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Abstract

MobileNet and Binary Neural Networks are two among

the most widely used techniques to construct deep learning

models for performing a variety of tasks on mobile and em-

bedded platforms. In this paper, we present a simple yet

efficient scheme to exploit MobileNet binarization at acti-

vation function and model weights. However, training a bi-

nary network from scratch with separable depth-wise and

point-wise convolutions in case of MobileNet is not trivial

and prone to divergence. To tackle this training issue, we

propose a novel neural network architecture, namely MoBi-

Net - Mobile Binary Network in which skip connections are

manipulated to prevent information loss and vanishing gra-

dient, thus facilitate the training process. More importantly,

while existing binary neural networks often make use of

cumbersome backbones such as Alex-Net, ResNet, VGG-16

with float-type pre-trained weights initialization, our MoBi-

Net focuses on binarizing the already-compressed neural

networks like MobileNet without the need of a pre-trained

model to start with. Therefore, our proposal results in an

effectively small model while keeping the accuracy compa-

rable to existing ones. Experiments on ImageNet dataset

show the potential of the MoBiNet as it achieves 54.40%

top-1 accuracy and dramatically reduces the computational

cost with binary operators.

1. Introduction

The rising of Convolution Neural Networks (CNNs)

in Deep Learning has resulted in a variety of significant

improvements in complicated tasks such as object detec-

tion [7, 42, 32, 56, 55, 46, 47, 54, 16], object segmenta-

tion [10, 35, 26, 27], text classification [23, 43], etc. These

impressive outcomes have been attributed to the learning ca-

pability of the million-parameter structure of convolutional

layers in neural networks. Intuitively saying, the complexity

of CNNs should be proportional to its capacity and hence,

there always exists a trade-off between accuracy and com-

putational cost of a CNN model.

Image classification [12, 25, 48] has attracted many re-

search efforts in recent years. ImageNet [5] stands out

to be one of the most popular datasets used for evaluat-

ing classification accuracy. This dataset contains millions

of images categorized into a wide range of contexts which

make the classification task extremely challenging. To cope

with this, many models have been proposed: Alex-Net [25],

VGG-16 [48], Inception [49], ResNet [12]. These networks

are powerful but cumbersome, therefore the deployment on

portable and mobile devices is not preferable. To be more

specific, Alex-Net and VGG-16 Caffe [21] models are over

200MB and 500MB in size, and take 725M FLOPs and 16

GFLOPs respectively in terms of computational cost. To

better suit mobile devices, some techniques have emerged,

shedding light on deep compressed neural networks, in-

cluding model pruning [9, 8, 33, 15], light-weight mod-

ules [17, 45, 14], binary network [18, 3, 41, 4] and mim-

icked network [30, 50].

Building a small but efficient neural network is not triv-

ial. We want to optimize the number of model parameters

while preserving comparable accuracy and facilitating ease

of training. Pruning methods shrink model size by elimi-

nating insignificant channels that cause redundant compu-

tation. However, the search for such channels is expensive

and requires to be done in an attentive manner. Light-weight

networks such as SqueezeNet [20], MobileNet [17, 45],

ShuffleNet [51, 36], ESPNet [44] achieve promising results

for not only image classification but object detection and

segmentation as well.

Recently applying ideas of AutoML, [13] takes advan-

tage of reinforcement learning to improve the network com-

pression. Additionally, an innovative neural network called

Neural Architecture Search (NASNet) [57, 58, 40] exam-

ines a database of dimension convolution layers to automate

an effective architecture design, surpassing prior human-

defined neural networks. However, the search for proper

modules is terribly complicated and demands a vast amount

of computational resources to serve an exhaustive training

3453



process. Another approach is network binarization which

consists of manipulating boolean-type parameters to ap-

proximate the deep neural network calculation, so-called

Binary Neural Networks (BNNs) [3, 4]. There are sev-

eral advantages of BNNs. Firstly, thanks to the use of 1-bit

representation, the model shrinkage is guaranteed by a pro-

portional factor 32x compared to the traditional 32-bit float

type. Secondly, with binary, multiplication of activations

and 1-bit weights can be replaced by the bit-wise opera-

tion that undoubtedly results in a speed-up. Moreover, xnor

and popcount operators are utilized to expedite the neural

networks [41]. From the engineering perspective, these op-

erators can be easily implemented on either GPU or CPU-

based devices. Finally, even though the binary network’s ac-

curacy trade-off is not always negligible in comparison with

the float-type counterparts, impressive reduction of compu-

tational expense and storage requirement makes deep binary

neural network potential for practical applications.

