
DeepErase: Weakly Supervised Ink Artifact Removal in Document Text Images

Yike Qi∗ W. Ronny Huang∗ Qianqian Li Jonathan L. DeGange

Ernst & Young LLP

{ronny.huang, yike.qi, qianqian.li, jonathan.degange}@ey.com

Abstract

Paper-intensive industries like insurance, law, and gov-

ernment have long leveraged optical character recognition

(OCR) to automatically transcribe hordes of scanned doc-

uments into text strings for downstream processing. Even

in 2019, there are still many scanned documents and mail

that come into businesses in non-digital format. Text to be

extracted from real world documents is often nestled in-

side rich formatting, such as tabular structures or forms

with fill-in-the-blank boxes or underlines whose ink often

touches or even strikes through the ink of the text itself.

Further, the text region could have random ink smudges or

spurious strokes. Such ink artifacts can severely interfere

with the performance of recognition algorithms or other

downstream processing tasks. In this work, we propose

DeepErase, a neural-based preprocessor to erase ink ar-

tifacts from text images. We devise a method to program-

matically assemble real text images and real artifacts into

realistic-looking “dirty” text images, and use them to train

an artifact segmentation network in a weakly supervised

manner, since pixel-level annotations are automatically ob-

tained during the assembly process. In addition to high

segmentation accuracy, we show that our cleansed images

achieve a significant boost in recognition accuracy by pop-

ular OCR software such as Tesseract 4.0. Finally, we test

DeepErase on out-of-distribution datasets (NIST SDB) of

scanned IRS tax return forms and achieve double-digit im-

provements in accuracy. All experiments are performed on

both printed and handwritten text.

1. Introduction

Despite the digitization of information over the past

twenty years, large swaths of industry still rely on paper

documents for data entry and ingestion. Optical character

recognition (OCR) has thus become a widely adopted tool

∗Authors contributed equally.

Recognition: “QjZE” Recognition: “9126”

Raw Cleansed

Recognition: “I|.I” Recognition: “2003”

Recognition: “agairsh” Recognition: “against”

Recognition: “differencd” Recognition: “difference”

Figure 1: DeepErase cleans, or erases, ink artifacts from document text images, improving recognition accuracy, visual ap-

peal, and other downstream tasks. Here we show text images cropped from scanned documents with various ink artifacts,

such as underlines, boxes, smudges, and spurious strokes. DeepErase removes those artifacts, immediately improving recog-

nition performance by Tesseract 4.0, a widely used open-source OCR tool, for printed text and by SimpleHTR, a popular

offline handwriting classifier, for handwritten text.

3522

for automatically transcribing text images to text strings.

Modern convolutional neural networks have driven many

major advances in the performance of OCR systems, cul-

minating in the large-scale adoption of OCR tools such as

Tesseract 4.0, Abbyy Fine Reader, or Microsoft Computer

Vision OCR.

OCR, or more generally document text recognition, re-

lies on a two-step process: (1) Localization: determine re-

gions of the image (i.e. bounding boxes) which contain

text and crop out those regions. (2) Recognition: transcribe

cropped text image into a text string. Localization was tra-

ditionally performed via sliding window-based techniques

and nowadays is performed via region proposal networks

[30]. Meanwhile, convolutional feature extractors [17] cou-

pled with recurrent classifiers with the connected temporal

classification (CTC) loss has long been the workhorse of

text recognition algorithms [11, 12], although more recent

approaches use attention-based networks [5, 24].

The relevant text to be extracted from real world doc-

uments are often nestled inside of rich formatting such as

tabular structures or forms with fill-in-the-blank boxes or

underlines. Furthermore, documents with handwriting en-

tries often contain handwritten strokes which do not stay

within confines of the boxes or lines in which they be-

long and can encroach into regions occupied by other text

that needs to be transcribed (henceforth such encroachment

strokes will be called spurious strokes). When extracting

text regions from such richly formatted documents, it is in-

evitable that such document ink artifacts are present in the

cropped image even if the localization is perfect. Such ar-

tifacts can severely degrade the performance of recognition

algorithms, as shown in Figure 1.

