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Abstract

We present a method to learn a joint multimodal repre-

sentation space that enables recognition of unseen activities

in videos. We first compare the effect of placing various con-

straints on the embedding space using paired text and video

data. We also propose a method to improve the joint embed-

ding space using an adversarial formulation, allowing it to

benefit from unpaired text and video data. By using unpaired

text data, we show the ability to learn a representation that

better captures unseen activities. In addition to testing on

publicly available datasets, we introduce a new, large-scale

text/video dataset. We experimentally confirm that using

paired and unpaired data to learn a shared embedding space

benefits three difficult tasks (i) zero-shot activity classifica-

tion, (ii) unsupervised activity discovery, and (iii) unseen

activity captioning, outperforming the state-of-the-arts.

1. Introduction

Videos contain multiple data sources, such as visual, au-

dio and text/caption data. Each data modality has distinct

statistical properties capturing different aspects of the event.

Current state-of-the-art activity recognition models [4, 41]

only take visual data and class labels as input, which lim-

its the information the model can learn from. For example,

the sentence ‘a group of men play basketball outdoors’ con-

tains rich information, such as ‘outdoors’ and ‘group of

men’ compared to just the activity class label of ‘basketball.’

We desire to use such additional information to learn better

representations and by doing so, we show that the learned

representations are able to generalize to unseen activities

(i.e., zero-shot learning).

We explore multimodal learning from video and language

data, each starting with its own representation. Video data is

represented as a sequence of images (spatio-temporal pixel

data) while text is represented as a sequence of word em-

beddings (temporal data). Learning a shared representation

allows for modeling the highly non-linear relationships be-

tween these modalities, capturing structure present in both

video and textual data. Further, using a shared representation

enables capturing similarities between concepts (e.g., bas-
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Figure 1. Taking advantage of both text and video data allows for

learning of a shared representation. By utilizing unpaired text and

video data, the representation naturally captures the relationships

between different activities, based on the underlying relationships in

word embeddings and video representations. The colors represent

different activity classes of the video or sentence (e.g., various

sports, pool activities, and exercises).

ketball and volleyball both being sports with a ball) within

its space by relying on either modality, even when the data

is unpaired. This allows the representation to benefit from

concepts not seen in both modalities during training. For

example, we show taking advantage of relationships between

words in pre-trained word embeddings [26] help recognize

activities with no video examples. By learning a shared rep-

resentation space, we transfer such relationships to video

representations of potentially unseen activities. An concep-

tual overview of the approach is shown in Fig. 1.

Many existing approaches to both zero-shot and embed-

ding space learning require paired data examples (e.g., ex-

amples and labeled attributes), which can be expensive to

obtain. By taking advantage of adversarial learning [10],

we are able effectively augment our method with unpaired

data (i.e., random sentences and random videos without any

labels or correspondence) to further improve our learned

representation. By introducing many random videos and

text data, we show that we are able learn representations

that better capture unseen activities, without requiring any

further annotations.

In this paper, we design a method capable of learning

joint video/language representation using both paired and

unpaired data. We experimentally confirm its benefit to
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three challenging tasks: (i) zero-shot activity recognition, (ii)

unsupervised activity discovery, and (iii) unseen activity cap-

tioning. We show that the use of unpaired, multimodal data

allows learning a shared embedding space that generalizes

to unseen data.

2. Related works

Multimodal learning Previous approaches to multimodal

learning have used Restricted Boltzmann Machines [40] or

log-bilinear models [19] to learn distributions over sentences

and images. Ngiam et al. [28] designed an autoencoder that

learns joint audio-video representations, however relied on

greedy, layer-by-layer training instead of training the model

end-to-end. Similarly, Chandar et al. [5] proposed an auto-

encoder able to learn correlations between different view

of images. Frome et al. [9] describe a model that maps

images and words to a shared embedding. However, these

works either learn a joint embedding by concatenating the

different features or require a triplet consisting of positive

and negative pairs; they have not explored the use/effect of

unpaired data.

