audio deep learning models in a teacher-student fashion. In

particular, we distill knowledge into audio networks from

both visual and acoustic image teachers. Our experiments

suggest that the learned representations are more powerful

and have better generalization capabilities than the features

learned from models trained using just single-microphone

audio data.

1. Introduction

Humans experience the world through a number of

simultaneous sensory observation streams. The co-

occurrence of these streams provides a useful learning sig-

nal to understand the environment surrounding us [13].

There is in fact evidence that audio-visual mirror neurons

play a central role in the recognition of actions given their

temporal synchronization [4]. Furthermore, it was found

that many neurons with receptive fields spatially aligned

across modalities show a super-additive response to coin-

cident and co-localized multimodal stimulations [44].

In this paper, motivated by these findings, we investigate

whether and how visual and acoustic data synchronized in

time and aligned in space can be exploited for scene under-

standing. We take advantage of a recent audio-visual sen-

Figure 1. Left: multispectral acoustic image volume associated

to the audio content of the sensed scene. It has two spatial dimen-

sions (aligned with the visual image space) and a frequency axis

of 512 bins that cover the sensor’s audible range. Each image in

the volume represents the spatial audio information associated to

each frequency bin. Right: visualization (as heat color map) of an

acoustic image formed by summing the energy of every frequency

bin between 900Hz and 6400Hz for each spatial location, over-

laid on the corresponding video frame.

sor, called DualCam, composed by an optical camera and a

2D planar array of microphones (see Figure 3), able to pro-

vide spatially localized acoustic data aligned with the cor-

responding optical image (see Figure 1, right) [47]. Specifi-

cally, by combining the raw signals acquired by 128 micro-

phones (by beamforming [43]), this sensor is able to output

an acoustic image where each pixel represents the imprint

of the sound coming from the corresponding pixel location

in the optical image. Using this sensor, we generate a new

multimodal dataset depicting different subjects performing

several actions in multiple scenarios. By exploiting spatial-

ized audio information coupled to the related visual data

and designing suitable multimodal deep learning models,

we aim at generating more discriminant and robust features,

likely resulting in a better description of the scene content

for robust audio classification. Figure 1 shows the multi-

spectral acoustic image used as input data, which has 512

frequency bins and an example of visualization of an acous-

tic image overlaid upon an optical image.

The idea of leveraging the co-occurrence of visual and

audio events as supervisory signal is not new. Former ap-

proaches in the pre deep-learning era combined visual and
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auditory signals in rather simplistic ways. For instance, in

[45] a neural network was trained to predict the auditory

signal given the visual input. A particularly relevant ear-

lier work is [8], which introduced a self-supervised learn-

ing algorithm for jointly training audio and visual networks

by minimizing codebook disagreement. Another interest-

ing work is [22], which presented an algorithm based on

canonical correlation analysis (CCA) to detect pixels asso-

ciated to the sound, while filtering out other dynamic (but

silent) pixels.

Several recent works address audio-related tasks such

as natural sound recognition [25], speech separation and

enhancement [1, 10], audio event classification or sound

source localization [34, 41], either by directly modeling

raw audio signals with 1D convolutions [5, 30, 36] or, most

popularly, by modeling intermediate sound representations

such as spectrograms or cochleograms [2, 3, 32, 31, 37, 38,

39, 46]. Nevertheless, none of the past works tried to exploit

spatially localized acoustic data to assess the potentialities

of such richer information source.

In our work, we claim that it is possible to train audio

deep learning models to face an action recognition prob-

lem in a more robust way across different scenarios utiliz-

ing a teacher-student framework able to distill knowledge

[12, 27] from state-of-the-art vision network models and

from a novel architecture that operates on the spatialized

acoustic data. Similarly to [29], our intuition is to learn

better features for a given modality assuming the availabil-

ity of other complementary modalities at training time. We

leverage video and multispectral acoustic image sequences

aligned in space/time as side information at training, and

predict actions given only a raw audio signal acquired by a

single microphone at test, in a cross-scenario setting, where

the environmental noise conditions are significantly differ-

ent. Current methods, even best deep learning models, lead

to very low classification accuracies [14, 28] in such condi-

tions.

