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Abstract

Image-to-image translation architectures may have lim-

ited effectiveness in some circumstances. For example,

while generating rainy scenarios, they may fail to model

typical traits of rain as water drops, and this ultimately im-

pacts the synthetic images realism. With our method, called

domain bridge, web-crawled data are exploited to reduce

the domain gap, leading to the inclusion of previously ig-

nored elements in the generated images. We make use of

a network for clear to rain translation trained with the do-

main bridge to extend our work to Unsupervised Domain

Adaptation (UDA). In that context, we introduce an online

multimodal style-sampling strategy, where image transla-

tion multimodality is exploited at training time to improve

performances. Finally, a novel approach for self-supervised

learning is presented, and used to further align the domains.

With our contributions, we simultaneously increase the re-

alism of the generated images, while reaching on par per-

formances with respect to the UDA state-of-the-art, with a

simpler approach.

1. Introduction

GANs have demonstrated great ability to learn image-

to-image (i2i) translation from paired [15] or unpaired im-

ages [41, 13] in different domains (e.g. summer/winter,

clear/rainy, etc.). The latter relies on cycle-consistency or

style/content disentanglement to learn complex mapping in

an unsupervised manner, producing respectively a single

translation of the source image or a multimodal transla-

tion [13]. This unsupervised i2i translation opened a wide

range of applications especially for autonomous driving, for

which it may be virtually impossible to acquire the same

scene in different domains (e.g. say clear/rainy) due to the

dynamic nature of the scenes.

Instead, image-to-image translation can be used to gen-
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Figure 1: Naive image-to-image translation (Fig. 1a) learns

the X → Y domain mapping. Conversely, our domain

bridge (Fig. 1b) completes source and target domains with

automatically retrieved web-crawled data (ZX , ZY ) which

share common characteristics, thus easing the image-to-

image translation task.

erate realistic image synthesis exploitable for both domain

adaptation and performance evaluation [10, 17], without ad-

ditional human-labeling effort. However, state-of-the-art

i2i translation fails in some situations. For example, while

translating clear to rain the networks tend to change only

the global appearance of the scene (wetness, puddle, etc.)

ignoring essential traits as drops on the windshield or re-

flections. Ultimately, this greatly impacts the realism of the

generated images.

In this paper, we present a simple domain-bridging tech-

nique (Fig. 1b) which, opposite to the standard i2i transla-
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tion (Fig. 1a), benefits of additional sub-domains retrieved

automatically from web-crawled data. Our method pro-

duces qualitatively significantly better results, especially

when the source and target domains are known to be far

since the bridge ease the learning of the mapping. We ap-

ply our i2i methodology to the case of clear → rainy images

showing that domain bridging leads the translation to pre-

serve drops on the synthetic images, and extend our work

to Unsupervised Domain Adaptation (UDA) for which we

make novel contributions too (Fig. 2) and demonstrate that

all together we perform on par with the most recent UDA

methods while being much simpler.

We make three main contributions in our paper:

• i2i: we propose a novel domain-bridge (Sec. 3.1) to

augment automatically the source and target domains

and ease i2i mapping,

• i2i with UDA: online multimodal style-sampling

(Sec. 3.2) is applied for UDA, thus increasing the

translation diversity,

• UDA: we propose novel Weighted Pseudo Label

(Sec. 3.2) to benefit from self-supervision without the

need of offline processing as for the original Pseudo

Label [16].

2. Related work

Image-to-image translation. Early work for image-to-

image translation has been done in [15], where an

adversarial-based method has been proposed. The training

process required paired samples of the same scene in two

different domains. In [41], instead, cycle consistency is ex-

ploited to perform image-to-image translation on unpaired

images. [18] supposes the existence of a shared latent space

between images in two domains, and exploits it to perform

translations across both domains using a single GAN. Re-

cently, a lot of efforts have been dedicated to achieve multi-

modal translation [42, 13, 19]. Some others, instead, make

use of additional information, such as bounding boxes [33],

instance segmentation maps [22], or semantic segmentation

and depth maps [3], to increase the translation quality and

diversity. In [8], intermediate domains are used to achieve

better performances in domain adaptation.