Text and vision Using both text and visual data has been

studied for many tasks, such as image captioning [17, 15, 16]

or video captioning [21, 52, 47]. Other works have ex-

plored the use of textual grounding for image/video re-

trieval [12, 35, 25, 14]. We note that using text for video

retrieval/localization (e.g., [14]) is similar in nature to the

zero-shot or unseen recognition tasks. However, in those

works, there is significant overlap between the text/video

examples used in training and testing, while in our work

we explicitly separate the classes used during training and

evaluation; we focus on ‘unseen’.

There have been various models proposed to learn a fixed

text embedding space with mappings from video features

into this embedding space [11, 30, 38, 43, 45]. These works

all learn a single directional mapping, without a shared rep-

resentation space (which we find to be important). Further,

most of them only learn with paired text/image samples and

some require data in the form of positive/negative pairs. In

this paper, we find learning a shared representation space and

using unpaired, i.e., random additional data, to be important.

Learning with unpaired data Recently, there have been

many works taking advantage of variational autoencoders

(VAEs) [18] or generative adversarial networks (GANs) [10]

to learn mappings between unpaired samples. CycleGan [53]

uses a cycle-consistency loss (i.e., the ability to go from a

sample in one domain to a second domain then back to the

source) to learn unpaired image translation (e.g., image to

sketch). Other works learn many-to-many mappings be-

tween images [2] or use two GANs to map between domains

[50]. An autoencoder with shared weights for both domains

has been used to learn a latent space for image-to-image

translation [24]. However, these works all focus on learning

mappings between unpaired data of the same modalitiy (e.g.

image to image), where the data is from the same underly-

ing distribution. We focus on a more challenging problem:

learning from different modalities with very different distri-

butions, where we find directly using previous approaches

do not perform well as they are.

Zero-shot activity recognition There are works on zero-

shot activity recognition. Common approaches include using

attributes [23, 31, 36] or word embeddings [48, 49, 29, 37,

20] or learning a similarity metric [51, 7]. Some works

have explored using adversarial losses on the latent space

[6], used GANs to generate features for unseen classes [46]

or used auto-encoders [44]. Felix et al. [8] proposed a

GAN-based approach to learn embeddings for zero-shot

learning. Different from our approach, they applied the GAN

only on the semantic, hand-crafted attributes of the classes

to generate representations. We formulate a more general

framework generating representations for all modalities, also

taking advantage of more generic and challenging text and

video.

Importantly, our work differs from these previous works

in three key ways: (1) we show the benefit of using addi-

tional unpaired samples, (2) we experimentally compare

the use of the representations for three tasks (i.e., zero-shot

recognition, unseen recognition, and unseen video caption-

ing), and (3) we learn a shared, multimodal representation

with bi-directional mappings in an end-to-end fashion. We

find that directly using the previous methods with unpaired

data do not perform as well.

3. Method

To enable learning of a shared representation, we use

a deep autoencoder architecture. Our model consists of 4

neural networks:

Video Encoder EV : v 7→ zv Video Decoder GV : z 7→ v

Text Encoder ET : t 7→ zt Text Decoder GT : z 7→ t

where v is a sequence of video data and t is a sentence

(sequence of words). z is the representation in the shared

space that we are learning. The encoders learn a compressed

representation of the video or text while the decoders are

trained to reconstruct the input:

Lrecons(v, t) = ||GV (EV (v))− v||2 + ||GT (ET (t))− t||2
(1)

As both text and video data are sequences, they often have

different lengths. A shared representation requires that the

features from both modalities have the same dimensions.

Given a text representation of length L and a video repre-

sentation of length T , we need to obtain a fixed-size repre-

sentation. To learn a fixed-dimensional representation, there

are many choices for the encoder/decoder architecture, such
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Figure 2. Illustration of the encoder models used to learn a shared representation. Videos and sentences are mapped into a low-dimensional

space by applying CNNs and temporal attention. Then several fully-connected layers map to the representation. The decoders follow this

same architecture with the weights transposed.

as temporal pooling [27], attention [32] or RNNs [21]. We

chose temporal attention filters [32] as they learn a mapping

from any length input to a N -dimensional vector and have

been shown to outperform temporal pooling and RNNs on

activity recognition tasks.

