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Abstract

The classic approach to image matching consists in the

detection, description and matching of keypoints. This de-

fines a zero-order approximation of the mapping between

two images, determined by corresponding point coordi-

nates. But the patches around keypoints typically contain

more information, which may be exploited to obtain a first-

order approximation of the mapping, incorporating local

affine maps between corresponding keypoints. In this work,

we propose a LOCal Affine Transform Estimator (LOCATE)

method based on neural networks. We show that LOCATE

drastically improves the accuracy of local geometry esti-

mation by tracking inverse maps. A second contribution

on guided matching and refinement is also presented. The

novelty here consists in the use of LOCATE to propose new

SIFT-keypoint correspondences with precise locations, ori-

entations and scales. Our experiments show that the pre-

cision gain provided by LOCATE does play an important

role in applications such as guided matching. The third

contribution of this paper consists in a modification to the

RANSAC algorithm, that uses LOCATE to improve the ho-

mography estimation between a pair of images. These ap-

proaches outperform RANSAC for different choices of im-

age descriptors and image datasets, and permit to increase

the probability of success in identifying image pairs in chal-

lenging matching databases. The source codes are avail-

able at: https://rdguez-mariano.github.io/

pages/locate .

1. Introduction

A physical object with smooth or piecewise smooth

boundary captured by real cameras at different positions un-

dergoes smooth apparent deformations. These regular de-

formations are locally well approximated by affine trans-

forms of the image plane; indeed, for any smooth deforma-

tion, its first order Taylor approximation is an affine map.

By focusing on local image regions, or patches, the perspec-

tive changes of objects can therefore be modeled by affine

image deformations.

Figure 1. Some correspondences together with local affine maps

estimated by the proposed LOCATE network. Patches on the target

are warped versions of their corresponding query patch.

This observation has motivated the development of im-

age comparison methods based on local descriptors that are

as affine invariant as possible. The problem of construct-

ing affine invariant image descriptors by using an affine

Gaussian scale space, which is equivalent to simulating

affine distortions followed by the heat equation, has a long

history starting with [12, 4, 14, 15]. The idea of affine

shape adaptation was used as a basis for the work on affine

invariant interest points and affine invariant matching in

[15, 3, 18, 19, 42, 41, 40], including the Harris-Affine and

Hessian-Affine region detectors [18, 19]. Finally, the detec-

tors MSER (Maximally Stable Extremal Region) [17] and

LLD (Level Line Descriptor) [27, 28, 5] both rely on image

level lines. Yet, the affine invariance of these descriptors in

images acquired with real cameras is limited by the fact that

optical blur and affine transforms do not commute, as shown

in [26]. To overcome this limitation, the authors of [26]

proposed to optically simulate affine transformations. This

idea was also exploited in [29, 22, 38, 36] and more recently

by the SIFT-AID method [37], which combines SIFT key-

points with a CNN-based patch descriptor trained to capture

affine invariance. Another recent possibility to obtain affine

invariance is by learning affine-covariant region representa-

tions [23], where a patch is normalized before description.

The latter method together with the HardNet [21] descrip-

tor was reported to be the state of the art in image matching

under strong viewpoint changes for all detectors.

Image matching usually refers to estimating a global ho-
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Figure 2. Geometric interpretation of equation (1).

mographic transform between two images. An established

approach [10] consists in computing local image matches,

which are then aggregated using the RANSAC (RANdom

SAmple Consensus) algorithm [9] to estimate an homog-

raphy. The same procedure is also used for fundamental

matrix estimation.

Recently, CNN-based image matching approaches have

been proposed for directly estimating global affine and ho-

mographic transformations [34, 6]. In [34], the POOL4 layer

of the VGG-16 network [39] was used for acquiring features

from images and correlation maps fed to a regression net-

work that outputs the best affine transform that fits the query

to the target image. In a direct approach, the authors of [6]

trained a network to estimate the homography relating the

query to the target image. Both [34, 6] were trained on syn-

thetically generated images, but neither of them took into

account the blur caused by camera zoom-out or tilt.

The objective of this work is to improve image match-

ing by refining two stages of its pipeline. The improve-

ment of homography estimation can be accomplished, on

the one hand, by increasing the number of keypoint corre-

spondences as well as their accuracy, and on the other hand

by improving the RANSAC aggregation step. The contribu-

tions of this paper, detailed below, address all these issues:

1. We propose a LOCal Affine Transform Estimator

(LOCATE) based on a neural network which estimates

both the direct and inverse affine maps relating two

patches, leading to a more accurate local geometry es-

timation.