Synthetic rain modeling. To synthesize rain on images,

Garg and Nayar [7] first proposed to rely on the accurate

drop oscillation and photometry modeling which has been

extended in [5, 34] for rain streaks and [29] for stationary

drops. All assume the impractical complete 3D knowledge

of the scene geometry and light sources. Circumventing

such limitations, the recent physics-based rendering [9, 12]

rely on the rain/fog layers decomposition to simulate the

complete rain visual effect. In [9], the rain dynamics and

photometry is approximated from physics models to re-

alistically augment image or sequences with controllable

amount of rain, which further allow benchmarking vision

algorithms in rain. Alternately, [25] proposed to synthe-

size photorealistic raindrops on a screen using a simplified

refraction model and approximating their dynamics with

metaballs. While priors works do produce high quality vi-

sual results, none of them face visual characteristics of rainy

images, as wetness and reflections.

Domain adaptation for semantic segmentation. Most

methods for domain adaptation are based on adversarial

training, as it regularizes the feature extraction process,

making it robust to the domain shift [11, 2, 21, 32, 38, 39,

35, 20, 27]. Complementary approaches, instead, connect

the two domains with pixel-level regularization, making use

of image-to-image translation GANs [23, 26]. Some recent

works combine the two to obtain better results [10, 17].

Others do not use adversarial training at all: for example,

Zou et al. [43] exploit self-supervised learning and pseudo-

labels only, while [40] make use of mutual learning. Finally,

some approaches have been recently introduced specialized

on night time adaptation [28] or transfer learning for ad-

verse weather [6, 30].

3. Method

Our methodology aims to translate clear images to rainy

images reaching both high-qualitative images for both qual-

itative evaluation and usability to train semantic segmenta-

tion networks in rainy weather. Thus, our innovations are

spread between image-to-image translation (Sec. 3.1) and

Unsupervised Domain Adaptation for semantic segmenta-

tion (Sec. 3.2).

3.1. Image­to­image translation (i2i)

Image-to-image translation GAN networks learn to ap-

proximate the mapping F : X 7→ Y using adversarial

training, from two sets of representative images in each do-

main, denoted here A and B. Each image in both sets can

be interpreted as a sampling from a probability distribu-

tion P associated with the image domain [18]. Formally,

∀a ∈ A, a ∼ PX(x); ∀b ∈ B, b ∼ PY (y). GANs are well-

known for their instability at training. For the latter to suc-

ceed, the network needs to be fed with representative sets

of images, so that it can extract the common domain char-

acteristics. Even though, some domain gap may be difficult

to model for the network, resulting in a loss of characteris-

tic features of the target domain. This may be caused by a

significant domain shift or by the lack of data.

Some minor image details still have a significant percep-

tual impact. This is the case for rain images, where even a

few drops on the lens play an important role in sensing the
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Figure 2: Overview of our pipeline for unsupervised domain adaptation. The blue dashed square means that the GAN

parameters are frozen. The Image-to-image translation network is trained offline with our domain bridge strategy. Different

line colors refer to different probabilities for one path to be executed. Loss functions are denoted with dotted lines.

Figure 3: Rainy images from the Berkeley Deepdrive

dataset [36]. Drops on the windshield or reflections help

us perceive that it is raining.

rain, as it can be seen in Fig. 3. State-of-the-art networks

may ignore some fundamental elements as drops, lens arti-

facts or reflections, and this ultimately impacts the realism

of generated images. We argue that some characteristics

changes (drops, artifacts, etc.) are ignored because they are

relatively minor compared to other characteristics changes

(e.g. wetness, puddles, etc.), and demonstrate the training

may benefit from bridging to ease domain mapping.

