
Neural Puppet: Generative Layered Cartoon Characters

Omid Poursaeed1,2 Vladimir G. Kim3 Eli Shechtman3 Jun Saito3 Serge Belongie1,2

1Cornell University 2Cornell Tech 3Adobe Research

Abstract

We propose a learning based method for generating new

animations of a cartoon character given a few example im-

ages. Our method is designed to learn from a traditionally

animated sequence, where each frame is drawn by an artist,

and thus the input images lack any common structure, cor-

respondences, or labels. We express pose changes as a de-

formation of a layered 2.5D template mesh, and devise a

novel architecture that learns to predict mesh deformations

matching the template to a target image. This enables us

to extract a common low-dimensional structure from a di-

verse set of character poses. We combine recent advances

in differentiable rendering as well as mesh-aware models

to successfully align common template even if only a few

character images are available during training. In addi-

tion to coarse poses, character appearance also varies due

to shading, out-of-plane motions, and artistic effects. We

capture these subtle changes by applying an image trans-

lation network to refine the mesh rendering, providing an

end-to-end model to generate new animations of a charac-

ter with high visual quality. We demonstrate that our gen-

erative model can be used to synthesize in-between frames

and to create data-driven deformation. Our template fitting

procedure outperforms state-of-the-art generic techniques

for detecting image correspondences.

1. Introduction

Traditional character animation is a tedious process that

requires artists meticulously drawing every frame of a mo-

tion sequence. After observing a few such sequences, a

human can easily imagine what a character might look in

other poses, however, making these inferences is difficult

for learning algorithms. The main challenge is that the in-

put images commonly exhibit substantial variations in ap-

pearance due to articulations, artistic effects, and viewpoint

changes, significantly complicating the extraction of the un-

derlying character structure. In the space of natural images,

one can rely on extensive annotations [50] or vast amount

of data [54] to extract the common structure. Unfortunately,

this approach is not feasible for cartoon characters, since

their topology, geometry, and drawing style is far less con-

Figure 1: The user provides a template mesh and a set of

unlabeled images (first row). The model learns to generate

inbetween frames (row 2 and 3) and constrained deforma-

tions (row 4).

sistent than that of natural images of human bodies or faces.

To tackle this challenge, we propose a method that learns

to generate novel character appearances from a small num-

ber of examples by relying on additional user input: a de-

formable puppet template. We assume that all character

poses can be generated by warping the deformable tem-

plate, and thus develop a deformation network that encodes

an image and decodes deformation parameters of the tem-

plate. These parameters are further used in a differentiable

rendering layer that is expected to render an image that

matches the input frame. Reconstruction loss can be back-

propagated through all stages, enabling us to learn how to

register the template with all of the training frames. While

the resulting renderings already yield plausible poses, they

fall short of artist-generated images since they only warp a

single reference, and do not capture slight appearance varia-

tions due to shading and artistic effects. To further improve

visual quality of our results, we use an image translation

3346

network that synthesizes the final appearance.

While our method is not constrained to a particular

choice for the deformable puppet model, we chose a lay-

ered 2.5D deformable model that is commonly used in aca-

demic [15] and industrial [2] applications. This model

matches many traditional hand-drawn animation styles, and

makes it significantly easier for the user to produce the tem-

plate relative to 3D modeling that requires extensive exper-

tise. To generate the puppet, the user has to select a single

frame and segment the foreground character into constituent

body parts, which can be further converted into meshes us-

ing standard triangulation tools [52].

We evaluate our method on animations of six characters

with 70%-30% train-test split. First, we evaluate how well

our model can reconstruct the input frame and demonstrate

that it produces more accurate results than state-of-the-art

optical flow and auto-encoder techniques. Second, we eval-

uate the quality of correspondences estimated via the regis-

tered templates, and demonstrate improvement over image

correspondence methods. Finally, we show that our model

can be used for data-driven animation, where synthesized

animation frames are guided by character appearances ob-

served at training time. We build prototype applications

for synthesizing in-between frames and animating by user-

guided deformation where our model constrains new im-

ages to lie on a learned manifold of plausible character de-

formations. We show that the data-driven approach yields

more realistic poses that better match to original artist draw-

ings than traditional energy-based optimization techniques

used in computer graphics.