2. To increase the number of correspondences we use the

local affine information provided by LOCATE to guide

the discovery of new candidates.

3. We introduce a reformulation of the consensus set (in-

liers) in RANSAC, incorporating the richer informa-

tion provided by LOCATE, leading to an increase in the

probability of success.

A prevalent element in this work is the LOCATE method,

which yields a first-order approximation of the local geom-

etry relating pairs of image patches, i.e, local affine maps

or tangent planes, see Figure 1. The network architecture

of LOCATE is a variation from the one in [6] that provides

a two-way estimation, which leads to an increase in robust-

ness relative to the former network. Another difference with

respect to [6] is the use of affine simulated patches to train

the networks. This simulation incorporates a realistic opti-

cal model that takes into account the blur caused by camera

tilt and zoom [26]. This procedure allows to easily generate

an arbitrarily large training set.

The affine information was already been used [7, 8]

to predict location and pose from affine detectors like

MSER [17], Harris-Affine[18] or Hessian-Affine [19]. We

propose to complement the SIFT detector with a guided

matching [10] step that increases the number of correct

matches by sampling new keypoints surrounding the initial

ones. LOCATE’s accuracy in location, orientation and scale

(i.e. rotation and position in the Gaussian pyramid) results

in a drastic increase in the number of correspondences.

When estimating homographies from sets of correspon-

dences with RANSAC, the use of first-order approximations

allows to increase the performance in homography estima-

tion. This has already been proposed in [32] by composing

normalized affine maps provided by the Hessian Laplace

detector. This detector can be replaced with Affnet [23]

since it has been shown to produce more accurate affine

maps. The LOCATE method can be used as well for the

same purpose. In addition, we propose a modification in

the RANSAC consensus step. Instead of defining inliers

only by location agreement, we also consider the agreement

in tilt, rotations and scale of the local affine maps. We will

show how these modifications improve homography esti-

mation from a set of SIFT-like matches.

The rest of this paper is organized as follows. Sec-

tion 2 summarizes a formal methodology for simulating lo-

cal viewpoint changes induced by real cameras, as required

for training our network. The LOCATE method is introduced

in Section 3. Section 4 and Section 5 present the proposed

guided matching and our modified RANSAC step, respec-

tively. The use of the proposed methods is illustrated with

experiments in Section 6. Finally, Section 7 presents our

concluding remarks.

2. Affine Maps and Homographies

As stated in [26, 35], a digital image u obtained by any

camera at infinity is modeled as u = S1G1Au, where S1

is the image sampling operator (on a unitary grid), A is an

affine map, u is a continuous image and Gδ denotes the

convolution by a Gaussian kernel broad enough to ensure

no aliasing by δ-sampling. This model takes into account

the blur incurred when tilting or zooming a view. Notice

that G1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) =
u(Ax) for A ∈ A, where x is a 2D vector and Ax de-

notes function evaluation, A (x). We define the set of in-

vertible orientation preserving affinities A+ = {L + v ∈
A| det(L) > 0} where L is a linear map and v a trans-

lation vector. We call S the set of similarity transforma-
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tions, which are any combination of translations, rotations

and zooms. Finally, we define the set A+
∗ = A+ \ S , where

we exclude pure similarities. As it was pointed out in [26],

every A ∈ A+
∗ is uniquely decomposed as

A = λR1(ψ)TtR2(φ), (1)

where R1, R2 are rotations and Tt =

[

t 0
0 1

]

with t > 1,

λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π). Furthermore, the above

decomposition comes with a geometric interpretation (see

Figure 2) where the longitude φ and latitude θ = arccos 1
t

characterize the camera’s viewpoint angles (or tilt), ψ pa-

rameterizes the camera roll and λ corresponds to the camera

zoom. The so-called optical affine maps involving a tilt t in

the z-direction and zoom λ are formally simulated by:

u 7→ S1AG
z√
t2−1

G√
λ2−1Iu, (2)

where I is the Shannon-Whittaker interpolator and the su-

perscript z indicates that the operator takes place only in the

z-direction. We denote by

A := S1AG
z√
t2−1

G√
λ2−1I . (3)

The operator A is not always invertible and therefore

its application might incur a loss of information. We re-

fer to [37] for an example where no optical transformation

A is found between two views. With this in mind, we adopt

the same data generation scheme proposed for training the

affine invariant descriptors in [37]. That is, given an image

u and a pair of optical affine maps A1 and A2, we simulate

affine views u1 = A1(u) and u2 = A2(u). Our simula-

tions involve maximal viewpoint angles of 75◦ with respect

to u. As for [37], the MS-COCO [13] dataset will provide

instances of u in training and validation. Patch pairs seeing

the same scene from u1 and u2 are said to belong to the

same class and will be used to train the networks.