Domain bridging. Studying the specific case of adverse

weather conditions, it is possible to formalize a generic

domain K as the union of finer-grained domains, such as

K = {KW ,KO}. In it, KW represents the sub-domains

typical of weather, e.g. the presence of precipitations, road

wetness, and many more. KO, instead, is composed of sub-

domains unrelated to the weather. Examples are the sce-

nario, the city, and the illumination. Thus, it is possible to

represent X and Y as

X = {XW , XO} ,

Y = {YW , YO} .
(1)

Generally, only the joint probability distribution PK(k) =
PKW ,KO

(k), k ∈ K is estimable, as we have no knowl-

edge about the marginal probability distrubtions PKW
(k),

PKO
(k).

On one hand, we hypothesize that it is possible to obtain

a more stable image-to-image translation if the differences

between the two datasets are minimized. On the other, we

have to obtain a GAN that produces an effective transfor-

mation, so it is necessary to model correctly all relevant

features of adverse weather. To simultaneously reach both

objectives, images collected from web-crawled videos are

added to the A and B datasets, obtaining two new training

sets A′ and B′, with respective domains X ′ and Y ′, which

aims as bridging the gap between the initial domain X and

Y . This is illustrated in Fig. 1.

Our intuition is that adding samples with reasonable crite-

ria will reduce the Kullback-Leibler divergence between the

probability distributions PX′

O
(x) and PY ′

O
(y), with respect

to KL(PXO
(x), PYO

(y)). As a consequence, the transla-

tion model will be more focused on weather-related charac-

teristics and more stable during training.

Once the main hypotheses are formalized, the approach

on how to select new images is needed. Let Zx and Zy be

two images sets. As before, we have

Zx = {Zx
W , Zx

O} ,

Zy = {Zy
W , Z

y
O}.

(2)

We choose Zx and Zy in order to have

max |Zx
W ∩XW | ,

max |Zy
W ∩ YW | ,

max |Zx
O ∩ Z

y
O| ,

(3)

where | · | is the set cardinality. Hence, it is possible to

identify two image sets C and D such as ∀c ∈ C, c ∼
PZx(z); ∀d ∈ D, d ∼ PZy (z).
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Figure 4: Examples of multimodal style-sampling from our

Domain-bridged i2i (Sec. 3.1). Note the consistency of style

regardless of the source image.

It is now possible to train the image-to-image translation

network on A′ and B′ defined as:

A′ = A ∪ C ,

B′ = B ∪D .
(4)

Adding new images, the differences in the global appear-

ance of the two domains is minimized, while the weather-

related domain shift remains constant.

In other words, our approach consists in selecting new

image samples, with weather conditions corresponding to

those in the original dataset, and join them to the existing

data. The newly-added images are required to share some

domains unrelated to the weather. Retrieving images from

the same location and with the same setup ensures that.

In practice, we retrieved these additional samples from

web-crawled videos using domain-related keywords search

(details in Sec. 4.1.1). The same bridging can be applied

automatically to other domain shifts, though as the domain

differences become less semantically evident, human

expertise may be required to properly select the C and D

datasets.

We use MUNIT [13] as backbone for our image-to-

image translation network, as it allows disentanglement of

style and content, which will be of high interest for us.

3.2. Unsupervised Domain Adaptation (UDA)

Similar to previous works [10, 17], we use our i2i net-

work with domain-bridge to translate images from pre-

labeled clear weather datasets and learn semantic segmen-

tation in rain in an unsupervised fashion. We follow the

standard UDA practice which is to alternately train in a

supervised manner from source (clear) images with labels

and train in a self-supervised manner from target (rain) im-

ages without labels. Our entire UDA methodology (de-

picted in Fig. 2) brings two novels contributions: a) we

use multi-modal clear→rain translations as additional su-

pervised learning, b) we introduce Weighted Pseudo Label

- a differentiable extension of Pseudo Label [16] - to align

source and target without any offline process.

Online Multimodal Style-sampling (OMS). The stan-

dard strategy for UDA with i2i networks is to learn from

the offline translation of the whole dataset [10, 17].