Despite the prevalence of these artifacts in the real world,

many document text recognition datasets, including IAM

[21], NIST SDB19 [14], and IFN/ENIT [9] contain only

images which are cleanly cropped and are more or less free

from artifacts. Even the recently released FUNSD dataset

of noisy scanned documents [13] segment their words free

of underlines, boxes, and spurious strokes. Consequently,

most results on text recognition have reported their perfor-

mance on clean test examples [12, 4], typically in the form

of well-aligned, well-spaced text lines, which are not repre-

sentative of the noisy, marked-up, richly formatted scanned

documents encountered in the wild.

One possible way to improve the robustness of a text

recognition system is to train it on images containing the

types of artifacts typically present in documents, making

it robust against such perturbations, a method akin to data

augmentation or adversarial training [10]. However, today

most organizations are already set up with industrial-grade

recognition systems wrapped in cloud and security infras-

tructure, rendering the prospect of overhauling the existing

system with a homemade classifier (which is likely trained

on much fewer data and therefore a comparatively lower

performance) too risky an endeavor for most.

Nonetheless, many industrial-grade classifiers are still

not robust to document images with ink artifacts (Figure

1. An alternative way to address this problem is to erase

artifacts from the image before feeding it into the recog-

nition engine. One might want artifact-cleansed images

for other downstream tasks as well besides recognition, in-

cluding signature extraction/verification [20] and document

restoration, or simply for visual appeal; thus it is important

to have an image pre-processing step that erases these arti-

facts.

Little work has been done leveraging deep learning for

document artifact removal. In this work, we present Deep-

Erase, which inputs a document text image with ink artifacts

and outputs the same image with artifacts erased (Figure 1).

Training is weakly supervised as we use a simple artifact

assembler program to produce dirty images along with their

segmentation masks for training. Note that henceforth we

may refer to images with artifacts as “dirty”. We evalu-

ate the performance of DeepErase by passing the cleansed

images into two popular text recognition tools: Tesser-

act and SimpleHTR. On these recognition engines, Deep-

Erase achieves a 40-60% word accuracy improvement (over

the dirty images) on our validation set and a 14% improve-

ment on the NIST SDB2 and SDB6 datasets of scanned IRS

documents.

1.1. Related work

Our work is related broadly to the field of semantic seg-

mentation [19, 28, 2], which predicts classes for different

regions of the image. While semantic segmentation is typi-

cally applied to natural scenes, several works have applied it

to documents for page segmentation [7], structure segmen-

tation [31], or text line segmentation [27]. All of these tasks

discriminate large-scale structure within a document, such

as tables or text lines, rather than small-scale patterns such

as underlines striking through text characters.

Classical methods for line artifact detection used the

Hough transform to detect lines and other simple shapes in

documents, such as ellipses [18, 22]. Such methods, how-

ever, do not pay attention to the spatial structure beyond

specified shapes, and may erase parts of the clean text that

overlapped with the artifact. Since the dawn of deep learn-

ing, similar tasks involving semantic segmentation in doc-

uments have been actively researched. Document binariza-

tion is a task in which each pixel in an RGB or grayscale im-

age is assigned a binary value of either on or off. Binariza-

tion in low-contrast, degraded documents cannot rely solely

on neighborhood-independent pixel thresholds and, like our

task, must pay attention to the spatial patterns in the image.

Recent approaches in binarization leverage multiscale con-

volutional networks to perform per-pixel binarization pre-

3523

diction [29].

The works of Calvo-Zaragoza et al. [6] and Kölsch et

al. [16] are the most similar works to ours. The task in

[6] is to discriminate between staff-lines and musical sym-

bols in musical scores, while the task in [16] is to iden-

tify handwritten annotations inside of historical documents.

LIke ours, both approaches leverage fully convolutional ar-

chitectures for their respective semantic segmentation tasks.

There are several differences which make our task more

challenging. In [6], the staff-lines and musical symbols,

which the task wishes to distinguish, comprise a limited

set of variations. Staff-lines appear in the same position

with respect to the musical notes and tend to be long con-

tinuous horizontal lines. In contrast, our artifacts include

lines, smudges, and spurious strokes in a variety of orienta-

tions and positions relative to the text. The historical doc-

ument text characters in [16] are printed while the annota-

tions are handwritten, and the annotations have a slightly

different shade, both of which are telltale signs for the net-

work to discriminate. Our images on the other hand are bi-

narized before entering the model, forcing our segmentation

to rely solely on neighborhood spatial structure. Finally,

both these approaches require full supervision via manually

labeled segmentation masks, while our approach is weakly

supervised—only a single artifact image assembly function

needs to be written.