Observing that the binarization of lightweight modules

in neural networks can gain considerable outcomes, in this

paper we propose Mobile Binary Network (or MoBiNet),

a network that significantly compresses MobileNet [17] to

only a few megabytes while preserving good accuracy com-

pared to other similar models [3, 4, 41]. MobileNet feeds

data into a depth-wise convolution, then integrates the out-

put with a point-wise convolution, achieving an impressive

classification accuracy on the ImageNet dataset [5]. Bina-

rizing the separable depth-wise module is not straightfor-

ward due to double-approximation issue: (i) the float-type

depth-wise is an imitation of standard float-type convolu-

tion behavior and (ii) binary depth-wise is an approxima-

tion of the float-type depth-wise. Training a deep neural

network consisting of binary depth-wise modules is chal-

lenging and prone to divergence due to loss of information

and vanishing gradient. To tackle the problem, we intro-

duced skip connections and channel dependency enhance-

ment between separable layers for vanishing gradient avoid-

ance through depth-wise layers. We propose three mod-

ules to ease the construction of skip connections: Pre-block,

Mid-block, and Post-block where we can observe a conver-

gence guarantee over training epochs. On the other hand,

our MoBiNet facilitates the training from scratch, without

the need of having a pre-trained model to start with. The

architecture is illustrated in Fig. 1.

The main contributions of the paper are as follows:

• We propose a novel compressed architecture called

MoBiNet that leverages channel connections and bi-

narizes depth-wise convolution layers. Training from

scratch, the MoBiNet with binary separable convolu-

tional layers dramatically improves speed and model

size (to only a few megabytes) of neural networks

while preserving comparable accuracy to state-of-the-

art models.

• We propose the use of skip connections to support

the non-trivial network training when binarization hap-

pens at both activations and weights of the depth-wise

convolution. The MoBiNet exploits this dual binariza-

tion on the lightweight module consisting of separable

convolutions.

• We propose the use of K-dependency to keep the

MoBiNet small and efficient. Instead of increasing

the number of convolution channels for better perfor-

mance (and also larger model size), we control depen-

dency within channels in depth-wise convolution lay-

ers.

We experimentally show promising results of MoBiNet to

solve image classification in the ImageNet dataset. The

result demonstrates the potential of MoBiNet, while be-

ing efficiently small, can achieve comparable accuracy

and speed as other state-of-the-art large binary neural net-

works [41, 34] and even surpass them.

2. Related works

Binarized networks. The weights in deep neural networks

are often presented in full-precision or float-type values

which requires much memory to store and takes time to

deploy convolutional operators in the networks. There are

some ideas to convert full-precision networks into binary

networks. Courbariaux and Bengio et al. [18, 3, 4] pro-

posed an approach to constrain weight values to either −1
or 1, considered as the foundation of binary networks. To be

efficient, the binary networks approximate binary values for

both weights and activations that bring up comparable per-

formance on traditional datasets: MNIST [28], SVHN [38],

and CIFAR-10 [24]. To accelerate the inference process,

BinaryNet [41] used xnor and popcount operator to ob-

tain a 7x faster runtime on GPU. However, the BinaryNet

does not guarantee a good accuracy on more challenging

and diverse dataset like the ImageNet. Rastegari et al. [41]

proposed Binary Weight Network (BWN) and XNOR-Net

which outperform the aforementioned methods on Ima-

geNet by more than 16% in Top-1 accuracy. Nevertheless,

BWN only requires weights to be binary while XNOR-Net

binarizes the input as well. The scale factors in XNOR-

Net help retain the high-level information, even BWN on

AlexNet [25] gains 56.8%, slightly better than its full pre-

cision (56.6%). Another approach named Bi-Real Net [34]

improves BNNs in terms of activations and weight binariza-

tion for ResNet [12], using derivative sign function approx-

imation. It also improves weight magnitude related to the

gradient, then combines with a pre-trained float-type model

and gains impressive accuracy of 56.4% and 62.2% with

ResNet-18 and ResNet-34 backbone respectively.