We instead propose to use the multimodal capacity of

MUNIT i2i to generate multiple target styles (i.e. rain ap-

pearances) for each input image. Styles are sampled during

training time. In this way, even if the source image content

remains unaltered, it will be possible for the segmentation

network to learn different representations of the same scene

in the target domain, ultimately leading towards wider di-

versity and thus more robust detection. Different styles for

the same image modify, among other factors, the position

and size of drops on the windshield, and the intensity of re-

flections. This is visible in Fig. 4 showing three arbitrarily

sampled styles, where Style 3 consistently produces images

that resemble heavy rain.

Weighted Pseudo-Labels (WPL). Pseudo Label [16]

was proposed as a self-supervised loss to further align

source and target distributions. The principle is to self-

train a network on target (here, rain) whenever the predic-

tion confidence is above some threshold, thus reinforcing

the network beliefs.

Most often for UDA, thresholds are calculated offline as the

median per-class confidence dataset-wise [17, 43]. This re-

quires storing all predictions for the whole dataset, which

is cumbersome. To overcome this, thresholds may be es-

timated online image-wise or batch-wise [14]. It has to

be noted that thresholds are critical since pseudo-labeling

can harm global performances if thresholds were underesti-

mated1 or have limited impact if overestimated [16].

We instead propose Weighted Pseudo-Labels (WPL)

which estimates a global threshold α within the network

optimization process. The general principle of WPL is

to weight the self-supervised cross-entropy using learned

threshold α, thus acting as continuous pseudo-labeling. Not

only WPL does not require offline processing, but it is aware

of the global network confidence thus leading to better re-

sults. In detail, let x be an input image and x̂u the pseudo

1In such case, the ratio of wrong pixels over pseudo-labeled pixels will

be too high and lead to incorrect self-supervision.
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Figure 5: Analysis of the effect of α optimization. Dur-

ing training the Weighted Pseudo Label expands from high

confidence pixels only (left) to lower ones (right).

label of pixel u, such that

x̂u =

{

argmaxq fu(x) if max(fu(x)) ≥ α

None otherwise
, (5)

where fu(x) refers to the class probabilities of u predicted

by the network f , and argmaxq is the best class predic-

tion. In its original implementation [16], x̂u is directly used

to weight the cross-entropy self-supervision. Instead, we

weight this with a weight matrix W of the same size than x:

wu =

{

max(fu(x))−α

1−α
if max(fu(x)) ≥ α

0 otherwise
, (6)

The complete loss for WPL is thus defined as the weighted

sum of cross-entropy loss Lw and a balancing loss Lb:

Lss = σLw + γLb , (7)

where σ and γ are loss weights and cross-entropy loss is:

Lw = −
∑

q∈Q

wux̂u,qlog(pu) . (8)

x̂u is the one-hot encoding of pseudo-label as in Eq. 5 and Q

is the set of classes. In this way, predictions where the net-

work is uncertain are weighted less in the network pseudo-

label based training. To avoid that the self-supervised con-

tribution remains set to zero by the optimizer, Lb is required

as a balancing loss:

Lb = log2(1− α) . (9)

The optimization of α leads to a pseudo-label expan-

sion within the training process. Fig. 5 is an illustration

of the growing process during training. For the first iter-

ation (Fig. 5, left), the Lw term prevails over Lb, pushing

α towards 1 thus including in the pseudo-label only pixels

with high confidence. With the minimization of Lw (Fig. 5,

right), Lb becomes gradually more important, leading the

network to simultaneously include lower confidence pixels

inside the pseudo-label, and increasing the informative po-

tential of higher-confidence labels. Note that for numerical

stability, we assume α = sigmoid(β) and estimate β.

Losses. To balance the self-supervised WPL contribution

with the supervised learning in segmentation, we employ

a probability-based approach where pseudo-label is applied

only if a uniformly sampled variable ppl ∈ U(0, 1) is above

a predefined threshold ptp. Hence, the complete UDA loss

function is:

L(xa, x̂a, xb) = Lce(f(xa), x̂a)

+Lss(f(xb))[ppl > ptp]
(10)

if we train on source data + target, and

L(xa, x̂a, xb) = Lce(f(g(xa)), x̂a)

+Lss(f(xb))[ppl > ptp]
(11)

if we train on translated images + target. In Eq. 10 and 11,

xa ∈ A is source image with label x̂a, xb ∈ B target image,

Lce the cross-entropy loss, f our segmentation network, g

our bridged-GAN, and [·] are the Iverson brackets.