1.2. Contributions

Our contributions are threefold:

• Novel application: We tackle artifact removal in

printed and handwritten text images, a problem not yet

approached by deep learning.

• Weakly supervised approach: Our approach requires

only a clean, unlabeled set of printed or handwritten

text images and artifacts which are widely available

and a simple program to assemble them together. No

manual pixel-level annotation is necessary.

• Empirical results: Our artifact-cleansed images

achieve low test error and consequently have convinc-

ing performance upon visual inspection. Further, our

artifact-cleansed images improve recognition accuracy

on well-known text recognition engines such as Tesser-

act 4.0.

2. Method

2.1. Summary of approach

Like other document binarization or segmentation tasks,

we use a fully convolutional network to map the raw in-

put image to a binary segmentation mask indicating arti-

fact or no-artifact for each pixel in the image. Once the

mask is obtained, all pixels on the mask indicating the pres-

ence of an artifact are set to 255 (white) on the input im-

age, effectively cleansing it from artifacts. For training data,

we automatically assemble a corpus of dirty images paired

with their segmentation masks, generated using method de-

scribed below in Section 2.3, for both printed and hand-

written text. The network is trained and validated on this

data, and then tested in-the-wild on the NIST dataset of

scanned IRS tax returns. Code for experiments is available

at https://github.com/yikeqicn/DeepErase.

2.2. Datasets

In this work we train and test on both printed and hand-

written text. Since printed text is easy to generate, we gen-

erate 280k text images in various fonts of words pulled from

Base Image:

Artifact Line:

Patched Image:

Predicted Mask:

Artifact Removed:

Slight Dilate Erode:

(a) An artifact-patched image is obtained through

the pixel-wise union of the base and artifact images.

DeepErase predicts the artifact mask, which is used to

remove artifacts.

Artifact Patched Training Data Generation

Model

Artifact Removal Pipeline

► Dilate

(b) Flow diagrams showing the artifact patching and

artifact removal procedures

Figure 2: Illustrations of how artifact text images are assembled for training, and how artifacts are removed during inference

3524

Wikipedia using TextRecognitionDataGenerator

[3]. For handwritten text, we use the IAM dataset [21] con-

sisting of about 110k handwritten words from 657 writers.

For testing, we use the NIST SDB2 [15] and NIST SDB6

[15] datasets consisting of about 6k pages (each) of IRS tax

return forms with printed and handwritten entries, respec-

tively, each containing the types of artifacts that we wish

to tackle in this work. We pre-crop text regions from the

IRS dataset using image registration (the IRS documents all

share the same template, making image registration espe-

cially effective) and manually defined crop regions for the

template. In total, we have 22165 printed text images and

35202 handwritten text images from the IRS forms for test-

ing. All images are binarized prior to being input into the

model.

2.3. Programmatic assembly of text images with
artifacts

In order to automatically obtain a corpus of dirty images,

we create a program which imposes realistic-looking arti-

facts on the readily available datasets of clean images. Sim-

ilar ways of programmatically generating labeled data has

been done for natural language processing tasks [26]. We

focus on four types of artifacts: machine-printed underlines,

machine-printed fill-in-the-blank boxes, random smudges,

and handwritten spurious strokes.

For random smudges and spurious strokes, we take a

sampling of the IAM handwriting dataset to act as the ar-

tifacts. For line and box artifacts, we extract 5000 crops of

horizontal and vertical lines and blank boxes from various

sources of scanned forms, including the NIST IRS dataset

as well as some internally scanned forms. See Figure 2a

for an example of a base image and an artifact used in the

assembly process.

The datasets contain many examples of forms from the

same template (e.g. the 1040 tax form). To automate

extraction of lines or boxes, we first apply conventional

Algorithm 1 Generation of text images with artifacts

1: Input clean image x ∈ [0, 255]n×m, artifact sample

xart ∈ [0, 255]o×p, offset

2: Begin

3: Binarize x and xart with threshold of 128

4: Translate xart by offset, expanding image if needed

and filling additional pixels with intensity 255

5: Crop xart to the same size as x

6: Superimpose xart onto x to get the dirty image,

i.e. xdirty ← min(x, xart)

7: Create segmentation mask,

i.e. s← xart + (255− max(x, xart))
8: Return dirty image xdirty , segmentation mask s

homography-based image registration to the entire dataset,

and then iteratively crop the same region from each image.