Hence, in essence, in this work we try to answer the fol-

lowing question: Does spatialized data allow to learn more

discriminant features for single-microphone audio classifi-

cation? In this respect, our main contributions can be sum-

marized as follows.

1. We propose a thorough study to assess whether visual

and acoustic data aligned in space and synchronized

in time bring advantage for single-microphone audio

classification.

2. We introduce a new multimodal dataset consisting in

14 action classes, in which acoustic and visual data are

spatially aligned. This type of multi-sensory data has

no counterpart in the literature and may lead to further

studies by the scientific community.

3. We develop a deep teacher-student model to deal with

such new data, showing that it is indeed possible to ex-

tract semantically richer representations for improving

audio classification from single microphone. In par-

ticular, we distill knowledge learned from spatialized

audio-visual modalities to a single-microphone model.

It is worth to note that we are the first to propose an al-

gorithm in which the transfer of knowledge involves teacher

models considering 2 different modalities (2D audio and 2D

visual data) and the student model is devised for a different

modality (1D audio signal), when typically the student deals

with the task of one of the teacher models.

We validate our approach 1) on the proposed action

dataset, and 2) by transferring learned representations on

a standard sound classification benchmark dataset, demon-

strating remarkable capabilities and the usefulness of distil-

lation for cross-scenario learning.

The remainder of this paper is organized as follows. We

first discuss the related work in Section 2, mainly focus-

ing on audio-visual models and benchmark datasets. In

Section 3, we describe our new acquired multimodal ac-

tion dataset, and in Section 4, we describe acoustic im-

age pre-processing and we propose the network architec-

ture to deal with acoustic images. In Section 5, we present

our distillation-based approach to deal with multispectral

acoustic data, and in Section 6, we extensively validate our

proposed framework by devising a set of experiments in or-

der to assess the soundness of the learned representations.

Finally, we draw conclusions in Section 7.

2. Related Work

We briefly review related work in the areas of mul-

timodal learning, video and sound self-supervision, and

transfer learning. We also review already existing audio and

audio-visual datasets.

Multimodal learning. Multimodal learning concerns

relating information from multiple data modalities. Such

data provides complementary semantic information due to

correlations in between them [29]. We consider the cross-

modality learning setting, in which data from multiple

modalities is available only during training, while only data

from a single modality is provided at testing phase. In [6, 7]

the authors learn shared representations from multimodal

aligned data and use them for cross-modal retrieval. [6]

for instance considers three major natural modalities: vi-

sion, sound and language, while [7] considers five weakly

aligned modalities: natural images, sketches, clip art, spa-

tial text, and descriptions. Other works such as [12, 19]

utilize RGB video images and depth information to learn

feature representations through modality hallucination. In

our work instead, we consider RGB video images, raw au-

dio and acoustic images for training phase, and only raw

audio at testing time.
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Video and sound self-supervision. There has been in-

creased interest in using deep learning models for mul-

timodal fusion of auditory and visual signals to improve

the performance of visual models or solve various speech-

related problems, such as speech separation and enhance-

ment.

First approaches trained single networks on one modal-

ity using the other one to derive some sort of supervisory

signal [5, 16, 32, 31, 33]. For example [5, 16] train an audio

network to correlate with visual outputs using pre-trained

visual networks as a teacher. Others such as [31, 32] train

a visual network to generate sounds by solving a regression

problem consisting in mapping a sequence of video frames

to a sequence of audio features. In [33] instead, they learn

visual models using ambient sounds as scene labels.

More recent works [2, 3, 9, 30, 37] train both visual and

audio networks aiming at learning multimodal representa-

tions useful for many applications, such as cross-modal re-

trieval, speech separation, sound source localization, action

recognition, and on/off-screen audio source separation. For

instance in [2, 3] they learn aligned audio-visual represen-

tations, using an audio-visual correspondence task. In [30]

they train an early-fusion multisensory network to predict

whether video frames and audio are temporally aligned. In

[37] a two-stream network structure is trained utilizing an

attention mechanism guided by sound information to local-

ize the sound source.

They key factor in all these works is that they exploit the

natural synchronization between auditory and visual signals

by training in a self-supervised manner. Although we ad-

dress our problem in a pseudo-supervised manner using a

combination of hard and soft labels, we notice that the nat-

ural spatial alignment and time synchronization of the data

produced by the DualCam sensor opens the door to also

train models through self-supervision.