Quantized networks. The general case of binarized net-

works is that weight values are quantized to a fewer number
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Ⓧ →

𝐷×𝐷×𝑀 𝐷×𝐷×𝑁

𝐾×𝐾×𝑀×𝑁

(a) Standard convolu-

tional module

Ⓧ → Ⓧ →

𝐾×𝐾×1×𝑀 1×1×𝑀×𝑁

𝐷×𝐷×𝑀 𝐷×𝐷×𝑀 𝐷×𝐷×𝑁

(b) MobileNet v1 dw-module [17]

Ⓧ →

𝐾×𝐾×1×𝑁1×1×𝑀×𝑁

𝐷×𝐷×𝑀 𝐷×𝐷×𝑁

Ⓧ →

𝐷×𝐷×𝑁

Ⓧ →

1×1×𝑁×𝑁

𝐷×𝐷×𝑁

(c) MoBiNet Pre-block

Ⓧ →

1×1×𝑀×𝑁𝐾×𝐾×1×𝑀

𝐷×𝐷×𝑀 𝐷×𝐷×𝑀

Ⓧ →

𝐷×𝐷×𝑁

Ⓧ →

1×1×𝑁×𝑁

𝐷×𝐷×𝑁

(d) MoBiNet Mid-block

Ⓧ →

1×1×𝑀×𝑀𝐾×𝐾×1×𝑀

𝐷×𝐷×𝑀 𝐷×𝐷×𝑀

Ⓧ →

𝐷×𝐷×𝑀

Ⓧ →

1×1×𝑀×𝑁

𝐷×𝐷×𝑁

(e) MoBiNet Post-block

Figure 1. Illustration of the standard convolutional layer, depth-wise convolution in MobileNet v1 and the three MoBiNet block designs.

The blocks are built with 1 × 1 binary convolution at different segments: right after the input (Pre-block), between the depth-wise and

the point-wise convolution (Mid-block) and right before the output (Post-block). The designs support skip connection creations that allow

avoiding loss of information and vanishing gradient when binarization.

of bits. Han et al. [8] not only pruned but also quantized un-

necessary connections, then fine-tuned remaining weights

with less bit representation to gain a speed-up factor. An-

other approach is to approximate weights as 2k [1] (k =
−2,−1, 0, 1, etc.). During the estimation, the network uti-

lizes the shift operator to make computation faster. Ternary

Weight Network (TWN) [29] is a variant of the quantized

network. It defines zero as a third value for optimizing the

cost of the BinaryNet. Zhu and Han et al. [53] proposed

an incremental approach to train TWN with ternary num-

bers (Wn, 0, Wnp) that are learnable. These settings com-

press the ternary network nearly 16x in comparison with

full-precision network and improve the accuracy on Ima-

geNet of precedent ternary networks. Although quantized

networks are potential, the deployment on mobile platforms

is not trivial and requires much effort.

3. Mobile Binary Network - MoBiNet

In this section, we describe MoBiNet architecture, our

proposed novel binary network robust for large scale image

classification problem. The depth-wise convolution layers

of MobileNet are not suitable to be directly binarized due to

accuracy loss and training convergence issue. In MoBiNet,

we modify the depth-wise convolutions to make it easier to

train, work effectively with both activations and weights bi-

narization, hence accelerate the overall network architecture

efficiency. Compared to the XNOR-Net [41], the MoBi-

Net generalizes the gradient update procedure adjusting the

model weights through back-propagation. The scaling fac-

tors for each filter are gradually tuned in an adaptive man-

ner with respect to the gradient update. To further boost the

performance of the MoBiNet, K-dependency is exploited

to enhance dependency within input and convolution chan-

nels. Thanks to this enhancement, the classification accu-

racy is significantly improved with a minor computational

cost trade-off, while the model size is remarkably kept un-

affected.

3.1. MoBiNet’s Architecture

Float-type separable depth-wise convolution of Mo-

bileNet is efficiently accurate and small in size. We build

MoBiNet with reuse of this module as it is core of the Mo-

bileNet v1 [17] architecture. MoBiNet can be considered

as a compact binary version of MobileNet. Specifically, the

separable convolution layers contain two lightweight mod-

ules: a 3 × 3 depth-wise convolution with single channel-

wise connection and a 1×1 point-wise convolution respon-

sible for linking the depth-wise output channels.