4. Experiments

We now evaluate the performance of both our i2i pro-

posal (Sec. 4.2) and our UDA proposal (Sec. 4.3) on the

clear→rain problem using clear/rain datasets recorded with

different setups.

4.1. Experimental settings

4.1.1 Datasets

For i2i and UDA, we use the german dataset Cityscapes [4]

as source (clear), and a subset of the American Berkeley

DeepDrive [36] (BDD) as target (rain). The bridge dataset,

only used for the i2i, is a collection of Youtube videos. We

now detail each dataset.

Cityscapes. We train on Cityscapes training set with 2975

pixel-wise annotated images, and evaluate on their valida-

tion set with 500 images. While we train on crops, we eval-

uate on full-size images, i.e. 2048 × 1024. The trainEx-

tra set, with 19997 images, is also included in the domain

bridge to further reduce the domain shift.

BDD-rainy. We use the coarse weather annotations of

BDD together with daylight annotation to obtain a subset

we call BDD-rainy (i.e. rainy+daylight), i.e. 1280 × 720.

For training the rainy+daylight is extracted from the 100k

split, while for validation only the 10k split is used. Obvi-

ously, duplicates present in both splits are removed. It has to
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Figure 6: Samples from the bridge dataset in different

weather conditions. Note that the acquisition setup (cam-

era position, optics, etc.) remains unaltered.

Network LPIPS IS

Real images 0.7137 -

CycleGAN [41] 0.1146 1.15

MUNIT [13] 0.3534 1.92

MUNIT-Bridged 0.2055 1.69

(a) GAN metrics

Network mIoU

Baseline 31.67

CycleGAN [41] 35.09

MUNIT [13] 20.78

MUNIT-Bridged 35.18

(b) Semantic Segmentation

Table 1: Quantitative evaluation of translated image real-

ism, diversity, and semantic segmentation effectiveness.

be noted that, while daylight annotation is accurate, weather

annotation is approximate and ”rainy” images may either be

taken during or after a rain event, thus with or without drops

on the windshield. This further increases complexity.

Bridge dataset. 5 sequences (1280 × 720) were extracted

from a single Youtube channel with keywords ”driving” (2

videos) for clear weather and ”driving rain”/”driving heavy

rain” (2/1 video) for rainy scenarios. The choice of using

videos from a unique channel further reduces domain gaps,

ensuring the same acquisition setup. Some samples are

shown in Fig. 6. Also to maximize image diversity, videos

are uniformly sub-sampled into 2x6026 clear weather im-

ages and 3x9294 rainy images, leading to a total of 39934

frames.

4.1.2 Networks details

Image-to-image translation During training, the images

are downsampled to be 720 pixels in height, and cropped

to 480 × 480 resolution. The network is trained for 200k

iterations, with batch size 1. Adam is used as optimizer,

with learning rate 1e-4, β1 = 0.5, β2 = 0.999.

Segmentation. We use Light-weight Refinenet [24] with

Resnet-101 as backbone, pretrained on the full-size

Cityscapes dataset. The refining is achieved by training for

100 epochs on 512 × 512 crops, after downscaling images

to 1024 × 512 for GPU memory constraints. We employ

data augmentation for the training process, with random

rescaling between a factor 0.5 and 2, and random horizontal

flipping. The batch size used is 6. We use the SGD op-

timizer with different learning rates for the encoder (1e-4)

and the decoder (1e-3). The momentum is set to 0.9, and

the learning rate is divided by 2 every 33 epochs. When

pseudo-labels are added to the training, we further refine

the network for 70 additional epochs, with constant learn-

ing rate divided by 10 with respect to the initial values. The

α parameter is initialized to 0.8 and estimated by SGD as

well, with learning rate 0.01 and momentum 0.9.