Transfer learning. Our work is strongly related to trans-

fer learning which deals with sharing information from one

task to another. In particular we transfer knowledge be-

tween networks operating on different data modalities (see

Section 5). We perform transferring with the aid of the gen-

eralized distillation framework which proposes to use the

teacher-student approach from the distillation theory to ex-

tract knowledge from a privileged information source [27],

also called a teacher. In our case the privileged informa-

tion leveraged at training time is represented by the addi-

tional modalities, i.e. video and acoustic images. A rather

simple transfer mechanism is that of [5] which proposes a

teacher-student self-supervised training procedure based on

the Kullback-Leibler divergence to transfer knowledge from

a vision model into sound modality using unlabeled video

as a bridge. This mechanism resembles the generalized dis-

tillation framework, however they only rely on the teacher

soft labels which are in general less reliable than hard la-

bels. An interesting work is [19] which introduces a novel

technique for incorporating additional information, in the

form of depth images, at training time to improve test time

RGB only detection models. We draw inspiration from [12]

which addresses action recognition by distilling knowledge

from a depth network into a vision network. They accom-

plish this by training a hallucination network [19] that learns

to distill depth features. It is worth noticing that although

[12] works with different data modalities, it is the closest

to ours since they transfer knowledge with the aid of the

generalized distillation framework.

Audio-visual datasets. Due to recent interest in audio-

visual and multimodal learning, several audio and audio-

visual datasets have emerged. Here we summarize some of

the most prominent ones.

Flickr-SoundNet [5] is a large unlabelled dataset of

completely unconstrained videos from Flickr, compiled by

searching for popular tags and dictionary words. It contains

over 2 million videos which total for over one year of con-

tinuous natural sound and video.

Kinetics-Sounds [2] comprises a subset of the Kinet-

ics dataset [21], which contains YouTube videos manually

annotated for human actions, and cropped to 10 seconds

around the action. The subset contains 19k video clips

formed by filtering the Kinetics dataset for 34 human ac-

tion classes, which have been chosen to be potentially man-

ifested visually and aurally.

FAIR-Play [11] is an unlabelled video dataset with bin-

aural audio that mimics human hearing. It consists of 1.871

short clips of 10 seconds long musical performances, total-

ing 5.2 hours. It depicts different combinations of people

playing musical instruments including cello, guitar, drum,

ukelele, harp, piano, trumpet, upright bass, and banjo, in

a large music room, in solo, duet, and multiplayer perfor-

mances.

Environmental Sound Classification (ESC-50) [35] is a

labeled collection of 2.000 environmental audio recordings

manually extracted from Freesound. It consists of 5 sec-

onds long recordings organized into 50 semantical classes

loosely arranged into five major categories: animals, natural

soundscapes & water sounds, human non-speech sounds,

interior/domestic sounds, and exterior/urban noise.

Detection and Classification of Acoustic Scenes and

Events (DCASE) [28] is a dataset consistent of of record-

ings from various acoustic scenes. It was recorded in six

large European cities, in different locations for each scene

class. For each recording location there are 5 to 6 minutes

of audio split into segments of 10 seconds.

The closest dataset to ours is FAIR-Play because of its

size and the nature of its data, since binaural audio is a form

of spatial audio. Similarly to Kinetics-Sounds we propose a

dataset of human actions, but with data in multiple modali-

ties which try to describe more realistic conditions.
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3. Audio-Visually Indicated Action Dataset

We introduce a new multimodal dataset comprised of

visual data as RGB image sequences and acoustic data as

raw audio signals acquired from 128 microphones. The

latter signals, opportunely combined by a beamforming al-

gorithm, compose a multispectral acoustic image volume,

which is aligned in space and time with the optical images

(see Figure 1). The following 14 actions were chosen:

1. Clapping

2. Snapping fingers

3. Speaking

4. Whistling

5. Playing kendama

6. Clicking

7. Typing

8. Knocking

9. Hammering

10. Peanut breaking

11. Paper ripping

12. Plastic crumpling

13. Paper shaking

14. Stick dropping

For the acquisition, we acknowledge the participation of

9 people performing the aforementioned actions recorded in

three different scenarios, with increasing and varying noise

conditions, namely, an anechoic room, an indoor open space

area, and a terrace outdoor. We name them scenario 1,

2, and 3, respectively. In our dataset, the same action is

performed by different subjects in distinct places, so allow-

ing to show the equivariance properties of the multispectral

acoustic images across subjects, scenarios and position in

the scene, which are exploited when learning audio features

from an acoustic teacher model. In the end, the dataset con-

sists of 378 audio-visual video sequences (27 per action)

between 30 and 60 seconds depicting different people indi-

vidually performing a set of actions producing a character-

istic sound in each scenario. Figure 2 shows representative

samples of our dataset for the 3 considered scenarios.