2. Related Work

Deep Generative Models. Several successful paradigms

of deep generative models have emerged recently, including

the auto-regressive models [21, 43, 61], Variational Auto-

encoders (VAEs) [34, 33, 49], and Generative Adversarial

Networks (GANs) [20, 46, 51, 26, 6, 31]. Deep genera-

tive models have been applied to image-to-image translation

[27, 68, 67], image superresolution [37], learning from syn-

thetic data [10, 53], generating adversarial images [45, 44],

and synthesizing 3D volumes [60, 55]. These techniques

usually make no assumptions about the structure of the

training data and synthesize pixels (or voxels) directly. This

makes them very versatile and appealing when a large num-

ber of examples are available. Since these data might not be

available in some domains, such as 3D modeling or charac-

ter animation, several techniques leverage additional struc-

tural priors to train deep models with less training data.

Learning to Generate with Deformable Templates. De-

formable templates have been used for decades to address

analysis and synthesis problems [5, 9, 3, 4, 41, 69]. Synthe-

sis algorithms typically assume that multiple deformations

of the same template (e.g., a mesh of the same character in

various poses) is provided during training. Generative mod-

els, such as variational auto-encoders directly operate on

vertex coordinates to encode and generate plausible defor-

mations from these examples [59, 36, 39]. Alternative rep-

resentations, such as multi-resolution meshes [47], single-

chart UV [7], or multi-chart UV [24] is used for higher res-

olution meshes. This approaches are limited to cases when

all of the template parameters are known for all training ex-

amples, and thus cannot be trained or make inferences over

raw unlabeled data.

Some recent work suggests that neural networks can

jointly learn the template parameterization and optimize for

the alignment between the template and a 3D shape [22] or

2D images [29, 25, 62]. While these models can make infer-

ences over unlabeled data, they are trained on a large num-

ber of examples with rich labels, such as dense or sparse

correspondences defined for all pairs of training examples.

To address this limitation, a recent work on deform-

ing auto-encoders provides an approach for unsupervised

group-wise image alignment of related images (e.g. hu-

man faces) [54]. They disentangle shape and appearance

in latent space, by predicting a warp of a learned template

image as well as its texture transformations to match every

target image. Since their warp is defined over the regular

2D lattice, their method is not suitable for strong articula-

tions. Thus, to handle complex articulated characters and

strong motions, we leverage an user-provided template and

rely on regularization terms that leverage the rigging as well

as mesh structure. Instead of synthesizing appearance in a

common texture space, we do the final image translation

pass that enables us to recover from warping artifacts and

capture effects beyond texture variations, such as out-of-

plane motions.

Mesh-based models for Character Animation. Many

techniques have been developed to simplify the produc-

tion of traditional hand-drawn animation using comput-

ers [12, 16]. Mesh deformation techniques enable novice

users to create animations by manipulating a small set of

control points of a single puppet [56, 28]. To avoid overly-

synthetic appearance, one can further stylize these defor-

mations by leveraging multiple co-registered examples to

guide the deformation [63], and final appearance synthe-

sis [17, 18]. These methods, however, require artist to

provide the input in a particular format, and if this input

is not available rely on image-based correspondence tech-

niques [11, 58, 14, 19, 57] to register the input. Our de-

formable puppet model relies on a layered mesh represen-

tation [18] and mesh regularization terms [56] used in these

optimization-based workflows. Our method jointly learns

the puppet deformation model as it registers the input data

to the template, and thus yields more accurate correspon-

dences than state-of-the-art flow-based approach [57] and

3347

(a) (b)

Figure 2: Deformable Puppet. a) For each body part a sep-

arate mesh is created, and joints (shown with circles) are

specified. b) The meshes are combined into a single mesh.

The UV-image of the final mesh consists of translated ver-

sions of separate texture maps.

state-of-the-art feature-based method trained on natural im-

ages [14].

3. Approach

Our goal is to learn a deformable model for a cartoon

character given an unlabeled collection of images. First,

the user creates a layered deformable template puppet by

segmenting one reference frame. We then train a two-stage

neural network that first fits this deformable puppet to ev-

ery frame of the input sequence by learning how to warp a

puppet to reconstruct the appearance of the input, and sec-

ond, it refines the rendering of deformed puppet to account

for texture variations and motions that cannot be expressed

with a 2D warp.

3.1. A Layered Deformable Puppet

The puppet geometry is represented with a few triangular

meshes ordered into layers and connected at hinge joints.

For simplicity, we denote them as one mesh with vertices

V and faces F , where every layer is a separate connected

component of the mesh. Joints are represented as {(pi, qi)}
pairs, connecting vertices between some of these compo-

nents. The puppet appearance is captured as texture image

Iuv , which aligns to some rest pose V̂ . New character poses

can be generated by modifying vertex coordinates, and the

final appearance can be synthesized by warping the original

texture according to mesh deformation.