4.2. Bridged image­to­image translation

We evaluate our bridged i2i (Sec. 3.1) on the Cityscapes

to BDD-rainy translation task, and compare results against

the recent CycleGAN [41] and MUNIT [42]. As stated,

our i2i uses a MUNIT based and is referred to as MUNIT-

bridged. It is trained on the bridged versions of the two

datasets. Training follow details from Sec. 4.1.2, except for

CycleGAN that follows the original implementation2.

We argue - like others - that GAN metrics aren’t appropriate

for such evaluation. Thus, we report qualitative evaluation

and segmentation task evaluation, together with usual GAN

metrics.

Qualitative evaluation. Fig. 7 shows randomly selected

samples from the Cityscapes validation set3. It is visible that

both CycleGAN and original MUNIT method fails at mod-

eling the rain appearance, probably due to the large domain

gap. In detail, CycleGAN brings no realistic changes to the

scene appearance, only adjusting color-levels in the image.

Original MUNIT, instead, seems to have collapsed and fails

to produce significant outputs, probably due to instability

related to the domain gap. Conversely, our MUNIT-bridged

model is the only one able to add realistic traits of rain in

the synthetic images, thanks to the domain bridge.

Quantitative evaluation. We compute GAN metrics fol-

lowing usual practices from [13] and report results in

Tab. 1a. The LPIPS distance [37, 33] measures the im-

age diversity [13], while the Inception Score evaluates both

quality and diversity [31]. In detail, LPIPS is the average

on 19 paired translation of 100 images, and we report the

diversity of real data in the target dataset as upper bound.

Inception Score uses the InceptionV3 network previously

trained to classify source and target images.

Overall, we successfully improve performances over Cy-

cleGAN in both metrics, but original MUNIT has signifi-

cantly higher performance. However, the images generated

by MUNIT are evidently unrealistic (cf. Fig. 7) and thus

2[41] claims that best performances are obtained keeping constant the

learning rate for half the training process (100k iterations in this case) to

2e-4 and then linearly decreasing to 0.
3For MUNIT and our method, MUNIT-bridged, we also randomize the

style.
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Figure 7: Qualitative comparison between state-of-the-art architectures for i2i in the clear → rain transformation.
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Figure 8: Comparison of our method with the state-of-the-art for semantic segmentation UDA.

we argue that GAN metrics are unreliable which is in fair

alignment with [1] advocating that Inception Score is un-

correlated with image quality.

For a more comprehensive evaluation, we train a seg-

mentation task on GAN translated clear→rain images, and

evaluate the standard mIoU metric on real rain images, re-

porting results in Tab. 1b. Note that for a fair compari-

son, we only sample a single style for MUNIT-based mod-
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Method mIoU road sidewalk building wall fence pole t light t sign veg terrain sky person rider car truck bus train m. bike bike

Baseline 31.67 77.40 39.95 61.20 12.01 24.76 23.68 13.21 24.11 58.33 27.18 78.86 24.73 12.78 63.34 24.01 28.43 0.00 4.76 2.90

AdaptSegNet [35] 33.44 82.23 39.85 62.06 9.84 17.73 20.39 10.91 22.47 66.30 22.81 76.54 32.24 38.49 68.95 13.08 30.31 0.00 17.97 3.26

BDL [17] 39.60 83.18 48.78 73.93 30.87 27.33 26.03 15.10 26.05 72.63 26.08 88.01 28.59 26.59 76.37 43.31 50.11 0.00 7.38 2.10

Ours 35.18 79.00 37.23 62.36 8.60 14.78 20.98 11.94 22.92 68.02 13.11 82.55 38.96 44.61 72.34 29.10 39.40 0.00 19.32 3.16

Ours + OMS 39.72 82.53 44.51 69.97 20.29 22.91 28.93 14.02 29.17 74.32 28.98 83.53 36.75 32.80 71.29 43.03 46.34 0.00 21.80 3.54

Ours + OMS + WPL 40.04 84.03 44.09 70.51 24.10 23.02 28.31 14.08 30.07 75.31 27.89 83.49 39.10 33.63 74.70 48.60 49.34 0.00 6.77 3.80

Table 2: State-of-the-art comparison. OMS refers to Online Multimodal Style-sampling. WPL is the Weighted Pseudo Labels

strategy.