The attention filters consists of N Gaussians, each learn-

ing 2 parameters: a center ĝ and width σ, which are con-

strained to be positive. The filters are determined by:

gn = 0.5 · T · (ĝn + 1)

F [n, t] =
1

Z
exp(−

(t− gn)
2

2σ2
n

)

n ∈ {0, 1, . . . , N − 1}, t ∈ {0, 1, . . . , T − 1}

(2)

The weights are applied by matrix multiplication with the

video or text sequence (e.g., the outputs of EV or ET ):

v′ = Fv. This (i.e., v′) is then used as the representations

for the joint space. Additionally, we can learn a transposed

version of these filters to reconstruct the input: v = FT v′.

To reconstruct the input, the decoders learn their own param-

eters with the tensors transposed, resulting in the matching

output size. Fig. 2 shows our encoder architecture.

3.1. Learning a joint embedding space

To learn a joint representation space, we minimize the L2

distance between the embeddings of a pair of text and video

(shown in Fig. 3(a)):

Ljoint(v, t) = ||EV (v)− ET (t)||2 (3)

This forces the joint embeddings to be similar and when

combined with the reconstruction loss, ensures that the rep-

resentations can still reconstruct the input.

We can further constrain the networks and learned repre-

sentation by forcing a cross-domain mapping from text to

video and from video to text (shown in Fig. 3(b)):

Lcross(v, t) = ||GT (EV (v))− t||2 + ||GV (ET (t))− v||2
(4)

Additionally, we can use a ‘cycle’ loss to map from video

to text and back to video. Note that while the previous losses

all require paired examples, this loss does not.

Lcycle(v, t) = ||GT (EV (GV (ET (t))))− t||2

+ ||GV (ET (GT (EV (v))))− v||2
(5)

To train the model to learn a joint embedding space, we

minimize

L(v, t) = Lrecons(v, t) + α1Ljoint(v, t)

+ α2Lcross(v, t) + α3Lcycle(v, t)
(6)

where αi are hyper-parameters weighting the various loss

components.

3.2. Semisupervised learning with unpaired data

To learn using unpaired data (i.e., unrelated text and

video), we use an adversarial formulation. We treat the

encoders and decoders as generator networks. We then learn

an additional 3 discriminator networks which constrain the

generators and embedding space and force the encoders and

decoders to be consistent:

(1) Dz which learns to discriminate between latent text rep-

resentations and latent video representations. Conceptu-

ally, this constrains the learned embeddings to appear to

be from the same distribution.

(2) DV which learns to discriminate between true video

data and generated video data GV (ET (t)).

(3) DT which learns to discriminate between true text data

and generated text data, GT (EV (v)).
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Figure 3. Visualization of several constrains on the shared embedding space. Circles are video data, ovals are reconstructed video. Diamonds

are text data, and pentagons are reconstructed text. (a) The reconstruction (Eq. 1) and joint (Eq. 3) losses. (b) Mapping from text to video

using the cross-domain (Eq. 4) loss.
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Figure 4. Visualization of the adversarial formulation to learn with

unpaired data. We create 3 discriminators, (1) Dz learns to discrim-

inate examples of text/video in the latent space. (2) DV learns to

discriminate video generated from text compared to video. (3) DT

learns to discriminate generated text compared to text.