(a) (b) (c)

Figure 2. Three examples of Audio-Visual Indicated Actions

dataset represented as video frame, acoustic image visualization

overlaid on the frame, and raw waveform (from a single micro-

phone). (a) Speaking in anechoic room. (b) Hammering in the

indoor open space area. (c) Playing Kendama in the terrace.

We acquired the dataset using the DualCam acoustic-

optical camera described in [47]. The sensor captures both

audio and video data using a 0.45m×0.45m planar array of

128 low-cost digital MEMS microphones located according

to an optimized aperiodic layout, and a video camera placed

at the device center as depicted in Figure 3.

Figure 3. DualCam acoustic-optical camera.

The device is capable of acquiring audio data in the range

200Hz – 10 kHz and audio-video sequences at a frame

rate of 12 fps. In our acquisition setup the camera was

static looking at the scene, while the subjects moved around

within its field of view at a minimum distance of 2 meters

from the device.

After collecting the dataset, audio and video data had to

be synchronized since they were acquired in an interleaved

way at different frame rates.

The data provided by the sensor consists in RGB video

frames of 640×480 pixels, raw audio data from 128 micro-

phones acquired at a frequency of 12 kHz, and 36×48×512
multispectral acoustic images obtained from the raw audio

signals of all the microphones using beamforming, which

summarize the per-direction audio information in the fre-

quency domain. This means that each acoustic pixel corre-

sponds to 13,3 visual pixels, in fact acoustic resolution is

lower than optical one. Among the raw audio waveforms,

we choose the one of just one microphone for testing single

microphone audio networks.

4. Learning with Acoustic Images

In this section, we describe acoustic images representa-

tion, their pre-processing and the network architecture we

proposed for modelling this novel type of data.

Acoustic Images Pre-processing. Multispectral acous-

tic images are generated with the frequency implementation

of the filter-and-sum beamforming algorithm [43], aimed at

producing a volume of size 36× 48, with 512 channels cor-

responding to the frequency bins which represent the fre-

quency information. Full details of the algorithm can be

found in [47].

Handling input acoustic images with 512 channels is

a computationally expensive task and typically the major-

ity of information in our dataset is contained in the low
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frequencies. Consequently, we decided to compress the

acoustic images using Mel-Frequency Cepstral Coefficients

(MFCC), which consider audio human perception charac-

teristics [40]. Therefore, we compute 12 MFCC, going

from from 36 × 48 × 512-D volumes to 36 × 48 × 12-D

volumes, retaining the most important information and re-

ducing consistently the computational complexity and the

memory footprint.

DualCamNet Architecture. Acoustic images provide

a small temporal support which is generally not enough

for discriminating information over time intervals of several

seconds. For this reason, we feed to our network a set of 12

consecutive 36× 48× 12 acoustic images corresponding to

1 second of audio data. We deem that 1 second of acoustic

images is a reasonable trade-off between sound information

content and processing cost.

In order to train a model able to discriminate information

from acoustic images, we explicitly model both the spatial

and the temporal relationships among them. To this end, we

propose the architecture structure shown in Figure 4a which

utilizes 3D convolutions as commonly done in visual action

recognition [42], where the spatial and temporal convolu-

tions are decoupled.

We follow the LeNet [24] design style, with 5 × 5 con-

volutional filters, and 2 × 2 max-pooling layers with stride

1 and zero-padding to keep the spatial resolution. The net-

work includes 3 blocks of convolutional layers plus a block

of 3 fully convolutional layers which produces the output

prediction.

The first block consists of a single 1D convolutional

layer over time followed by a ReLU nonlinearity. The aim

of this layer is modeling the temporal relationship of con-

secutive acoustic images by aggregating them. In particular,

we apply a filter of size 7 with stride 1 and zero-padding to

keep the temporal resolution. We experimented with several

filters sizes finding 7 to be the best one.