Pseudo-labels mIoU target

None 39.77

Batch-wise 38.23

WPL (Ours) 40.04

Table 3: Comparison of various Pseudo Labeling strategies:

Batch-wise, with our WPL, or with None.

els, and report results when only trained on clear images

as baseline. If the domain gap were reduced by the GAN

translations, an improvement should be visible.

Instead, from the table, training on the original MUNIT-

translated dataset leads to a significant performance de-

crease disproving the high GAN metrics. Finally, our

method outperforms CycleGAN by a little margin although

CycleGAN fails to produce good quality images. Con-

versely, our method simultaneously reduces the domain

shift and increases realism, thus it also eases performances

evaluation on synthetic data.

4.3. Unsupervised Domain Adaptation

We now evaluate our UDA contributions encompassing

our i2i translation methodology and compare with Adapt-

SegNet [35] and BDL [17], the best found recent works. We

do not compare with less recent methods as CyCADA [10]

since the approaches we are evaluating have already demon-

strated to guarantee superior performances in UDA [35, 17].

For fair comparison and given architectural similarities,

BDL was adapted to work with the same segmentation net-

work, data augmentation policy and hyperparameters de-

tailed in Sec. 4.1.2.

Quantitative results are shown in Tab. 2 where Ours

refers to UDA with only our domain-bridge i2i transla-

tion, Ours+OMS using also our Online Multimodal Style-

sampling, and Ours+OMS+WPL using also our Weighted

Pseudo Label. baseline refers to the training without any

UDA. Overall, our methodology performs on par (+0.44)

with BDL the best state-of-the-art, using a much simpler

domain adaptation method, and significantly better (+6.6)

than AdaptSegNet. Studying the contributions of our OMS

and WPL contributions, all components are necessary to

reach the best performances. Qualitative evaluation on the

target dataset is shown in Fig. 8, and in fair alignment with

quantitative metrics.

Weighted Pseudo Labels. We evaluate the effectiveness

of our WPL proposal and report results in Tab. 3, comparing

similar training with either WPL (Ours), batch-wise Pseudo-

Label4, or None. For all, the training is performed using

as target the whole BDD100k train set (removing dupli-

cates from 10k split) together with the rainy sequences from

Domain-bridge dataset, resulting in over 90k images. Per-

formance is reported on target BDD-rainy. We do not com-

pare against offline Pseudo Label, as this would be imprac-

tical with such a big dataset, and this evaluation is partly

encompassed in BDL comparison (cf. Tab. 2). For WPL,

we empirically set γ = 1, σ = 0.005 (Eq. 7) to balance

contributions and ptp = 0.75 (Eq. 10 & 11).

From results in Tab. 3, WPL performs the best and batch-

wise Pseudo Label third. In fact, the performance decrease

for batch-wise (compared to no self-supervision) may be

explained since best batch pixels are used as pseudo-labels,

thus possibly implying some incorrect self-supervision in

case of low batch accuracy. Instead, our WPL boosts the

mIoU on the target dataset which is expected due to its ex-

pansion behavior.

5. Conclusions

In this work, we introduced a novel approach to generate

realistic rainy images with an i2i network, while preserving

traits of adverse weather that are typically ignored by state-

of-the-art architectures. Then, we extended our system and

demonstrated its performances in UDA for semantic seg-

mentation, and with a simple pipeline we obtained on par

performances with respect to the state-of-the-art. Finally,

we introduced a novel pseudo labeling strategy that works

with an unlimited number of images, and has an optimizable

weight parameter used to guide region growing. For future

work, we plan to extend our pseudo labeling approach with

class-wise thresholds, and to extend the method to different

adverse weather conditions.
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