We then binarize both the clean and artifact images. This

ensures that our network cannot rely on subtle differences

in shading to predict artifacts.

Next we sample an offset by which to translate the arti-

fact image with respect to the clean image. This offset is

sampled from a uniform distribution with bounds set such

that the artifact falls within regions of the text that are con-

sistent with the real-world. For instance, spurious strokes

usually occur at the top or bottom of the image, while un-

derlines usually occur at the bottom. We leave the bound-

aries of the distribution loose enough such that there is sig-

nificant randomness and the artifacts overlap with the text

characters a significant portion of the time.

After translating the artifact image by the offset amount,

we then superimpose it onto the clean images by taking the

lower intensity pixel (0 intensity corresponds to black) of

the two (artifact and clean) images for each pixel in the

clean image. Examples of the resulting dirty images are

shown in Figure 4. The entire artifact text image genera-

tion pipeline is presented in Algorithm 1. Figures 2a shows

examples of the intermediate images or masks and Figure

2b shows the artifact assembly (used during training) and

removal (used during inference) pipelines.

Finally, the segmentation mask should contain all the

markings of the artifact image minus the markings of the

clean image. In other words, suppose that A was the set of

pixels containing the artifact marks, and B is the set of pix-

els containing the clean marks. Then the segmentation mask

(or pixels containing an artifact) would be S = A−A∩B.

During inference, once a segmentation mask is predicted,

one can use it as a mask to erase the artifacts out of the

image, as depicted in Figure 2b.

2.4. Model architecture and training

The network, schematic in Figure 3 is a simple U-net

architecture [2] which predicts a segmentation mask of ar-

tifact or no-artifact for each pixel. Convolutions are per-

formed in blocks of two layers. At the end of each block,

the feature map is downsampled via maxpooling, and the

number of channels is doubled. After two blocks, the fea-

ture maps are upsampled via deconvolution (or transposed

convolution) for two blocks until the feature map resolution

is same as the original image. The first feature map in each

upsampling block is concatenated with the last feature map

from the corresponding downsampling block, as is done in

U-net.

The training objective is simply to minimize the cross

entropy loss between the true segmentation mask and the

predicted segmentation mask on a per pixel basis, with av-

eraging in the end. To address the class imbalance issue

(there are a lot more pixels labeled not-artifact than as arti-

3525

Conv 3x3 +
Dropout 0.2 +
ReLU

Max-pool

Up-deconv 3x3 +
ReLU

Copy &
Concatenate

Conv
1x1

In
p
u
t I

m
a
g
e
 3

2
x
1
2
8
x
1

3
2
x
1
2
8
x
3
2

3
2
x
1
2
8
x
3
2

1
6
x
6
4
x
3
2

1
6
x
6
4
x
6
4

1
6
x
6
4
x
6
4

1
6
x
6
4
x
6
4

1
6
x
6
4
x
1
2
8

1
6
x
6
4
x
1
2
8

1
6
x
6
4
x
1
2
8

1
6
x
6
4
x
6
4

1
6
x
6
4
x
6
4

3
2
x
1
2
8
x
3
2

3
2
x
1
2
8
x
3
2

3
2
x
1
2
8
x
3
2

O
u
tp

u
t M

a
s
k
 Im

a
g
e
 3

2
x
1
2
8
x2

Figure 3: Architecture for artifact segmentation

fact) we use the median frequency balancing scheme from

[8]. No regularizers are used in the training objective. The

RMSProp optimizer is used to minimize the objective.

To encourage translation and size invariance, we apply

data augmentation in the form of resizing, followed by hor-

izontal and vertical shifts of the image within the fixed

32×128 canvas.

3. Evaluation

3.1. Comparative artifact detectors

We compare DeepErase to two comparative artifact de-

tectors.

Hough: The first is the widely used Hough-transform

line detector, a classical computer vision method ubiquitous

over the past several decades to detect and remove lines and

other simple shapes from images. We utilize the standard

OpenCV 3.0 Hough Line [23] implementation.