Unlike 3D modeling, even inexperienced users can cre-

ate the layered 2D puppet. First, one selects a reference

frame and provides the outline for different body parts and

prescribes the part ordering. We then use standard triangu-

lation algorithm [52] to generate a mesh for each part, and

create a hinge joint at the centroid of overlapping area of

two parts. We can further run midpoint mesh subdivision to

get a finer mesh that can model more subtle deformations.

Figure 2 illustrates a deformable puppet.

3.2. Deformation Network

After obtaining the template, we aim to learn how to de-

form it to match a target image of the character in a new

pose. Figure 3 illustrates our architecture. The inputs to the

Deformation Network are the initial mesh and a target im-

age of the character in a new pose. An encoder-decoder net-

work takes the target image, encodes it to a 512-dimensional

bottleneck via three convolutional filters1 and three fully

connected layers, and then decodes it to per-vertex position

offsets and a global bias via three fully connected layers.

Deformation network learns to recognize the pose in the

input image and then infer appropriate template deforma-

tion to reproduce the pose. We assume the connectivity of

vertices and the textures remain the same compared to the

template. Hence, we pass the faces and textures of the ini-

tial mesh in tandem with the predicted vertex positions to a

differentiable renderer R. The rendered image is then com-

pared to the input image using L2 reconstruction loss:

Lrec = ‖x−R(Vpred, F, I
uv)‖2 (1)

in which x represents the input image. We use the Neural

Mesh Renderer [30] as our differentiable renderer, since it

can be easily integrated into neural network architectures.

Note that the number of vertices can vary for different char-

acters as we train a separate model for each character.

Regularization. The model trained with only the recon-

struction loss does not preserve the structure of the initial

mesh, and the network may generate large deformations to

favor local consistency. In order to prevent this, we use

the ARAP regularization energy [56] which penalizes de-

viations of per-cell transformations from rigidity:

Lreg =

|V |
∑

i=1

∑

j∈Ni

wij ‖(v̂i − v̂j)−Ri(vi − vj)‖
2

(2)

in which vi and v̂i are coordinates of vertex i before and af-

ter deformation, Ni denotes neighboring vertices of vertex

i, wij are cotangent weights and Ri is the optimal rotation

matrix as discussed in [56].

Joints Loss. If we do not constrain vertices of the layered

mesh, different limbs can move away from each other, re-

sulting in unrealistic outputs. In order to prevent this, we

specify ‘joints’ (pi, qi), i = 1, . . . , n as pairs of vertices in

different layers that must remain close to each other after

deformation. We manually specify the joints, and penalize

the sum of distances between vertices in each joint:

Ljoints =

n
∑

i=1

‖pi − qi‖
2

(3)

1Kernel size=5, padding=2, stride=2

3348

Figure 3: Training Architecture. An encoder-decoder network learns the mesh deformation and a conditional Generative

Adversarial Network refines the rendered image to capture texture variations.

Our final loss for training the Deformation Network is a

linear combination of the aforementioned losses:

Ltotal = Lrec + λ1 · Lreg + λ2 · Ljoints (4)

We use λ1 = 2500 and λ2 = 104 in the experiments.

3.3. Appearance Refinement Network

While articulations can be mostly captured by deforma-

tion network, some appearance variations such as artistic

stylizations, shading effects, and out-of-plane motions can-

not be generated by warping a single reference. To ad-

dress this limitation, we propose an appearance refinement

network that processes the image produced by rendering

the deformed puppet. Our architecture and training proce-

dure is similar to conditional Generative Adversarial Net-

work (cGAN) approach that is widely used in various do-

mains [42, 66, 27]. The corresponding architecture is shown

in Figure 3. The generator refines the rendered image to

look more natural and more similar to the input image. The

discriminator tries to distinguish between input frames of

character poses and generated images. These two networks

are then trained in an adversarial setting [20], where we use

pix2pix architecture [27] and Wasserstein GAN with Gra-

dient Penalty for adversarial loss [6, 23]:

LG = −E
[

D(G(xrend))
]

+ γ1 ‖G(xrend)− xinput‖1 (5)

And the discriminator’s loss is:

LD = E
[

D(G(xrend))
]

− E
[

D(xreal)
]

+

γ2 E
[

(‖∇x̂D(x̂)‖
2
− 1)2

]

(6)

in which D(·) and G(·) are the discriminator and the gen-

erator, γ1, γ2 ∈ R are weights, xinput and xrend are the in-

put and rendered images, xreal is an image sampled from

the training set, and x̂ = ǫ G(xrend) + (1 − ǫ) xreal with

ǫ uniformly sampled from the [0, 1] range. The cGAN is

trained independently after training the Deformation Net-

work as this results in more stable training. Note that one

could also use deformed results directly without the refine-

ment network.