The second and third blocks model the spatial equivari-

ance of the acoustic images and consist of a 2D convolu-

tional layer followed by max-pooling. We go from the 12

channels of the input to 32 channels and then double it to

64. Each convolutional layer is followed by batch normal-

ization [20] and ReLU nonlinearity.

The final block comprises 3 fully convolutional layers

with ReLU in between. It converts the input feature map

into a 14-D classification vector as output, namely the pre-

dicted class probabilities, using intermediate features size

of 1024-D and 1000-D.

This model will be used as teacher network in our vali-

dation experiments.

5. Model Distillation

In this section, we describe the utilized network archi-

tectures and the knowledge transfer procedure.

(a) DualCamNet (b) OursSound-

Net

(c) HearNet

Figure 4. Our proposed networks. (a) DualCamNet architecture,

used as teacher model. (b) OursSoundNet architecture, used as

student model. (c) HearNet architecture, used as student model.

5.1. Architectures

Similarly to [12], we utilize data from multiple modali-

ties at training phase, and only data from a single modality

at testing phase. We leverage either RGB video images or

multispectral acoustic images in training as side informa-

tion, and we test only on audio data from a single micro-

phone.

We want to emphasize here that, to the best of our knowl-

edge, this is the first time that model distillation is per-

formed from modalities different from those utilized in test-

ing. Specifically, we train on 2-dimensional spatialized au-

dio and video data, to improve accuracy on a model working

on mono-dimensional audio signals only as input. As fur-

ther original aspect, [12] trains one ResNet-50 [17] network

per stream, while we use different network architectures for

each stream of our model.

Teacher Networks. For the visual stream, we experi-

mented with two models, ResNet-50 [17] and its variation

including 3D temporal convolutions introduced in [12], here

called Temporal ResNet-50. We choose ResNet-50 respect

to Temporal ResNet-50 as it provides a good compromise

between network size and accuracy. On the other hand,

Temporal ResNet-50 stands as a strong action recognition

model dealing with action dynamics with the aid of tem-

poral connections between residual units. It has also been
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selected since it constitutes a powerful baseline model to

compare with. DualCamNet, explained earlier in Section 4,

will be used as teacher model as well in the following.

Student Networks. Regarding the raw audio waveform

stream, we experimented two models that capture different

characteristics of audio data. The first one is SoundNet [5],

which operates over time domain signals. We preferred the

5-layer version over the 8-layer one, as our dataset is not big

enough to allow SoundNet to grasp the underlying data pat-

terns. We used the exact same architecture described in [6],

adding 3 fully convolutional layers at the bottom of the net-

work with 1024, 1000 and 14 filters, respectively. To avoid

further confusion, we named our version OurSoundNet.

The second model is a network based on the sound sub-

network presented in [6], called from here on, HearNet. Its

architecture is shown in Figure 4c. This network operates

on amplitude spectrograms obtained from an audio wave-

form of 5 seconds, upsampled to 22 kHz. Such spectro-

gram was produced by computing the STFT 1 considering

a window length of 20ms with half-window overlap. This

produces 500 windows with 257 frequency bands. The re-

sulting 500 × 1 × 257 spectrogram is interpreted as a 257-

dimensional signal over 500 time steps.

HearNet processes spectrograms with 3 1D convolutions

using kernel sizes 11, 5, 3, and 128, 256, 256 filters, re-

spectively, with stride 1. The last convolutional layers are

fully convolutional and use 1024, 1024, 1000 and 14 filters

to obtain the class predictions. We applied zero-padding in

all layers except conv4 in order to keep the spatial resolu-

tion. The chosen activation function is ReLU. After each

of the first 3 convolutional layers, we downsampled with

one-dimensional max-pooling by a factor of 5.

5.2. Training procedure

Following the generalized distillation framework [27],

we first learn a teacher function ft ∈ Ft by solving a classi-

fication problem and, second, we compute the teacher soft

labels si. As third step, we distill ft ∈ Ft into fs ∈ Fs by

using both the hard and soft labels. The knowledge transfer

procedure is graphically illustrated in Figure 5.