However as mentioned above, the depth-wise convolu-

tion binarization can cause severe loss of information, lead-

ing to the vanishing gradient issue during training. We no-

tice that skip connections [12] or channels connections can

reserve features through many layers, making convolution

neural networks converge steadily. From this intuition to

ease the skip connection creations, MoBiNet exploits an

additional point-wise convolution layer at three positions:
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Bin Activate

Bin 3×3 conv

PReLU

Batch Norm

Bin Activate

Bin 1×1 conv

PReLU

Batch Norm

𝐼𝑛𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡

Bin Activate

Bin 1×1 conv

PReLU

Batch Norm

Bin Activate

𝐼𝑛𝑝𝑢𝑡

Bin 3×3 conv

PReLU

Batch Norm

Bin Activate

Bin 1×1 conv

PReLU

Batch Norm

𝑂𝑢𝑡𝑝𝑢𝑡

Bin Activate

Bin 3×3 conv

PReLU

Batch Norm

Bin Activate

𝐼𝑛𝑝𝑢𝑡

Bin 1×1 conv

PReLU

Batch Norm

Bin Activate

Bin 1×1 conv

PReLU

Batch Norm

𝑂𝑢𝑡𝑝𝑢𝑡

Bin Activate

Bin 3×3 conv

PReLU

Batch Norm

Bin Activate

𝐼𝑛𝑝𝑢𝑡

Bin 1×1 conv

PReLU

Batch Norm

Bin Activate

Bin 1×1 conv

PReLU

Batch Norm

𝑂𝑢𝑡𝑝𝑢𝑡

𝐷×𝐷×𝑀

𝐷×𝐷×𝑀

𝐷×𝐷×𝑁

𝐷×𝐷×𝑀 𝐷×𝐷×𝑀 𝐷×𝐷×𝑀

𝐷×𝐷×𝑁

𝐷×𝐷×𝑁

𝐷×𝐷×𝑁

𝐷×𝐷×𝑁

𝐷×𝐷×𝑁

𝐷×𝐷×𝑀 𝐷×𝐷×𝑀

𝐷×𝐷×𝑀

𝐷×𝐷×𝑁

𝑎 Standard dw-block 𝑏 Pre-block 𝑐 Mid-block 𝑑 Post-block

⊕

⊕

⊕

⊕

⊕

⊕

Figure 2. Detail of (a) binary standard separable depth-wise structure in MobileNet v1 and the three binary MoBiNet block structures:

(b) Pre-block, (c) Mid-block and (d) Post-block. The binarization happens at both input and weights of every convolutional layer. The

convolutions are followed by PReLU and Batch Normalization sequentially.

right after the input (Pre-Block), between depth-wise and

point-wise convolution (Mid-Block), and right before the

output (Post-Block). The purpose of the block designs is

to increase skip connection operators, making separable

convolution layers able to keep original features. The ar-

chitecture detail is illustrated in Fig. 2. We also replace

ReLU [37] with PReLU [11] which ensures the conver-

gence stability of MoBiNet. The calculation flow at each

convolution segment is as follows: Input → Binary Activa-

tion → Binary Convolution → PReLU → Batch Normaliza-

tion → Output. Unlike MobileNet, to utilize skip connec-

tions MoBiNet uses Pooling layers (e.g., max/min/average

pooling) to shrink spatial dimension gradually through the

network. We opt average pooling for MoBiNet since it ex-

perimentally shows a better result than max and min pool-

ing. To prove the impact of skip connections in training

MoBiNet, we deploy ablation studies in section 4.2.

3.2. Train Mobile Binary Networks

Binary networks have recently become one of the most

prominent approaches in compressed deep neural networks

(DNNs) designs. Binary operators can help reduce the com-

putation cost greatly and 1-bit representation of weights

supports memory saving which is crucial for mobile de-

vices. To binarize weights and activations, most of BNNs

used non-linear sign function to quantize DNNs into −1
and +1 as follows:

z
b = sign(a) =

{

+1, if a > 0,
−1, otherwise

(1)

where z
b outputs a binary value and a can be weights or

activations. We follow the method described in XNOR-

Net [41] to binarize weights and activations in BNNs. How-

ever, we modify the way to update parameters to make

the training proper. Equation 5 indicates how gradient is

updated. Let’s denote W = [w1,w2, · · · ,wn], where

wi = {wij}
m

j=1, wi ∈ R
k×k×c is full-precision weight.