4. Results and Applications

We evaluate how well our method captures (i.e., encodes

and reconstructs) character appearance. We use six charac-

ter animation sequences from various public sources. Fig-

ure 4 shows some qualitative results where for each in-

put image we demonstrate output of the deformation net-

work (rendered) and the final synthesized appearance (gen-

erated). The first three characters are from Dvoroznak et

al. [18] with 1280/547, 230/92 and 60/23 train/test images

respectively. The last character (robot) is obtained from

Adobe Character Animator [2] with 22/9 train/test images.

Other characters and their details are given in the supple-

mentary material. The rendered result is produced by warp-

ing a reference puppet, and thus it has fewer degrees of free-

dom (e.g., it cannot change texture or capture out-of-plane

motions). However, it still provides fairly accurate recon-

struction even for very strong motions, suggesting that our

layered puppet model makes it easier to account for signif-

icant character articulations, and that our image encoding

can successfully predict these articulations even though it

was trained without strong supervision. Our refinement net-

work does not have any information from the original image

other than the re-rendered pose, but, evidently, adversarial

loss provides sufficient guidance to improve the final ap-

pearance and match the artist-drawn input. To confirm that

these observations hold over all characters and frames, we

report L2 distance between the target and generated images

in Table 1. See supplemental material for more examples.

We compare our method to alternative techniques for re-

synthesizing novel frames (also in Figure 4). One can use

optical flow method, such as PWC-Net [57] to predict a

warping of a reference frame (we use the frame that was

used to create the puppet) to the target image. This method

was trained on real motions in videos of natural scenes and

tends to introduce strong distortion artifacts when matching

3349

Figure 4: Input images, our rendered and final results, followed by results obtained with PWC-Net [57] and DAE [54] (input

images for the first three characters are drawn by c©Zuzana Studená. The fourth character c©Adobe Character Animator).

large articulations in our cartoon data. Various autoencoder

approaches can also be used to encode and reconstruct ap-

pearance. We compare to a state-of-the-art approach that

uses deforming auto-encoders [54] to disentangle deforma-

tion and appearance variations by separately predicting a

warp field and a texture. This approach does not decode

character-specific structure (the warp field is defined over

a regular grid), and thus also tends to fail at larger artic-

ulations. Another limitation is that it controls appearance

by altering a pre-warped texture, and thus cannot correct

3350

Char1 Char2 Char3 Char4 Avg

Rendered 819.8 732.7 764.1 738.9 776.1

Generated 710.0 670.5 691.7 659.2 695.3

PWC-Net 1030.4 1016.1 918.3 734.6 937.1

DAE 1038.3 1007.2 974.8 795.1 981.6

Table 1: Average L2 distance to the target images from the

test set. Rendered and generated images from our method

are compared with PWC-Net [57] and Deforming Auto-

encoders [54]. The last column shows the average distance

across six different characters.

for any distortion artifacts introduced by the warp. Both

methods have larger reconstruction loss in comparison to

our rendered as well as final results (see Table 1).

One of the key advantages of our method is that it pre-

dicts deformation parameters, and thus can retain resolution

of the artist-drawn image. To illustrate this, we render the

output of our method as 1024 × 1024 images using vanilla

OpenGL renderer in the supplementary material. The fi-

nal conditional generation step can also be trained on high-

resolution images.

4.1. Inbetweening

In traditional animation, a highly-skilled artist creates a

few sparse keyframes and then in-betweening artists draw

the other frames to create the entire sequence. Various com-

putational tools have been proposed to automate the second

step [35, 58, 8, 64], but these methods typically use hand-

crafted energies to ensure that intermediate frames look

plausible, and rely on the input data to be provided in a

particular format (e.g., deformations of the same puppet).

Our method can be directly used to interpolate between two

raw images, and our interpolation falls on the manifold of

deformations learned from training data, thus generating in-

betweens that look similar to the input sequence.

Given two images x1 and x2 we use the encoder in de-

formation network to obtain their features, zi = E(xi). We

then linearly interpolate between z1 and z2 with uniform

step size, and for each in-between feature z we apply the

rest of our network to synthesize the final appearance. The

resulting interpolations are shown in Figure 5 and in supple-

mental video. The output images smoothly interpolate the

motion, while mimicking poses observed in training data.

This suggests that the learned manifold is smooth and can

be used directly for example-driven animation. We further

confirm that our method generalizes beyond training data

by showing nearest training neighbor to the generated im-

age (using Euclidean distance as the metric).