Manual Supervision CNN: Second, we implement the

approaches of [6] and also of [16] without ImageNet pre-

training, which are nearly identical to ours except for the

use of full, manual supervision. The authors of [6] manu-

ally annotated 20 scans of music documents for staff line re-

moval. To be comparable, we manually annotated 60 docu-

ment text images at the pixel level for training, costing about

3 man-hours. With such few examples, it is unlikely that the

trained network will be able to model all the intricacies of

artifact text, as we will see in Sections 3.3 and 3.4; this fur-

ther highlights the need for weakly supervised approaches

in order to achieve the dataset sizes needed for high model

performance. We henceforth call this approach the “Manual

Table 1: Segmentation results on validation set

Segmentation error

Setting Baseline Cleaned

Hough on printed 1.2 17.62

Manual Supervision on printed 0.55 6.16

DeepErase on printed 0.4 3.38

Hough on handwritten 0.56 15.31

Manual Supervision on handwritten 0.45 7.20

DeepErase on handwritten 0.25 4.36

Supervision” approach.

In our validation set results (Table 2) we evaluate the

Hough, Manual Supervision, and DeepErase approaches on

a split of the datasets containing only line artifacts in order

to ensure a fair comparison. Since the error for Manual Su-

pervision and DeepErase on the line-artifacts-only split was

always lower than its error for the entire dataset, we report

only the error on the entire dataset for Manual Supervision

and DeepErase.

Since the Hough approach is validated on a split of the

full validation set, it has a different value for recognition

accuracy on dirty images in Table 2. Meanwhile the IRS

dataset is consisted entirely of line (vertical or horizontal)

artifacts so the dirty recognition accuracies in Table 3 are

identical.

3.2. Metrics

Other than visual inspection, we use two metrics to de-

termine our performance on artifact removal.

Segmentation error: First, we use the segmentation er-

ror on the validation set, which is the probability that a

pixel on the predicted segmentation mask does not match

the ground truth. Baseline: to compare our results, we in-

clude the segmentation error on the original clean text im-

ages before artifact assembly, which has a ground-truth seg-

mentation mask that is uniformly annotated with no-artifact.

This baseline ensures that when the artifact detector sees an

image with no artfact inside, it does not falsely claim that

there are artifacts.

Recognition error: The secondary metric that we use

for evaluating performance is recognition error. The sim-

ple assumption is that images cleaned from artifacts will

make it easier for recognition models to discriminate. Two

recognition error metrics are reported. Character error rate

(CER) is the string edit distance between the predicted

string and the ground truth string, or in other words, the

minimum number of per-character add, delete, or replace

operations needed to match the two strings. Word error

rate (WER) is the probability that the predicted word does

not match the ground truth, regardless of how far off it

is. Baseline: Like the baseline for segmentation error, we

3526

Table 2: Recognition results on validation sets

Baseline Dirty Cleaned

Setting CER WER CER WER CER WER

Hough on printed 13.23 20.89 129.53 95.05 132.83 93.67

Manual Supervision on printed 13.23 20.89 104.98 93.89 53.12 54.94

DeepErase on printed 13.23 20.89 104.98 93.89 29.13 34.71

Hough on handwritten 6.89 20.22 50.51 78.34 52.32 81.71

Manual Supervision on handwritten 6.89 20.22 46.24 77.78 37.63 66.67

DeepErase on handwritten 6.89 20.22 46.24 77.78 28.58 47.20

Table 3: Recognition results on NIST IRS datasets

Baseline Cleaned

Setting CER WER CER WER

Hough on printed 97.26 78.87 194.13 94.98

Manual Supervision on printed 97.26 78.87 67.66 73.89

DeepErase on printed 97.26 78.87 60.87 64.20

Hough on handwritten 94.93 98.38 81.19 93.09

Manual Supervision on handwritten 94.93 98.38 70.04 91.18

DeepErase on handwritten 94.93 98.38 59.91 84.86

use the recognition accuracy on the “gold-standard” origi-

nal clean images without any artifacts superimposed as our

recognition baseline. These are the raw unmodified im-

ages from TextRecognitionDataGeneratoror for

printed and IAM for handwritten.

For printed text recognition we use the widely used open-

source Tesseract v4 software. Since there is no widely avail-

able offline handwriting recognition software, we used the

model from the SimpleHTR repo [1]. Both softwares are

based on an LSTM-CTC architecture.

3.3. Validation results

We first test our model on a held-out set of examples

from our dirty datasets. Since we used a train/validation

split of 9:1, the held-out set consists of 28k examples for

printed and about 11k for handwritten. Since our dirty

dataset was crafted from a base dataset (raw images from

TextRecognitionDataGenerator or IAM), we re-

port the performance of the original base images (which do

not have artifacts) on the recognition models as our base-

line.