The activation function for the forward pass of input x is as

follow:

a
i = σ(wi

x) (2)

Let k × k be filter kernel size, a
i is an activation out-

put. The most expensive computation in DNNs is the dot-

product of inputs and weights Wx. The algorithm con-
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verts both weights and activations to 1-bit representation

to reduce the required amount of storage memory. It then

uses a convolution without multiplication operator to facil-

itate and accelerate the inference stage. W is binarized by

equation 1 and the optimal solution is W
b = sign(W) =

{wb
i}

n
i=1, wb

i ∈ {−1,+1}k×k×c. Similarly, given the input

I ∈ R
w×h×c, its binary correspondence is Ib = sign(I) ∈

{−1,+1}w×h×c. Scaling factor vector is α ∈ R
n where

αi > 0. The approach estimates scaling factors and bina-

rized both input and weights such that W ≈ α · Wb and

I ∗ W ≈ (Ib
⊙

W
b)α, where

⊙

indicates xnor-bitcount

operator. It can be formulated as an optimization problem:

min
w

b
i
,αi

∥

∥wi − αiw
b
i

∥

∥

2

2

s.t w
b
i ∈ {−1,+1}k×k×c,

αi > 0.

(3)

Denote ŵi = {αi ·wij}
m

j=1. By taking the derivative, the

optimal solution for equation 3 is wb
i = sign(wi) and α∗

i =
1

(wb
i
)Tw

b
i

|wi|l1 = 1
p
|wi|l1 = 1

p

∑m

j=1 |wij | where p =

k×k×c. It is proved that the optimal binary weights wb can

be directly computed using a sign function and the optimal

scaling factors are the average of absolute value of wi. Let

Ŵ = α·sign(W) = {ŵi}
n
i=1 be the approximation of full-

precision weights w.r.t binary weights, ŵi = αi · sign(wi).
The gradient of the loss function L w.r.t wij is computed as

follows:

∇wij
L =

(

∂L

∂wij

)T

(4)

∂L

∂wij

=
1

p
sign(wij)

m
∑

k=1

∂L

∂ŵik

w
b
ik +

∂L

∂ŵij

αi

∂wb
ij

∂wij

(5)

In practice when training, full-precision weights are bina-

rized in the forward pass. However in the backward pass,

weights are updated with full-precision values. When the

training stops, the full-precision weights are completely bi-

narized and saved with 1-bit representation.

3.3. Channels Dependency Enhancement

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡

𝐺
𝑟
𝑜
𝑢
𝑝
	1

𝐺
𝑟
𝑜
𝑢
𝑝
	2

Figure 3. Channel dependency with c = 4 and K = 1.

In this section, we present how to improve single-layer

dependency in depth-wise convolution by exploiting K-

layer dependency, or K-dependency for short. The intu-

ition is, due to the lack of channel interaction in single-

layer depth-wise, the output suffers severe information loss

and it is no longer efficient after being binarized. To cope

with this, we provide a more complex dependency between

input and convolution channels by defining the term K-

dependency. This term allows to control the dependency

level of channels and has a flavor of group convolution. Fig-

ure 3 depicts how the K-dependency is set up. In the sec-

tion 4.3, we explore the efficiency of the K-dependency by

varying K = 1, 2, 3 (i.e., splitting the input and convolution

channels into 21, 22, 23 groups) together with Pre-block,

Mid-block and Post-block integration. The term K can be

also considered as group convolutions with #groups =
c
2K

, where c is the number of input channels. If K = 0,

#groups = c, i.e., the extreme case equivalent to depth-

wise convolution. The output activation of a group g can be

computed by inner convolution operation within channels

and filters in the same group as follows:

a
g
i = σ





g
∑

j=1

w
g
i · x

g
j



 (6)

where a
g
i is the ith output activation at group g, and w

g
i , x

g
j

is the ith weight and jth input in group g.