4.2. User­constrained Deformation

Animations created with software assistance commonly

rely on deforming a puppet template to target poses. These

deformations are typically defined by local optima with re-

spect to user-prescribed constraints (i.e., target motions)

and some hand-crafted energies such as rigidity or elas-

ticity [56, 38, 13]. This is equivalent to deciding on what

kind of physical material the character is made of (e.g.,

rubber, paper), and then trying to mimic various deforma-

tions of that material without accounting for artistic styl-

izations and bio-mechanical priors used by professional an-

imators. While some approaches allow transferring these

effects from stylized animations [18], they require artist

to provide consistently-segmented and densely annotated

frames aligned to some reference skeleton motion. Our

model does not rely on any annotations and we can directly

use our learned manifold to find appropriate deformations

that satisfy user constraints.

Given the input image of a character x, the user clicks

on any number of control points {pi} and prescribes their

desired target positions {ptrg
i }. Our system then produces

the image x′ that satisfies the user constraints, while adher-

ing to the learned manifold of plausible deformations. First,

we use the deformation network to estimate vertex parame-

ters to match our puppet to the input image: v = D(E(x))
(where E(·) is the encoder and D(·) is the decoder in Fig-

ure 3). We observe that each user-selected control point pi
can now be found on the surface of the puppet mesh. One

can express its position as a linear combination of mesh ver-

tices, pi(v), where we use barycentric coordinates of the

triangle that encloses pi. The user constrained can be ex-

pressed as an energy, penalizing distance to the target:

Luser =
∑

i

∥

∥pi(v)− p
trg
i

∥

∥

2

(7)

For the deformation to look plausible, we also include

the regularization terms:

Ldeform = Luser + α1 · Lreg + α2 · Ljoints (8)

We use α1 = 25, α2 = 50 in the experiments.

Since our entire deformation network is differentiable,

we can propagate the gradient of this loss function to the

embedding of the original image z0 = E(x) and use gradi-

ent descent to find z that optimizes Ldeform:

z ←− z − η∇zLdeform (9)

where η = 3× 10−4 is the step size. In practice, a few (2 to

5) iterations of gradient descent suffice to obtain satisfactory

results, enabling fast, interactive manipulation of the mesh

by the user (in the order of seconds).

The resulting latent vector is then passed to the decoder,

the renderer and the refinement network. Figure 6 (left)

illustrates the results of this user-constrained deformation.

As we observe, deformations look plausible and satisfy the

user constraints. They also show global consistency; for

instance, as we move one of the legs to satisfy the user con-

straint, the torso and the other leg also move in a consistent

manner. This is due to the fact that the latent space encodes

3351

Generated
 (Ours)

Rendered
 (Ours)

Input

Nearest
Neighbor
(Baseline)

Figure 5: Inbetweening results. Two given images (first row) are encoded. The resulting latent vectors are linearly inter-

polated yielding the rendered and generated (final) images. For each generated image, the corresponding Nearest Neighbor

image from the training set is retrieved.

Generated
 (Ours)

Rendered
 (Ours)

Generated
 (ARAP)

Rendered
 (ARAP)

Figure 6: User-constrained deformation. Given the starting vertex and the desired location (shown with the arrow), the model

learns a plausible deformation to satisfy the user constraint. Our approach of searching for an optimal latent vector achieves

global shape consistency, while optimizing directly on vertex positions only preserves local rigidity.

high-level information about the character’s poses, and it

learns that specific poses of torso are likely to co-occur with

specific poses of legs, as defined by the animator.

We compare our method with optimizing directly in the

vertex space using the regularization terms only (Figure 6,

right). This approach does not use the latent representation,

and thus does not leverage the training data. It is similar

to traditional energy-based approaches, where better energy

models might yield smoother deformation, but would not

enforce long-range relation between leg and torso motions.

3352

Train Test

Input

Rendered

Generated

Figure 7: Characters in the wild. The model learns both the outline and the pose of the character (input frames and the

character c©Soyuzmultfilm).

α = 0.1 α = 0.05 α = 0.025
Ours 67.18 46.39 24.17

UCN 67.07 43.84 21.50

PWC-Net 62.92 40.74 18.47

Table 2: Correspondence estimation results using PCK as

the metric. Results are averaged across six characters.