2.1. Local affine approximation of homographies

Let H = (hij)i,j=1,...,3 be the 3 × 3 matrix associated

to the homography η (·). Let x be the homogeneous coor-

dinates vector associated to the image point x = (x1, x2)
around which we want to determine the local affine map.

We denote by y = (y1, y2) =
(

(Hx)1
(Hx)3

,
(Hx)2
(Hx)3

)

= η (x) the

image of x by the homography η.

The first order Taylor approximation of η at x leads to

η (x+ z) = v + L (x+ z) + o (‖z‖) , (4)

where a brief computation shows that the vector v and the

matrix L are determined through the following system of

equations:

L =





h11−y1h31

h31x1+h32x2+h33

h12−y1h32

h31x1+h32x2+h33

h21−y2h31

h31x1+h32x2+h33

h22−y2h32

h31x1+h32x2+h33



 , (5)

v =

[

y1
y2

]

− Lx. (6)

This derivation allows us to compute the exact local

affine approximation for a given homography. This will be

useful to assess the accuracy of our method when using an-

notated datasets.

3. The Local Affine Transform Estimator

In this section we present the LOCal Affine Transform

Estimator (LOCATE) network whose architecture is adopted

from [6]. Unfortunately, the network as it is used in [6]

often incurs in wrong geometry estimates in the presence

of strong blur or tilt, even when trained for this task. To

address this issue, LOCATE estimates the affine transform

that maps query to target and target to query. As it will be

shown in Section 6, the simultaneous estimation of both, the

direct and inverse maps, significantly improves the network

performance.

The LOCATE architecture, shown in Figure 3, consists

of 4 blocks of two convolutional layers each followed by

batch normalization and ReLU activations. The first block

receives as input two patches in the form of a two channel

image. Between each block a max-pooling layer is intro-

duced. A 2D spatial dropout with a probability 0.5 is ap-

plied after the last convolutional layer followed by 2 fully

connected layers. The last layer outputs a vector of dimen-

sion 16, corresponding to the coordinates of eight points,

the four transformed patch corners in both directions. We

also tested a network trained to directly estimate the six pa-

rameters of local affine maps (translation plus the parame-

ters in Equation 1) but we observed that this choice led to

worse performances.

As argued in [37], the affine approximation holds locally,

which suggests the use of small patch sizes; on the other

hand, small patches contain less information, leading to in-

sufficient geometry anchors. As a compromise, we set the

patch size to 60 × 60, which provides a good balance be-

tween locality and sufficient viewpoint information.

3.1. Training

The LOCATE network, as well as the network in [6], were

trained with data generated as described in Section 2; more

specifically with pairs of patches belonging to the same

class and involving small differences in translation, rotation

and zoom, but possibly large tilts. The resulting networks

will lead to an affine approximation of the exact transforma-

tion relating two observations. Both networks are trained

from scratch until reaching a plateau for the loss in train-

ing and validation. While training we also simulate contrast

changes on all input patches.

Let A1, A2 denote two random affine maps and A1, A2

their respective optical simulations. We assume A1 and A2
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Figure 3. The proposed LOCATE network architecture. The last two layers are fully connected.

involve small perturbations in terms of similarity transfor-

mations. Let P1 and P2 be two square 60×60-patches sim-

ulated from a randomly chosen initial patch P by A1 and

A2, respectively. Let X = [x1, x2, x3, x4], where xi are

the 2D coordinates of the four corners of a patch following

a fixed order. We also define 4- and 8-point ground truth

parameterizations respectively for the network [6] and the

LOCATE network,

X4 := A1A
−1
2 (X) ,

X8 :=
[

A1A
−1
2 (X) , A2A

−1
1 (X)

]

,
(7)

where [·, ·] denotes the concatenation of both vectors. Let

N k be one of the presented networks with k-point parame-

terization. Then the loss is defined as sum of the Euclidean

norm between corresponding points:

k
∑

i=1

‖N k (P1, P2)i −Xk
i ‖L2

, (8)

where the sub-index i denotes the i-th element of the vector.

3.2. From patches in the Gaussian pyramid to local
affine maps

The training process described above allows the net-

works to be easily coupled with matching methods based

on the SIFT [16] detector. Indeed, a SIFT-like patch is sim-

ply the square crop at the origin of some similarity trans-

formation (translation, rotation and zoom) of the original

image; additionally, patches corresponding to matched key-

points should suffer small similarity deformations but pos-

sibly strong tilts.