Algorithm 1 Semi-supervised alignment with adversarial

learning

function TRAIN

for number of initialization iterations do

Sample (V , T ) from paired training data

Update encoders/decoders (Eq. 6)

Update discriminators (Eq. 7)

end for

for number of training iterations do

Sample P =(Vp, Tp) from paired and

U =(Vu, Tu) from unpaired training data

Update encoders/decoders with P (Eq. 6)

Update encoders/decoders with U (Eq. 8)

Update discriminators based on all (Eq. 7)

end for

end function

Given these discriminators, we minimize the following

losses:

LDz
(v, t) = − log(Dz(ET (t)))− log(1−Dz(EV (v)))

LDV
(v, t) = − log(DV (v)− log(1−DV (GV (ET (t))))

LDT
(v, t) = − log(DT (t))− log(1−DT (GT (EV (v))))

(7)

Using the discriminators, we can train the generators (en-

coders and decoders) to minimize the following loss based

on unpaired data:

LGz
(v, t) = log(Dz(ET (t)))) + log(1−Dz(EV (v)))

LGV
(v, t) = log(1−DV (GV (ET (t))))

LGT
(v, t) = log(1−DT (GT (EV (v))))

(8)

Note that in this formulation, v and t are not paired.

These networks are trained in an adversarial setting.

For example, for the text-to-video generator (i.e., v′ =
GV (ET (t)) and video discriminator, DV , we optimize the

following minimax equation:

min
ET ,GV

max
DV

= Ev∼pdata(v)[logDV (v)]

+ Et∼pdata(t)[log(1−DV (GV (ET (t))))]
(9)

This equation is similarly applied for video-to-text. For

learning the embedding space with the video and text en-

coders, EV , ET and the discriminator Dz , we optimize the

following minimax equation:

min
ET ,EV

max
Dz

= Ev∼pdata(v)[logDz(EV (v))]

+ Et∼pdata(t)[log(1−Dz(ET (t)))]
(10)

As training GANs can be unstable, we developed a

method to allow for more stable training of the joint em-

bedding space, shown in Algorithm 1. We initialize both

the generator and discriminator networks by training only

on paired data. After several iterations of this, we train with

both unpaired and paired data. We found the initial train-

ing of the generators and discriminators was important for

stability, without it the loss often diverges and the learned

embedding did not generalize to unseen activities.

4. Experiments

We compare our various approaches on different tasks

(i) zero-shot activity recognition, (ii) unsupervised activity

discovery and (iii) unseen activity captioning. These tasks

test various combinations of our encoders and decoders and

how well the shared representation generalizes to unseen

data. We experimentally confirm the benefits of our methods

using multiple public datasets: AcitivtyNet [13, 21], HMDB

[22], UCF101 [39], and MLB-YouTube [33]. Implementa-

tion details can be found in the Appendix.
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Table 1. Comparison of accuracy of various methods on ActivityNet for 5, 10, 20 or 50 unseen classes. These results are averaged over 10

trials where each trial has a different set of unseen activities.

5 Unseen 10 Unseen 20 Unseen 50 Unseen

Paired Data

Fixed Text Representation 41.9 38.4 29.4 15.6
Triplet Loss 56.8 44.9 38.8 23.3
joint 54.3 41.7 36.1 21.2
recons + cross 21.1 12.6 7.6 2.9
joint + recons 70.1 54.4 42.6 27.5
joint + recons + cycle 70.4 54.3 42.1 26.8
joint + recons + cross 72.6 55.4 43.2 27.8
joint + recons + cross + cycle 76.4 56.9 45.5 28.8
triplet + recons + cross + cycle 76.7 57.2 46.3 29.1

With Adversarial Losses (triplet + recons + cross + cycle + Adv.)

+ Dz 78.5 57.4 45.9 29.3
+ Dv +Dt 77.4 57.2 45.7 28.9
+ Dz +Dv +Dt 79.8 58.4 46.5 29.8

Paired + Unpaired Data

recons + cycle 22.8 13.6 8.4 4.2
triplet + recons + cycle 72.6 58.4 44.7 29.3
triplet + recons + cross + cycle 73.4 59.1 45.3 29.2
Without Algorithm 1 23.4 11.7 6.5 3.1
All terms 82.5 60.4 46.2 30.1

Baselines For baselines, we compare to a fixed-text em-

bedding space, were only a mapping from video data into

the text embedding space is learned (e.g., [30]). We also

compare to learning a shared embedding space with the ‘re-

cons’ (Eq. 1) and ‘cross’ (Eq. 4) terms (e.g., [28]). We

additionally compare to methods like CycleGan [53], using

various components without Algorithm 1.