4.3. Correspondence Estimation

Many video editing applications require inter-frame cor-

respondence. While many algorithms have been proposed

to address this goal for natural videos [14, 40, 32, 65, 48],

they are typically not suitable for cartoon data, as it usu-

ally lacks texture and exhibits strong expressive articula-

tions. Since our Deformation Network fits the same tem-

plate to every frame, we can estimate correspondences be-

tween any pair of frames via the template. Table 2 compares

correspondences from our method with those obtained from

a recent flow-based approach (PWC-Net [57]), and with a

supervised correspondence method, Universal Correspon-

dence Networks (UCN) [14]. We use the Percentage of

Correct Keypoints (PCK) as the evaluation metric. Given

a threshold α ∈ (0, 1), the correspondence is classified as

correct if the predicted point lies within Euclidean distance

α ·L of the ground-truth, in which L = max(width, height)
is the image size. Results are averaged across pairs of im-

ages in the test set for six different characters. Our method

outperforms UCN and PWC-Net in all cases, since it has a

better model for underlying character structure. Note that

our method requires a single segmented frame, while UCN

is trained with ground truth key-point correspondences, and

PWC-Net is supervised with ground truth flow.

4.4. Characters in the Wild

We also extend our approach to TV cartoon characters

“in the wild”. The main challenge posed by these data is

that the character might only be a small element of a com-

plex scene. Given a raw video2, we first use the standard

tracking tool in Adobe After Effects [1] to extract per-frame

2e.g. https://www.youtube.com/watch?v=hYCbxtzOfL8

bounding boxes that encloses the character. Now we can use

our architecture to only analyze the character appearance.

However, since it still appears over a complex background,

we modify our reconstruction loss to be computed only over

the rendered character:

Lmasked
rec =

∥

∥x⊙R(Vpred, F, I
1)−R(Vpred, F, I

uv)
∥

∥

2

∑

R(Vpred, F, I1)
(10)

where x is the input image,⊙ is the Hadamard product, and

R(Vpred, F, I
1) is a mask, produced by rendering a mesh

with 1-valued (white) texture over a 0-valued (black) back-

ground. By applying this mask, we compare only the rel-

evant regions of input and rendered images, i.e. the fore-

ground character. The term in the denominator normalizes

the loss by the total character area. To further avoid shrink-

ing or expansion of the character (which could be driven by

a partial match), we add an area loss penalty:

Larea =
∣

∣

∣

∑

R(Vpred, F, I
1)−

∑

R(Vinit, F, I
1)
∣

∣

∣

2

(11)

Our final loss is defined similarly to Equation 4 but uses the

masked reconstruction loss Lmasked
rec and adds Larea loss with

weight 2 × 10−3 (Lreg and Ljoints are included with orig-

inal weights). We present our results in Figure 7, demon-

strating that our framework can be used to capture character

appearance in the wild.

5. Conclusion and Future Work

We present novel neural network architectures for learn-

ing to register deformable mesh models of cartoon charac-

ters. Using a template-fitting approach, we learn how to

adjust an initial mesh to images of a character in various

poses. We demonstrate that our model successfully learns

to deform the meshes based on the input images. Layering

is introduced to handle occlusion and moving limbs. Vary-

ing motion and textures are captured with a Deformation

Network and an Appearance Refinement Network respec-

tively. We show applications of our model in inbetweening,

user-constrained deformation and correspondence estima-

tion. In the future, we consider using our model for appli-

cations such as motion re-targetting.

3353

References

[1] Adobe. Adobe after effects, 2019. 8

[2] Adobe. Adobe character animator, 2019. 2, 4

[3] B. Allen, B. Curless, and Z. Popović. The space of hu-

man body shapes: reconstruction and parameterization from

range scans. In ACM transactions on graphics (TOG), vol-

ume 22, pages 587–594. ACM, 2003. 2

[4] B. Allen, B. Curless, Z. Popović, and A. Hertzmann. Learn-

ing a correlated model of identity and pose-dependent body

shape variation for real-time synthesis. In Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Com-

puter animation, pages 147–156. Eurographics Association,

2006. 2

[5] Y. Amit, U. Grenander, and M. Piccioni. Structural image

restoration through deformable templates. Journal of the

American Statistical Association, 86(414):376–387, 1991. 2

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017. 2, 4

[7] T. Bagautdinov, C. Wu, J. Saragih, P. Fua, and Y. Sheikh.