4. Experiments and Evaluations

In this section, we analyze the efficiency our proposed

MoBiNet. Three ablation studies are conducted. The first is

to verify our hypothesis that skip connections are helpful for

separable convolution binarization, section 4.2.1 presents

comparison between mobile networks with and without skip

connection. The second is to evaluate the efficiency of

the three extra block design (Pre/Mid/Post-block) added in

MoBiNet and compare with the binary original MobileNet.

The third is, in section 4.2.3 we present efficiency of replac-

ing ReLU with PReLU for MoBiNet to increase accuracy.

In addition, in 4.3 we also demonstrate the impact of K-

dependency to the enhancement of MoBiNet, under several

selections of hyper-parameter K (K = 0, 1, 2, 3). Finally,

to indicate that our MoBiNet can achieve comparable out-

comes with the other binary neural networks we analyze

its result with the state-of-the-art binary neural networks on

five metrics: Top-1, Top-5 classification accuracy, number

of parameters, and number of FLOPs. Regarding the later

two metrics, we also point out numerical gain factors that

MoBiNet achieves.

4.1. Dataset and Implementation Details

Dataset. The image classification training and evaluation

are carried on ILSVRC12 ImageNet dataset. The ImageNet
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is a large scale and diverse dataset containing 1.2M images

for training and 50K for testing. They are classified into

1000 categories such as lionfish, airliner, red panda, etc.

We opt to use ImageNet because it is such popular that

the XNOR-Net [41] and the Bi-RealNet also use for

benchmarking purpose, thus making the comparison with

MoBiNet fair. Each image in ImageNet is scaled to the size

of 256 × 256 pixels. For training, images are randomly

cropped to fit 224 × 224. For testing, we apply center crop

with the same size of 224× 224.

Implementation details. All experiments are implemented

using PyTorch deep learning framework [39]. We run

tests with Pre-block, Mid-block, and Post-block designs for

MoBiNet. During the training of binary neural networks,

we process the float-type model and the binary model con-

currently. That means the floating-point weights are stored

in RAM for weight update through backpropagation and

they are binarized to compute activation in the next layer.

For every experiment, we train the model in 50 epochs and

learning rates are set to 10−3 to train the Pre-block and 10−4

for training the Mid-block and Post-block. We choose the

mini batch size 128, weight decay 10−5 and momentum 0.9
with Adam optimizer [22]. At some points, the convergence

becomes slow and requires manual learning rate update. To

foster the training, the three blocks receive the same multi-

plicative decrease factor 0.1 at different points of time: the

Mid-block is at 20th and 30th epoch whereas the Pre-block

and the Post-block are at 15th and 45th epoch.

In the first convolution layer, feature representation often

has a low depth dimension (e.g., 3 for visual RGB image).

To avoid the loss of crucial information, the first convolu-

tion layer is not binarized. Also, the output features ex-

tracted by MoBiNet are not binarized either to increase the

capability of classification. These make the binary model

compression factor slightly less than 32x in the context of

32-bit float type and binary type. For the rest of the net-

work, both input and weights are binarized, then multiplied

with the according scaling factors αi. Weights are updated

following Equation 5. When the training finished, the mod-

els are saved with 1-bit representation to reduce memory

storage for inference.

4.2. Ablation studies

4.2.1 The Efficiency of Skip Connections In MoBiNet

Recall that training binary separable convolution is prone to

unstable convergence due to considerable loss of informa-

tion through layers. The fact that training loss diverges in-

dicates a serious issue in the mobile binary neural network.

To overcome this obstacle, we deploy skip connections be-

tween separable convolution layers to aid the training. In

this experiment, we test the efficiency of the skip connec-

tions in MoBiNet. The skip connection performance of Pre-
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Figure 4. Convergence of Vanilla Bin-MobileNet vs MoBiNet.

block, Mid-block and Post-block is reported for training and

test phase. We also present the loss values of without-skip-

connection in vanilla binary Mobilenet through epoches in

Fig. 4 to show that training does not converge. The per-
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Figure 5. Training and testing performance (with the loss (top) and

accuracy (bottom)) when using skip connections in the three block

designs.

formance of training with skip connections is shown in Fig-

ure 5 with the three blocks. We pick K = 0, i.e., zero-

dependency and equivalent to the original depth-wise con-

volution. We stopped the training at 10th and 15th epoch to

see the effect. Even though the convergence slope and ac-

curacy are not decent due to the zero-dependency, one can

observe that the training goes steady over time. It confirms

that our hypothesis of using skip connections for separable

convolution binarization can deal with the divergence issue

by limiting the loss of information. Without loss of gen-

erality, it is applicable to binarize weights of not only in

MoBiNet but other neural networks [44, 51, 36, 2] using

depth-wise convolution as well.