Consider two 60 × 60-patches, Pq and Pt, coming from

the Gaussian pyramid of the query and target images, re-

spectively. Let cq and ct be their centers expressed in image

coordinates. Let also Aq be the affine map that converts

from the query image domain to patch coordinates; like-

wise At converts from target to patch coordinates. Note

that the affinities Aq and At are pure similarities, combin-

ing just the translation, rotation and zoom corresponding

to the location, orientation and scale associated to SIFT-like

keypoints. Finally, in order to locally approximate the trans-

formation between query and target images (centered at cq
and ct), we only need the affine map relating Pq and Pt.

When fully trained, the presented networks are ex-

pected to predict the movements of patch corners. Let

(xqi ↔ xti)i=1,...,k be a set of correspondences produced by

one of the networks N k, where x
q
i and xti denote query

and target patch-coordinates, respectively, and k-point de-

termines the point parameterization. Due to imprecisions in

the prediction, these k correspondences are not necessarily

related by an affinity. Then, the affine map A is estimated

from the correspondences predicted by the network N k as

the solution of the linear least squares problem

min
A

k
∑

i=1

∥

∥Ax
q
i − xti

∥

∥

2

L2

. (9)

Finally, around cq , the local affine map transforming the

query into the target (in image coordinates) is

Aq→t = A−1
t AAq. (10)

We call LOCATE the method returning Aq→t from the LO-

CATE network. Figure 4 visually shows estimated affine

maps by the network [6] (4 points) and LOCATE, as well

as their respective incurred geometric errors. Four random

patch pairs from the validation dataset (synthetic data) re-

veal the Achilles heel of network [6]: zoom and translation.

This visualization already justifies the use of the inverse in-

formation in the LOCATE method.

4. Refinement and Guided Matching

In this section, we present an iterative procedure that ap-

plies LOCATE to refine a set of existing matches, and then

retrieves new ones by propagating the estimated local ge-

ometry. Think of the initial set of matches as correspon-

dences resulting from a matching method, that includes

both inliers and outliers. Each query and target keypoints

have an associated location, orientation and scale (i.e. rota-

tion and position in the Gaussian pyramid). The precise

affine approximations between query and target obtained

from LOCATE, allows to refine the matching by reducing

the error in these three similarity parameters.

Furthermore, using the full affine transformations asso-

ciated to the refined matches, allows to infer new match

candidates by propagating the local geometry. The idea
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Query patch Target patch Ground truth
Network in [6]

(4 points)
LOCATE

Figure 4. Four pairs of patches selected at random from the validation dataset and used as query and target input patches (columns 1-2).

The three last columns show the drift error depicted by intense blue or intense green colors. Light blue means no error. Blue and green

channels correspond to the target patch and a warped version of the corresponding query patch (the red line delimits its borders); the red

channel is filled with zeros. 3rd column: groundtruth; 4th column: network in [6] (4 points); 5th column: LOCATE network. Input patches

are shown without contrast difference for clear visualization.

of propagating the local geometry from a set of matches

was already proposed in the literature [7, 8]. In these cases

the location and pose are derived from affine detectors like

MSER [17], Harris-Affine[18] or Hessian-Affine [19]. De-

spite the fact that SIFT keypoints are more robust to sim-

ilarities (see [33]) than the previously mentioned ones, no

SIFT-like affine guided matching procedure was proposed

yet. The reason for this is that the first method allowing

to infer affine maps between SIFT-like patches is Affnet,

which was very recently proposed. As we will see in Sec-

tion 6, LOCATE reaches higher accuracy than Affnet. There-

fore, in this work we introduce guided matching based on

the LOCATE method.

The procedure is as follows. For each query keypoint

from a refined match, four new keypoints are generated at

the NE, NW, SE, SW corners of the query patch domain.

These points are then mapped into the target image domain

with rotations and positions in the target Gaussian pyramid

inferred from the affine decomposition in Equation 1. These

four pairs of points will represent new tentative matches,

and each tentative match is validated by computing a sim-

ilarity score between corresponding patches. For this task,

we use the BigAID descriptor [37] and the cosine proximity

to measure the similarity.

This process can be iterated until some criteria is sat-

isfied (e.g., a fixed number of iterations, the number of

matches is stable, etc). In this paper, we fix the number of

iterations to 4. Each keypoint information is refined only

once. To avoid redundancy, new matches falling nearby

existing matches are removed (a threshold of 4 pixels was

used). Therefore, any valid match proposal will cover new

areas connecting the query and target images.