Modeling facial geometry using compositional vaes. In prac-

tice, 1:1, 2018. 2

[8] W. Baxter, P. Barla, and K. Anjyo. N-way morphing for 2d

animation. Computer Animation and Virtual Worlds, 20(2-

3):79–87, 2009. 6

[9] V. Blanz and T. Vetter. Face recognition based on fitting a 3d

morphable model. IEEE Transactions on pattern analysis

and machine intelligence, 25(9):1063–1074, 2003. 2

[10] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-

ishnan. Unsupervised pixel-level domain adaptation with

generative adversarial networks. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), vol-

ume 1, page 7, 2017. 2

[11] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turn-

ing to the masters: Motion capturing cartoons. In Proceed-

ings of the 29th Annual Conference on Computer Graph-

ics and Interactive Techniques, SIGGRAPH ’02, pages 399–

407, 2002. 2

[12] E. Catmull. The problems of computer-assisted animation.

In ACM SIGGRAPH Computer Graphics, volume 12, pages

348–353. ACM, 1978. 2

[13] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. A simple geo-

metric model for elastic deformations. In ACM transactions

on graphics (TOG), volume 29, page 38. ACM, 2010. 6

[14] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-

versal correspondence network. In Advances in Neural In-

formation Processing Systems, pages 2414–2422, 2016. 2,

3, 8

[15] W. T. Corrêa, R. J. Jensen, C. E. Thayer, and A. Finkel-

stein. Texture mapping for cel animation. pages 435–446,

July 1998. 2

[16] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth. Auto-

matic in-betweening in computer assisted animation by ex-

ploiting 2.5 d modelling techniques. In Proceedings Com-

puter Animation 2001. Fourteenth Conference on Computer

Animation (Cat. No. 01TH8596), pages 192–200. IEEE,

2001. 2

[17] M. Dvorožňák, P. Bénard, P. Barla, O. Wang, and D. Sỳkora.

Example-based expressive animation of 2d rigid bodies.

ACM Transactions on Graphics (TOG), 36(4):127, 2017. 2

[18] M. Dvorožnák, W. Li, V. G. Kim, and D. Sỳkora. Toon-

synth: example-based synthesis of hand-colored cartoon an-

imations. ACM Transactions on Graphics (TOG), 37(4):167,

2018. 2, 4, 6

[19] X. Fan, A. Bermano, V. G. Kim, J. Popovic, and

S. Rusinkiewicz. Tooncap: A layered deformable model for

capturing poses from cartoon characters. Expressive, 2018.

2

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2, 4

[21] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wier-

stra. Deep autoregressive networks. arXiv preprint

arXiv:1310.8499, 2013. 2

[22] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and

M. Aubry. Shape correspondences from learnt template-

based parametrization. arXiv preprint arXiv:1806.05228,

2018. 2

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of wasserstein gans. In

Advances in Neural Information Processing Systems, pages

5767–5777, 2017. 4

[24] H. B. Hamu, H. Maron, I. Kezurer, G. Avineri, and Y. Lip-

man. Multi-chart generative surface modeling. SIGGRAPH

Asia, 2018. 2

[25] P. Henderson and V. Ferrari. Learning to generate and recon-

struct 3d meshes with only 2d supervision. arXiv preprint

arXiv:1807.09259, 2018. 2

[26] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Be-

longie. Stacked generative adversarial networks. In CVPR,

volume 2, page 3, 2017. 2

[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-

to-image translation with conditional adversarial networks.

arXiv preprint, 2017. 2, 4

[28] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded

biharmonic weights for real-time deformation. ACM Trans-

actions on Graphics (proceedings of ACM SIGGRAPH),

30(4):78:1–78:8, 2011. 2

[29] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learn-

ing category-specific mesh reconstruction from image col-

lections. arXiv preprint arXiv:1803.07549, 2018. 2

[30] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3907–3916, 2018. 3

[31] M. Kiapour, S. Zheng, R. Piramuthu, and O. Poursaeed.

Generating a digital image using a generative adversarial net-

work, Sept. 19 2019. US Patent App. 15/923,347. 2

[32] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial

pyramid matching for fast dense correspondences. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2307–2314, 2013. 8

[33] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.

Semi-supervised learning with deep generative models. In

3354

Advances in Neural Information Processing Systems, pages

3581–3589, 2014. 2

[34] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[35] A. Kort. Computer aided inbetweening. In Proceedings of

the 2nd international symposium on Non-photorealistic ani-

mation and rendering, pages 125–132. ACM, 2002. 6

[36] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and B. Joan.

Surface networks. In 2018 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2018, 2018. 2

[37] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,

A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a genera-

tive adversarial network. In CVPR, volume 2, page 4, 2017.