In particular we transfer knowledge between multiple

modality network streams by using Hinton’s distillation loss

[18] to extract knowledge from privileged representations.

More formally, we distill the teacher learned representation

ft ∈ Ft into fs ∈ Fs as follows:

fs = argmin
f∈Fs

1

n

n∑

i=1

(1− λ)ℓ(yi, σ(f(xi))) + λℓ(si, σ(f(xi))),

(1)

where si = σ(ft(x
∗

i
/T )) ∈ δc are the soft labels derived

from the teacher about the training data, Ft and Fs are

classes of functions described by the teacher and student

1Short-Time Fourier Transform

models [27], respectively, σ is the softmax operator, and yi
are the ground truth hard labels. The imitation parameter

λ ∈ [0, 1] allows to balance the weight of soft labels with

respect to the true hard labels yi. The temperature parameter

T > 0 allows to smoothen the probability vector predicted

by the teacher network ft.

Figure 5. Teacher-student training procedure

6. Experimental Results

Our goal is to learn feature representations for raw au-

dio data by transferring knowledge across networks oper-

ating on different data modalities. To evaluate how well

our method addresses this problem we perform two sets

of experiments with the objectives of 1) showing the im-

provement brought by distilling knowledge from different

data modality networks and 2) assessing the quality of the

distilled representations on a standard sound classification

benchmark.

6.1. Acoustic Features Transfer

In this first set of experiments, we evaluate the perfor-

mance of the teacher and student networks on the task of

action recognition on our dataset. We train both the teacher

and student networks in a fully supervised manner using

action labels as ground truth, and only the student networks

following the distillation procedure described in Section 5.

In all cases we trained for 100 epochs2 with batches of 32

elements using the Adam optimizer [23] with learning rates

of 1× 10−3 and 1× 10−4 (see details in Supplementary

Material). In order to measure the generalization capabili-

ties of the learned representations, we evaluate the accuracy

of our trained models on a cross-scenario setting, i.e. when

the model is trained on certain scenario, it is tested on the

other two scenarios using all the available data. In all cases

the data was split by assigning 80% of them for training,

10% for validation and 10% for test.

Teachers Networks. First, we train our DualCamNet

model and the two proposed visual networks, ResNet-50

2The number of iterations varies with the size of the training set.
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and Temporal ResNet-50, as they constitute our baselines.

Table 1 shows their performance. We observe that our Du-

alCamNet convincingly outperforms the visual networks in

all combination of scenarios. This indicates that most of the

actions in our dataset are better distinguishable aurally than

visually. One possible explanation for this, is that in the

majority of the cases the ”object” involved in the action ex-

ecution, e.g. mouth, mouse or hammer, is not easily visible

but has a characteristic sound signature.

A comparison of the two visual networks reveals that

they achieve similar results throughout all configurations,

indicating that motion is not a key factor to model the ac-

tions performed in our dataset. Consequently, we choose

ResNet-50 over Temporal ResNet-50 as visual teacher for

the rest of the experiments since the former one has a sim-

pler structure.

Additionally, we have designed a hybrid network which

combines the output of the DualCamNet and ResNet-50,

to check whether modality fusion brings any performance

improvement. We do so by concatenating the 1024 fea-

ture volumes of the two networks and processing them with

two fully convolutional layers of 1000 and 14 filters, re-

spectively. This network achieves a 7.1% improvement in

accuracy with respect to DualCamNet when trained over all

scenarios. It is important to note that it also consistently

improves the testing accuracy in all cross-scenario configu-

rations (see Table 1, AV column). These findings indicate

some benefits brought by modality fusion that can be further

explored in future research.

Train set Test set D R T AV

Scenario 1

Scenario 1 0.8470 0.6965 0.7117 0.8775

Scenario 2 0.2938 0.2955 0.2616 0.3490

Scenario 3 0.1471 0.1355 0.1410 0.1528

Scenario 2

Scenario 1 0.2986 0.1918 0.1844 0.3060

Scenario 2 0.7600 0.5838 0.4987 0.7418

Scenario 3 0.1504 0.1486 0.1243 0.2049

Scenario 3

Scenario 1 0.2309 0.1479 0.1571 0.2767

Scenario 2 0.2032 0.1229 0.1063 0.2182

Scenario 3 0.6736 0.2240 0.3013 0.5708

All All
0.7702 0.6335 0.6393 0.8412

scenarios scenarios

Table 1. Test accuracy for teacher models. D: DualCamNet. R:

ResNet-50 [17]. T: Temporal ResNet-50 [12]. AV: AVNet.