Using DeepErase, we observe segmentation error of less

than 5% on printed and handwritten text, which means that

most pixels are correctly erased (see Table 1). In contrast,

the Hough transform-based line removal achieves signifi-

cantly higher error, since it removes entire lines including

the parts which overlap with the text. The Manual Super-

vision approach performs better than Hough, but does not

achieve as low of error as DeepErase, due to the shortage of

available Manual Supervision data as discussed in Sec. 3.1.

Good segmentation leads to greatly improved recogni-

tion performance as well as shown in Table 2. When

the artifacts are erased before inputting into Tesseract

or SimpleHTR, the recognition accuracy improves by

60.56% and 31.20%, respectively, compared to no clean-

ing. DeepErase-cleaned images also achieve 20-60% lower

downstream recognition word error than those clean by the

Hough and Manual Supervision approaches. The segmenta-

tion is not perfect though—when compared with the “gold

standard” base images, cleansed images get about 15-30%

higher recognition error. Figure 4 shows some example im-

ages before and after artifact erasing.

3.4. Results on real-world NIST IRS dataset

In addition to evaluating on the validation set, we wish

to test DeepErase in the wild on text from scanned IRS tax

return forms. In-the-wild data tends to experience distribu-

tion shift [25], leading to lower performance when tested on

models trained on data from other distributions. Typically

this results in an iterative process where the training data is

better adapted to the distribution in-the-wild, and the sys-

tem is re-tested. We present results from our first-pass here,

where we had not seen the IRS data before designing our

artifact generation algorithm 1.

On the IRS printed data, removing artifacts via Deep-

Erase lowers the Tesseract recognition error by 14.67%

compared to not removing them, as shown in Table 3. Sim-

ilarly on the handwritten data, it lowers the SimpleHTR

recognition error by 13.52%. In both cases, DeepErase per-

forms better than the Hough and Manual Supervision com-

parables.

Figure 5 shows examples of artifact removal in both

3527

Figure 4: Examples from validation results. Columns 1 and 3 are before cleansing, 2 and 4 are after cleansing.

printed and handwritten IRS text. Despite the relatively

high recognition error on handwritten data even after clean-

ing (which is primarily due to distribution shift), upon vi-

sual inspection the erased images look reasonably good and

3528

Figure 5: Examples from IRS results. Columns 1 and 3 are before cleansing, 2 and 4 are after cleansing.

indicate that the objective of artifact removal (to yield bet-

ter results on other downstream recognition engines or other

tasks) is satisfied.

4. Conclusion

We have presented DeepErase, a neural-based approach

to removing artifacts from document text images. This task

is challenging because it must rely solely on spatial struc-

ture (rather than differences in shading since the images are

binarized) to do semantic segmentation of a wide variety

of artifacts. We present a method to programmatically as-

semble unlimited realistic-looking text artifact images from

real data and use them to train DeepErase in weakly super-

vised manner. The results on the validation set are excellent,

showing good segmentation along with a 40 to 60% boost in

recognition accuracy for both printed and handwritten text

using common recognition software. On the real-world IRS

dataset, DeepErase improves recognition accuracy by about

14% on both printed and handwritten text. The cleansed

images on both printed and handwritten examples look vi-

sually convincing. Next steps include better modeling the

test distribution during the artifact generation process such

that the trained model performs better at test time.

3529

References

[1] https://github.com/githubharald/simplehtr. 6

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481–2495, 2017. 2, 4

[3] Belval. Belval/textrecognitiondatagenerator, Jul 2019. 4

[4] T. Bluche. Joint line segmentation and transcription for

end-to-end handwritten paragraph recognition. In Advances

in Neural Information Processing Systems, pages 838–846,

2016. 2

[5] T. Bluche, J. Louradour, and R. Messina. Scan, attend and

read: End-to-end handwritten paragraph recognition with

mdlstm attention. In 2017 14th IAPR International Confer-

ence on Document Analysis and Recognition (ICDAR), vol-

ume 1, pages 1050–1055. IEEE, 2017. 2

[6] J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga. One-step

detection of background, staff lines, and symbols in medieval

music manuscripts with convolutional neural networks. In

ISMIR, pages 724–730, 2017. 3, 5

[7] K. Chen, M. Seuret, J. Hennebert, and R. Ingold. Convo-

lutional neural networks for page segmentation of historical

document images. In 2017 14th IAPR International Confer-

ence on Document Analysis and Recognition (ICDAR), vol-

ume 1, pages 965–970. IEEE, 2017. 2

[8] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In Proceedings of the IEEE international