2

[38] Z. Levi and C. Gotsman. Smooth rotation enhanced as-rigid-

as-possible mesh animation. IEEE transactions on visualiza-

tion and computer graphics, 21(2):264–277, 2015. 6

[39] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. De-

formable shape completion with graph convolutional autoen-

coders. arXiv preprint arXiv:1712.00268, 2017. 2

[40] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-

dence across scenes and its applications. IEEE transactions

on pattern analysis and machine intelligence, 33(5):978–

994, 2011. 8

[41] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.

Black. Smpl: A skinned multi-person linear model. ACM

Transactions on Graphics (TOG), 34(6):248, 2015. 2

[42] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 4

[43] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. arXiv preprint arXiv:1601.06759,

2016. 2

[44] O. Poursaeed, T. Jiang, H. Yang, S. Belongie, and S.-N. Lim.

Fine-grained synthesis of unrestricted adversarial examples.

arXiv preprint arXiv:1911.09058, 2019. 2

[45] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie. Genera-

tive adversarial perturbations. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4422–4431, 2018. 2

[46] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 2

[47] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generat-

ing 3d faces using convolutional mesh autoencoders. arXiv

preprint arXiv:1807.10267, 2018. 2

[48] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Deepmatching: Hierarchical deformable dense matching. In-

ternational Journal of Computer Vision, 120(3):300–323,

2016. 8

[49] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. arXiv preprint arXiv:1401.4082, 2014. 2

[50] I. K. R{i1

za Alp Güler, Natalia Neverova. Densepose: Dense human

pose estimation in the wild. arXiv, 2018.

[51] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in Neural Information Processing Systems, pages

2234–2242, 2016. 2

[52] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh

generator and delaunay triangulator. In Applied computa-

tional geometry towards geometric engineering, pages 203–

222. Springer, 1996. 2, 3

[53] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In CVPR, volume 2,

page 5, 2017. 2

[54] Z. Shu, M. Sahasrabudhe, A. Guler, D. Samaras, N. Para-

gios, and I. Kokkinos. Deforming autoencoders: Unsuper-

vised disentangling of shape and appearance. arXiv preprint

arXiv:1806.06503, 2018. 1, 2, 5, 6

[55] A. A. Soltani, H. Huang, J. Wu, T. D. Kulkarni, and J. B.

Tenenbaum. Synthesizing 3d shapes via modeling multi-

view depth maps and silhouettes with deep generative net-

works. In The IEEE conference on computer vision and pat-

tern recognition (CVPR), volume 3, page 4, 2017. 2

[56] O. Sorkine and M. Alexa. As-rigid-as-possible surface mod-

eling. In Symposium on Geometry processing, volume 4,

pages 109–116, 2007. 2, 3, 6

[57] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns

for optical flow using pyramid, warping, and cost volume.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8934–8943, 2018. 2, 4, 5, 6,

8

[58] D. Sỳkora, J. Dingliana, and S. Collins. As-rigid-as-

possible image registration for hand-drawn cartoon anima-

tions. In Proceedings of the 7th International Symposium on

Non-Photorealistic Animation and Rendering, pages 25–33.

ACM, 2009. 2, 6

[59] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia. Variational autoen-

coders for deforming 3d mesh models. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2

[60] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-

erating networks: Efficient convolutional architectures for

high-resolution 3d outputs. In Proc. of the IEEE Interna-

tional Conf. on Computer Vision (ICCV), volume 2, page 8,

2017. 2

[61] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,

A. Graves, et al. Conditional image generation with pixel-

cnn decoders. In Advances in Neural Information Processing

Systems, pages 4790–4798, 2016. 2

[62] A. Venkat, S. S. Jinka, and A. Sharma. Deep textured 3d

reconstruction of human bodies. 2

[63] K. Wampler. Fast and reliable example-based mesh ik

for stylized deformations. ACM Transactions on Graphics

(TOG), 35(6):235, 2016. 2

[64] B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. Gross,

and J. Rossignac. Betweenit: An interactive tool for tight

inbetweening. In Computer Graphics Forum, volume 29,

pages 605–614. Wiley Online Library, 2010. 6

[65] H. Yang, W. Lin, and J. Lu. Daisy filter flow: A generalized

approach to discrete dense correspondences. CVPR, 2014. 8

3355

[66] D. Yoo, N. Kim, S. Park, A. S. Paek, and I. S. Kweon. Pixel-

level domain transfer. In European Conference on Computer

Vision, pages 517–532. Springer, 2016. 4

[67] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image mani-

fold. In European Conference on Computer Vision, pages

597–613. Springer, 2016. 2

[68] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. arXiv preprint, 2017. 2

[69] S. Zuffi and M. J. Black. The stitched puppet: A graphical

model of 3d human shape and pose. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3537–3546, 2015. 2

3356