4.1. Zeroshot activity recognition

Zero-shot activity recognition is the problem of classify-

ing a video that belongs to a class not seen during training.

Given training videos of seen classes together with paired

text descriptions, our approach learns a shared embedding

that maps videos/texts from multiple seen classes. The ob-

jective is to classify videos of unseen classes solely based on

the learned embedding space and the text samples.

To enable recognition of unseen activities, we use a sen-

tence of the new, unseen class and obtain its representation

in the shared space. We can then obtain representations of

videos in the same space, using nearest neighbors match-

ing to classify each clip. Such approach takes advantage of

the learned textual relationships (e.g., [26]) and the shared,

multimodal representation space.

We use the ActivityNet captions [21] dataset to learn

the shared representations, as this dataset has both sentence

descriptions for each video as well as activity classes. We

randomly choose a set of K activity classes and withhold all

videos/sentences belonging to those classes during training.

For evaluating on the unseen activities, we take a subset of

sentences for the unseen classes and map the sentences into

the joint embedding space, zt = ET (t). We then map the

videos into the space, zv = EV (v) and use nearest neighbors

to match each video (zv) to text (zt), using the class of the

nearest sentence as the classification for the video. We rely

on the similarities between the representations (e.g., word

embeddings) to enable the models ability to generalize to

these unseen classes.

In Table 1, we compare the effect of the various loss

components. For each method, we run 10 trials each with

a different set of unseen activity classes and average the

results. We find that previous methods of learning a fixed

language embedding (e.g., [37, 48, 49]) are significantly

outperformed by learning a joint representation. Previous

methods learning embedding spaces without the ‘joint’ term

(e.g. [28]), we found yield nearly random performance on

these tasks, suggesting that forcing the representations to

match in the embedding space is important. Further, adding

the reconstruction, cross-domain, and cycle losses all im-

prove performance. We also compare to a standard triplet

loss (e.g., [11]) which requires positive/negative samples.

We find that the triplet loss outperforms the ‘joint’ loss, but

is surpassed by adding the ‘cycle’ and ‘cross’ terms, which

use less data. We also compared using the triplet loss when

combined with the other terms, finding a slight improvement

over the joint term. Note using both the joint and triplet

would be redundant, since the triplet loss contains the joint

loss terms.

We also compare the various components of the adver-
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Table 2. Results on HMDB51 and UCF101 (accuracy) compared

to previous state-of-the-art results. We find that learning a shared

representation is beneficial and that augmented with unpaired data

provides the best results.

Feat HMDB51 UCF101

SJE [1] IDT 12.0± 2.6 9.3± 1.7

ConSe [29] IDT 15.0± 2.7 11.6± 2.1

ZSECOC [34] IDT 22.6± 1.2 15.1± 1.7

SE [48] IDT 21.2± 3.0 18.6± 2.2

MRR [49] IDT 24.1± 3.8 22.1± 2.5

SAE [20] I3D 25.6± 3.2 25.4± 2.2

Ours (paired) IDT 26.3± 3.2 25.4± 3.4

Ours (paired + unpaired) IDT 29.7± 2.2 26.4± 2.1

Ours (paired) I3D 28.3± 2.7 27.8± 2.2

Ours (paired + unpaired) I3D 34.7± 2.4 33.4± 1.8

Table 3. Comparison of various source of unpaired data on Ac-

tivityNet with 10 unseen classes, values reported for both unseen

classes and all (seen+unseen) classes. Results are accuracy, higher

is better.

Unseen All

Paired Data 58.3 69.6
+ Random Wikipedia Sentences 55.8 66.4
+ Random Dictionary Defs. 56.3 68.2
+ Verb Dictionary Defs. 59.2 70.7
+ Random YouTube Videos 58.7 70.1
+ Verbs + Random Videos 60.3 71.2

sarial loss. We compare to having just the adversarial loss

on the representation (Dz), like [6], and compare just the

adversary on the generated videos/sentences. We find the

use of all terms is important for performance.