conference on computer vision, pages 2650–2658, 2015. 5

[9] H. El Abed and V. Margner. The ifn/enit-database - a tool

to develop arabic handwriting recognition systems. In 2007

9th International Symposium on Signal Processing and Its

Applications, pages 1–4, Feb 2007. 2

[10] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-

ence on Learning Representations, 2015. 2

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-

ber. Connectionist temporal classification: labelling unseg-

mented sequence data with recurrent neural networks. In

Proceedings of the 23rd international conference on Ma-

chine learning, pages 369–376. ACM, 2006. 2

[12] A. Graves and J. Schmidhuber. Offline handwriting recog-

nition with multidimensional recurrent neural networks. In

Advances in neural information processing systems, pages

545–552, 2009. 2

[13] J.-P. T. Guillaume Jaume, Hazim Kemal Ekenel. Funsd: A

dataset for form understanding in noisy scanned documents.

In Accepted to ICDAR-OST, 2019. 2

[14] S. G. Johnson. Nist special database 33. 2012. 2

[15] S. G. Johnson. Nist special database 2, Apr 2019. 4

[16] A. Kölsch, A. Mishra, S. Varshneya, M. Z. Afzal, and M. Li-

wicki. Recognizing challenging handwritten annotations

with fully convolutional networks. In 2018 16th Interna-

tional Conference on Frontiers in Handwriting Recognition

(ICFHR), pages 25–31. IEEE, 2018. 3, 5

[17] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. E. Hubbard, and L. D. Jackel. Handwritten digit

recognition with a back-propagation network. In Advances

in neural information processing systems, pages 396–404,

1990. 2

[18] L. Likforman-Sulem, A. Hanimyan, and C. Faure. A hough

based algorithm for extracting text lines in handwritten doc-

uments. In Proceedings of 3rd International Conference on

Document Analysis and Recognition, volume 2, pages 774–

777. IEEE, 1995. 2

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015. 2

[20] C. I. Ltd. Icdar 2019 competition on signature verification

based on an on-line and off-line signature dataset. 2

[21] U.-V. Marti and H. Bunke. The iam-database: an english

sentence database for offline handwriting recognition. In-

ternational Journal on Document Analysis and Recognition,

5(1):39–46, 2002. 2, 4

[22] J. Matas, C. Galambos, and J. Kittler. Robust detection of

lines using the progressive probabilistic hough transform.

Computer Vision and Image Understanding, 78(1):119–137,

2000. 2

[23] OpenCV. https://docs.opencv.org, Jul 2019. 5

[24] J. Poulos and R. Valle. Attention networks for image-to-text.

arXiv preprint arXiv:1712.04046, 2017. 2

[25] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and

N. D. Lawrence. Dataset shift in machine learning. The

MIT Press, 2009. 6

[26] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré.

Data programming: Creating large training sets, quickly. In

Advances in neural information processing systems, pages

3567–3575, 2016. 4

[27] G. Renton, C. Chatelain, S. Adam, C. Kermorvant, and T. Pa-

quet. Handwritten text line segmentation using fully convo-

lutional network. In 2017 14th IAPR International Confer-

ence on Document Analysis and Recognition (ICDAR), vol-

ume 5, pages 5–9. IEEE, 2017. 2

[28] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, pages 234–241. Springer,

2015. 2

[29] C. Tensmeyer and T. Martinez. Document image binariza-

tion with fully convolutional neural networks. In 2017 14th

IAPR International Conference on Document Analysis and

Recognition (ICDAR), volume 01, pages 99–104, Nov 2017.

3

[30] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao. Detecting text

in natural image with connectionist text proposal network.

In European conference on computer vision, pages 56–72.

Springer, 2016. 2

[31] X. Yang, E. Yumer, P. Asente, M. Kraley, D. Kifer, and

C. Lee Giles. Learning to extract semantic structure from

documents using multimodal fully convolutional neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5315–5324, 2017. 2

3530