4.2.2 Efficiency of MoBiNet modules: Pre-block, Mid-

block and Post-block

Skip connections clearly help mobile neural network with

separable convolution layers converge and achieve reason-

able results. To further increase the efficiency of the skip
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Networks Top-1 Accuracy (%) Top-5 Accuracy (%)

W/o blocks 25.46 47.34

Pre-block 35.86 59.46

Table 1. Top-1 and Top-5 accuracy (in percentage) comparison be-

tween MoBiNet with and without the Pre-block design
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Figure 6. Training performance: Top-1 and Top-5 accuracy of

MoBiNet with and without Pre-block through 20 first epochs.

connection and explore its potential, we proposed an incre-

mental 1× 1 point-wise convolution layer to help upsample

the features and support the skip connection creation. The

1×1 point-wise convolution layer is placed at three different

positions: right after the input (Pre-block), between depth-

wise and point-wise convolution (Mid-block), and right be-

fore the output (Post-block). Figure 2 illustrates the loca-

tions of the 1 × 1 convolution. In this evaluation, we pick

the Pre-block design as a representative to conduct experi-

ments in two scenarios: with and without the block design,

then analyze the impact. The authors also observe a consis-

tent result in the case of Mid-block and Post-block.

The experiments are set up as follows:

• We construct MoBiNet with and without Pre-block

with zero-dependency depth-wise convolution layers

(i.e., choosing K = 0).

• The MoBiNet is built with aforementioned hyper-

parameters as in section 4.1.

• When training MoBiNet with and without Pre-block

design, we run in 20 epochs, starting with an initial

learning rate of 10−4 and updating the rate at the 15th

epoch with a decay factor 0.1. The input and weights

are both binarized except the first convolutional layer

and the classifier layer right before the classification

output.

• We report Top-1 and Top-5 accuracy for comparison,

then plot the training curve through epochs.

The results are shown in Table 1 and training perfor-

mance is in Figure 6. Convergence of MoBiNet with the

blocks is more stable and gains better accuracy while the

without-block design fluctuates as the training goes on. It

Networks ReLU PReLU

Mid-block (K = 0) 32.44 34.73

Mid-block (K = 1) 48.52 50.41

Mid-block (K = 2) 49.60 52.25

Mid-block (K = 3) 51.36 53.47

Table 2. Benefit of using PReLU instead of ReLU. The accuracy

(in percentage) is reported with Top-1 accuracy on ImageNet. The

use of PReLU for MoBiNet improves the accuracy approximately

2% in comparison with ReLU.

confirms that an extra 1× 1 point-wise layer for MoBiNet’s

block design can ease the training of the separable convolu-

tion layer.

4.2.3 Efficiency of PReLU layer used in MoBiNet

To further ameliorate the MoBiNet, we replace ReLU with

PReLU as it experimentally shows a better feature represen-

tation throughout the binary network. In addition, PReLU

layers help MoBiNet increase accuracy without incurring

computational cost or parameter storage. The efficiency of

PReLU is presented in Table 2. We trained the Mid-block

designe with K = 0, 1, 2, 3 where settings of ReLu and

PReLU are exactly the same.