While previous works such as [28] can support learning

with unpaired data, we find that the adversarial loss provides

better results than just the ‘cycle’ and ‘recons’ terms, and

further improves over training with just paired data. Further,

we find that CycleGan-style approaches, without Algorithm

1, fail on this task.

In Table 2, we compare our approach to previous zero-

shot learning methods on HMDB and UCF101. The paired

training data for these models is drawn from ActivityNet

with any classes belonging to HMDB or UCF101 with-

held. The unpaired text data is sampled from Charades and

the video data comes from either HMDB (when testing on

UCF101) or UCF101 (when testing on HMDB). As HMDB

and UCF101 have no text descriptions, we created a sentence

description for each activity class (included in Appendix B).

We find that the shared representation outperforms the previ-

ous approaches on these datasets and unpaired adversarial

learning further improves performance.

4.2. Use of Unpaired Data

We explore different strategies for obtaining unpaired

data. Keeping a fixed set of paired text and videos, we

explore adding various sources of unpaired data: (i) 10k

random Wikipedia sentences, (ii) 10k random dictionary def-

initions, and (iii) 10k verb dictionary definitions. We also

Table 4. Comparison of unsupervised activity classification on

MLB-YouTube.

Accuracy mAP

Baseline I3D features 23.4 32.6
Fixed Text Representation 27.9 34.7
joint 34.5 41.6
joint + recons 37.9 43.7
joint + recons + cycle 44.2 48.6
joint + recons + cross 43.7 49.3
triplet + recons + cross 43.9 49.5
All (paired) 48.4 51.2
All (+ unrelated unpaired) 39.7 43.9
All (+ related unpaired) 49.1 54.3

compare adding 10k random videos from YouTube as addi-

tional video data. Ours results using 10 unseen classes are

in Table 3. We find that augmenting with similar unpaired

data improves performance, while irrelevant data harms per-

formance. We find that dictionary verb definitions improve

performance the most, as they capture important semantic

information regarding the activities we are learning. The use

of additional video data is further beneficial.

4.3. Unsupervised activity discovery

To further evaluate the shared representation, we con-

ducted experiments on unsupervised activity discovery. For

this task, we expanded the MLB-YouTube dataset [33] by

densely annotating the videos with a transcription of the an-

nouncers’ commentary, resulting in approximately 50 hours

of aligned text and video. Examples of this data are shown

in Fig. 5. The MLB-YouTube dataset is designed for fine-

grained activity recognition, where the difference between

activities is quite small. Additionally, these captions only

roughly describe what is happening in the video, and often

contain unrelated stories or commentary on a previous event,

making this a challenging task. The dataset will be made

publicly available. To train the shared representation, we

split each baseball video into 30 second intervals and use the

corresponding text as paired data, resulting in 6,089 paired

training samples.

We evaluate the shared representation using the seg-

mented videos from MLB-YouTube. For each video, we

compute the embedded features and apply k-means cluster-

ing (k = 8, the number of classes). Each segmented video

is assigned to a cluster and votes for the cluster label based

on its ground truth label. We use that cluster assignment

for classification on the MLB-YouTube test set. We report

our findings in Table 4. As a baseline, we cluster I3D fea-

tures pre-trained on Kinetics. We find that our methods

improve the representation. However, we note that when

using unpaired data from Charades, the performance drops.

This is likely due to Charades data being very different from

MLB-YouTube data. We collected additional captions and

baseball videos to augment the MLB-YouTube dataset, and

confirmed that unpaired data helps when it is from a similar
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Table 5. Unseen activity recognition results (accuracy) on ActivityNet, HMDB51 and UCF101, evaluated by using both unseen and seen

classes for the testing.