Student Networks. In order to measure the improve-

ment brought by distillation, we need to look first at the

performance of the two proposed student networks when

trained only from hard labels only. Column G from Tables 2

and 3 show the accuracy results for OurSoundNet and Hear-

Net, respectively. It can be observed that both networks per-

form well, with HearNet achieving a higher accuracy in all

scenarios settings.

This result is impressive considering that OurSoundNet

was fine-tuned from SoundNet-5 which was trained on the

Flickr-SoundNet dataset, while HearNet instead was trained

from scratch on our dataset. A reasonable explanation for

this is that shallow networks such as HearNet perform better

under small data regimes.

Train set Test set G D R

Scenario 1

Scenario 1 0.4881 0.6071 0.5238

Scenario 2 0.4114 0.4669 0.4378

Scenario 3 0.1958 0.2844 0.1958

Scenario 2

Scenario 1 0.4339 0.3598 0.4220

Scenario 2 0.3333 0.3810 0.2619

Scenario 3 0.1931 0.1799 0.1786

Scenario 3

Scenario 1 0.3796 0.4352 0.3955

Scenario 2 0.2513 0.3386 0.2725

Scenario 3 0.3690 0.3452 0.2619

All scenarios All scenarios 0.4102 0.5299 0.4145

Table 2. Test accuracy for OurSoundNet trained with distinct

supervisory information. G: Ground truth hard labels. D: Dual-

CamNet soft labels. R: ResNet-50 soft labels.

Train set Test set G D R

Scenario 1

Scenario 1 0.6548 0.7857 0.7262

Scenario 2 0.4286 0.4325 0.4960

Scenario 3 0.1627 0.1825 0.2989

Scenario 2

Scenario 1 0.4100 0.5542 0.5106

Scenario 2 0.3214 0.2619 0.4524

Scenario 3 0.1627 0.1825 0.1799

Scenario 3

Scenario 1 0.3307 0.3770 0.4405

Scenario 2 0.2976 0.3056 0.2765

Scenario 3 0.5000 0.6190 0.6071

All scenarios All scenarios 0.6966 0.7009 0.6282

Table 3. Test accuracy for HearNet [6] trained with distinct super-

visory information. G: Ground truth hard labels. D: DualCamNet

soft labels. R: ResNet-50 soft labels.

Teacher-Student Networks. Finally, we compare the

performance of the student networks when trained by dis-

tilling knowledge from the teacher networks. These results

are shown in columns D and R from Tables 2 and 3.

We observe that whenever we perform training by trans-

ferring either from DualCamNet or ResNet-50 using data

from scenario 1, we obtain better results and good general-

ization. When transferring from DualCamNet, the improve-

ment can be ascribed to the fact that data acquired in the

anechoic room is cleaner than in other scenarios. Similarly,

when transferring from ResNet-50, there is little clutter in

the scene, allowing the network to easily capture the objects

involved in the action execution.

Such ideal conditions do not occur in scenarios 3 and (es-

pecially) in scenario 2, which are considerably more acous-

tically noisy and visually cluttered. In particular the worst

case is scenario 2, where echoes are even more disturbing

than background noise of scenario 3. In fact, in scenario 3,

distilling from DualCamNet improves accuracy in all cases
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except for the OurSoundNet student tested on scenario 3.

We are not able to improve results in all testing scenarios

when training on scenario 2 as echoes introduce too much

noise. ResNet-50 soft labels, on the contrary, do not always

guarantee an increase in accuracy neither in scenario 2 nor

in scenario 3.

Overall we thus notice that distillation from DualCam-

Net provides higher improvement over distillation from

ResNet-50, especially when training on all scenarios. In

some exceptional cases, the teacher is able to help the stu-

dent even though it could not achieve a good accuracy.

For instance, ResNet-50 trained on the scenario 3 achieves

a 22.4% test accuracy and HearNet on the same setting

reaches 50.0% but, when transferring from the ResNet-50

to HearNet the accuracy improves up to 60.71%.