4.3. K­Dependency for MoBiNet Enhancement

The separable convolution layers are limited for feature

representation because there is no interaction between lay-

ers. To improve this capability for MoBiNet, we proposed a

novel method using K-dependency to augment correlation

within separate channels. In this section, we show that the

factor K plays a key role to boost the accuracy of MoBi-

Net. The larger the K, the deeper the channels correlate

and hence the more adequately the feature is represented

after being convolved. Our selections for the level of de-

pendency are K = 0, 1, 2, 3. We report Top-1 and Top-

5 accuracy on ImageNet data. The number of FLOPs is

computed in a similar way mentioned in [34] to ensure the

comparison fairness with the other binary networks. The

results are reported in Table 3. Generally speaking, the

MoBiNet speeds up the inference stage by 11× compared

to MobileNet [17]. The best performance we can achieve

is with Mid-block design: Top-1 accuracy of 53.47% with

K = 3 and speed-up factor 12×. In Table 4, we show

the efficiency of MoBiNet against several recent models:

XNOR-Net [41], Bi-RealNet [34], ABC-Net [31], DoReFa-

Net [52], SQ-BWN [6], etc. For efficiency comparison, we

opt for Bi-RealNet-18 as a baseline because this approach

is the most recent and efficient binary approach. Our MoBi-

Net, with Mid-block design and K = 4, achieves a speed-

up factor of 3.13× and a model saving factor of 1.34×. Fur-

thermore, in terms of accuracy MoBiNet outperforms all of
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Networks K
Top-1

accuracy(%)

Top-5

accuracy(%)

Mem

usage

(MB)

FLOPs (M)
Speed

up

Pre-

block

0 35.86 59.46

4.60

45.87 12.40×
1 48.93 72.83 46.57 12.23×
2 50.74 74.22 47.97 11.86×
3 51.41 74.75 50.76 11.21×

Mid-

block

0 34.73 58.28

4.60

45.61 12.40×
1 50.41 73.98 46.04 12.48×
2 52.25 75.32 46.90 12.36×
3 53.47 76.46 48.62 12.13×

Post-

block

0 33.58 56.69

4.50

35.37 16.09×
1 46.83 70.57 35.80 15.89×
2 48.22 71.97 36.67 15.52×
3 49.88 73.27 38.39 14.82×

Mobile

Net [17]
Full 70.9 89.90 16.20 569 1.00×

Table 3. The K-dependency performance of MoBiNet including Top-1 and Top-5 accuracy in percentage, memory usage in Megabytes

(Pytorch model saving [39]), and FLOPs computed as in [34]. The comparison with full-precision MobileNet regards accuracy and

inference speed-up factor. Among the three block designs, the Mid-block yields better accuracy than Pre-block and Post-block. This is

because the Mid-block exploits skip connections to preserve both original and scaled features, unlike Pre-block (only scaled feature) and

Post-block (only original feature).

Networks
Top-1

accuracy(%)

Top-5

accuracy(%)

#Params

(M)
Saving FLOPs

Speed

up

Binary Connect [4] 35.40 61.00 - - - -

BNNs [19] 42.20 67.10 - - - -

ABC-Net [31] 42.70 67.60 - - - -

DoReFa-Net [52] 43.60 - - - - -

BWN [6] 39.20 64.70 - - - -

SQ-BWN [6] 45.50 70.60.07 - - - -

XNOR-AlexNet [41] 44.20 69.20 62.38 0.19× 1.38× 108 1.18×
XNOR-ResNet-18 [41] 51.20 69.30 11.7 1.00× 1.67× 108 0.97×
Bi-RealNet-18 [34] 56.40 79.50 11.70 1.00× 1.63× 108 1.00×

MoBiNet-Mid (K = 3) 53.47 76.46 8.50 1.38× 0.49 × 108 3.33×
MoBiNet-Mid (K = 4) 54.40 77.50 8.75 1.34× 0.52 × 108 3.13×

Table 4. The Top-1 and Top-5 accuracy comparison between MoBiNet Mid-Block and the state-of-the-art. The Bi-RealNet-18 is selected

as a baseline model to make comparisons.

the precedent methods except Bi-RealNet that we are 2%
behind. However on the ImageNet dataset, to reproduce the

accuracy of the Bi-RealNet, a pretrained model is required

whereas the MoBiNet has the freedom to start the training

from scratch. Furthermore, one can bridge the accuracy gap

by increasing the factor K > 4 with an acceptable FLOPs

trade-off.

5. Conclusion

We introduced MoBiNet, the very first work for

lightweight module binarization. We explore the training

efficiency of the binarization with the support of skip con-

nection, the three block designs and the K-dependency. The

construction of MoBiNet facilitates the non-trivial training

of a binary network, and without loss of generality. MoBi-

Net can be used for more challenge task: object detection.
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