ActNet (10 unseen) ActNet (50 unseen) HMDB51 UCF101

Fixed Text Representation 55.7 46.8 24.5 26.8
Triplet Loss 57.7 48.5 27.6 29.8
joint 62.1 50.2 29.8 30.6
joint + recons 64.4 52.6 30.4 31.3
joint + recons + cross + cycle 69.6 58.5 35.6 36.5
triplet + recons + cross + cycle 69.8 58.6 35.7 36.8

Paired + Unpaired Data

All terms 71.7 65.9 38.9 42.2

He is an aggressive third baseman and he can really play over 
there you know. He definitely takes pride in his defense as well.

He got right on top of that pitch, Pederson, and shot 
and way out of here. Three-run blast. 

That has been a feat in this series for both teams, nobody is hitting 
with two strikes. That's how good the pitching has been.

They would suspend him at the beginning of next year 
as opposed to for a game during this World Series.

Figure 5. Example video sequences from the MLB-YouTube dataset with the commentary caption. Top: Sentences that describe the

occurring activities. Bottom: Sentences that do not describe the current activities.

Table 6. Comparison of unsupervised activity classification on

HMDB and UCF101.

HMDB UCF101

I3D features 26.6 42.5

Joint 32.4 57.7

Joint + recons 33.5 59.0

All (paired) 34.6 59.5

All (+ unpaired) 34.9 59.9

distribution.

In Table 6 we compare various methods for unsupervised

activity discovery on HMDB and UCF101. Here, we learn a

shared representation using the ActivityNet videos and cap-

tions. We withhold any videos belonging to a class in HMDB

or UCF101. Unlike MLB-YouTube, on these datasets, we

find that using the unpaired training with Charades further

improves performance. This confirms that when the addi-

tional data is similar to the target dataset, using the adversar-

ial learning setting further improves the representations.

4.4. Unseen video captioning

As our model learns a bi-directional mappings, we can

apply our model to generate video captions. Existing video

captioning models are unable to create realistic captions

for unseen activities, as without training data they do not

know the words to describe the video. Given a video, v, we

can generate a caption by mapping the video to text t =
GT (EV (v)). For each word, we then use nearest neighbors

matching with the GloVe embeddings to obtain the words to

form a sentence. We find that using our method with paired

and unpaired data improves performance using METEOR

(3.6 to 6.9) [3] and CIDEr [42] (8.9 to 13.9) scores. For

these metrics, higher values are better and are measured with

the unseen classes from the ActivityNet dataset. In Table 7,

we report the commonly used METEOR [3] and CIDEr [42]

scores of our various models, measured with the unseen

classes from the ActivityNet dataset. We find that learning a

shared representation (4.1) is beneficial and using unpaired

samples further improves the task (5.3 paired only vs 6.9

paired and unpaired). In Fig. 6, we show example captioned

videos. Note that this task is extremely challenging, as it

requires the model to generate captions using activity words

(e.g., basketball) not seen during training.

5. Conclusion

We proposed an approach to learn a joint language/text

representation using various constraints. We further ex-

tended the model to be able to learn with unpaired video and

text data using an adversarial formulation. We experimen-

tally confirmed that learning with unpaired data is beneficial

to three difficult tasks (i) zero-shot activity classification,

(ii) unsupervised activity discovery, and (iii) unseen activity
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Several men are playing basketball People are swimming in the ocean
Figure 6. Example captions for unseen activities. Left: Using a shared representation allows the model to correctly caption this video as

basketball, despite never seeing an example of basketball during training. Right: An example of a caption for the unseen water-ski activity.

Here the model fails to correctly caption the activity.

Table 7. Comparison of several models for unseen activity cap-

tioning using the ActivityNet dataset, using METEOR and CIDEr

scores. This evaluation was done on 10 unseen classes held out

during training. Higher values are better.

METEOR CIDEr

Fixed Text Representation 3.64 8.95

Joint 4.21 9.23

All (paired) 5.31 11.21

All (paired + unpaired) 6.89 13.95

captioning. We find that the use of related unpaired data

is beneficial. We presented several strategies for obtaining

unpaired data and confirmed the benefit of adding additional,

relevant unpaired data.
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