We validated the chosen hyper-parameters, and found

T = 1 and λ = 0.5 to be the best temperature value and

imitation parameter, respectively. This means that we keep

the teacher predictions unchanged and give them equal im-

portance than to the hard labels. Interestingly our finding

about λ is consistent with that of [12].

In summary, these results show that knowledge distilla-

tion allows learning more robust features given there is not

much noise corrupting the data.

6.2. Acoustic Features Quality Assessment

Finally, we tested our student networks trained through

distillation on a simple classification task on a standard

sound benchmark, the DCASE-2018 dataset [28]. Specif-

ically, we performed both k-NN and SVM classification on

the features extracted with our distilled student networks

to verify whether the learned representations were general

enough to perform well in a different audio domain.

Table 4 reports our results in comparison with those

obtained from established baselines [28, 26, 15] which

were trained on DCASE-2018 and that of SoundNet-5 pre-

trained on Flickr-SoundNet.

For OurSoundNet, we employed features both from the

fc1 and conv4 layers, in order to be comparable with the

conv5 and conv4 of the original SoundNet-5. We notice

that OurSoundNet/conv4 outperforms OurSoundNet/fc1 by

around 14%. This might be because fc1 has learned feature

which are very specific for our dataset. On the other hand,

conv4 layer features for both models perform similarly, be-

cause they captures less class-specific information, so also

OurSoundNet has more general features.

Finally, for HearNet we considered the features from

fc1 and some convolutional layers. We observe that lower

layer learn features which are more general and thus trans-

fer better to DCASE-2018. This is reasonable since higher

layer encode more label-specific information, and this net-

work was trained from scratch on our dataset. Perfor-

mances of Hearnet lower layers are similar to those of Our-

Features Training Dataset Test accuracy

Mesaros et al. [28] DCASE-2018 0.597

Liping et al. [26] DCASE-2018 0.798

Golubkov et al. [15] DCASE-2018 0.801

HearNet/fc1 Ours 0.2419 0.2609

HearNet/conv5 Ours 0.2488 0.2740

HearNet/conv4 Ours 0.2631 0.2967

HearNet/conv3 Ours 0.2754 0.3100

HearNet/conv2 Ours 0.2810 0.3403

OurSoundNet/fc1 Flickr-SoundNet+Ours 0.2746 0.3014

OurSoundNet/conv4 Flickr-SoundNet+Ours 0.4067 0.4420

SoundNet-5/conv5 Flickr-SoundNet 0.4180 0.4643

SoundNet-5/conv4 Flickr-SoundNet 0.4184 0.4275

Table 4. Dataset transfer results for DCASE-2018 [28]. Feature

extracted by the models distilled from DualCamNet presented in

Section 5 are fed into k-NN (left) and SVM (right) classifiers. The

number of nearest neighbours is validated on the validation set.

SoundNet/fc1, which was pre-trained on Flickr-SoundNet,

but was then adapted to our dataset. In conclusion, fea-

tures learned with our dataset, which comprises 3 hours

of videos, transfer reasonably well to DCASE if compared

to features learned from the huge Flickr-SoundNet (2M

videos).

7. Conclusions

In this work, we investigate whether and how it is pos-

sible to transfer knowledge from visual data and spatialized

sound, namely, acoustic images, in order to improve audio

classification from single microphone. To this end, we take

advantage of a special sensor, DualCam, an acoustic-optical

camera that provides in output audio-visual data synchro-

nized in time and spatially aligned. Using this sensor, we

acquired a novel audio-visually indicated action dataset in

3 different scenarios, from which we aim at extracting in-

formation useful for audio classification.

The peculiar nature of the generated acoustic images

synchronized with optical frames, never studied before, led

to the design of deep learning models in the context of the

teacher-student paradigm, in order to assess if this informa-

tion was transferable and indeed useful for single-channel

audio classification. We highlight here that the proposed

teacher-student framework is the first able to distill from 2D

visual data and acoustic images to a model taking as input a

1D modality, namely, audio signals.

On a set of experiments, in which we learnt from visual

data and acoustic images separately, we found out that the

distilled models are effective in the audio classification task.

Future work aims at further exploring the capabilities of this

sensor for detection, recognition, self-supervised learning,

sound source localization and cross-modal retrieval.
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