5. Robust Homography Estimation

The standard RANSAC algorithm computes the parame-

ters fitting a mathematical model from observed data in the

presence of outliers. Numerous improvements have been

proposed in the literature for RANSAC, see [24, 25, 30, 31],

but the core idea remains the same.

In the case of homography estimation, the classic

RANSAC algorithm returns the homography ηj computed

in iteration j having the largest consensus of inliers among

all iterations. The j-iteration can be described in two steps:

1. (Fitting) Randomly select s matches (xi ↔ yi)i=1,...,s

from the set of all matches (MT ) and compute the ho-

mography ηj that yields the best fit.
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2. (Consensus) Count the number of matches from MT

that are within a distance threshold of κ (i.e. counting

inliers).

Notice that steps 1-2 only take into account point coordi-

nates. From now on, we call this method RANSAC. With

eight degrees of freedom for a homography matrix and each

match defining two equations, this implies s = 4. The

following subsections support the claim that incorporating

the local affine information can further improve the perfor-

mance of the RANSAC algorithm.

5.1. Homography fitting from local affine maps

From Section 2.1 we know how to locally approximate

a homography by an affine map. Conversely, the problem

of determining a homography from a set of affine maps at

different locations was addressed in [2, 32]. Let x ↔ y be

a match and L = (lij)i,j=1,2 the linear map in Equation 4.

Then the unknown homography η must satisfy

E6×9 · ~h = ~0, (11)

where E6×9 is the matrix

















1 −y1 − l11x1 −l11x2 −l11
1 −l12x1 −y1 − l12x2 −l12

1 −y2 − l21x1 −l21x2 −l21
1 −l22x1 −y2 − l22x2 −l22

x1 x2 1 −y1x1 −y1x2 −y1
x1 x2 1 −y2x1 −y2x2 −y2

















, (12)

and ~h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]
T

is a

vectorized version of the matrix H associated to η. The

first four rows of E6×9 are determined by Equation 5 and

the last two are the classic equations derived from rewriting

η (x) = y in terms of Hx = y.

Clearly, two matches with their corresponding local

affine maps can over-determine the homography matrix. In-

deed, putting everything together provides with 12 equa-

tions

[

E1

E2

]

12×9

· ~h = ~0, where Ei denotes the matrix

E appearing in Equation 11 for each match. To avoid the

solution ~h = ~0 we look for a unitary vector ~h minimizing
∥

∥

∥

∥

[

E1

E2

]

· ~h

∥

∥

∥

∥

, see [10] for more details.

We call RANSAC2pts a RANSAC version in which the

classic homography fitting of step 1 is replaced by the ho-

mography fitting of this section together with the LOCATE

estimator. Note that RANSAC2pts only needs two samples

at each iteration (s = 2).

5.2. Affine consensus for RANSAC homography

When matching two image patches, the transformation

that relates them may not be consistent with the global

transformation of the scene. This can be due to the pres-

ence of symmetric objects or even to failures in the match-

ing process. For instance, suppose that two patches centered

at the same scene location but with incoherent rotations are

identified by a matching method. The symmetry issue is

easy to address as usually we should have encountered as

many keypoints as degrees of symmetry around the center;

so at least two rotations will correspond. However, aber-

rant matches are not treated by the matching method nor by

RANSAC. This problem can be circumvented by imposing

consistency between the local affine maps and the proposed

RANSAC model.

To impose local geometry consistency, most existing

works [43, 22] propose to measure the incurred error in

mapping keypoints of a match x ↔ y, e.g. ‖y − A(x)‖ +
‖x − A−1(y)‖. Unlike them we propose to enforce geom-

etry consistency directly on the transformations parameters

given by Equation 1. In other words, we use the affine in-

formation to redefine the consensus set of a model.

Inliers are now defined as follows. Let AE and AH
be, respectively, the estimated affine map by the LO-

CATE method and the testing affine map computed from

the testing homography (using Equation 5). Let also

[λE , ψE , tE , φE ] and [λH , ψH , tH , φH ] be, respectively, the

affine parameters of AE and AH . We define the α-vector

between AE and AH as:

α (AE , AH) =
[

max
(

λE

λH
, λH

λE

)

, ∠ (ψE , ψH) ,

max
(

tE
tH

tH
tE

)

, ∠ (φE , φH)
]

,

(13)

where ∠(·, ·) denotes the angular difference. To test consis-

tency between AE and AH we add to the classic threshold

on the Euclidean distance, four more thresholds on the α-

vector. A perfect match would result in an α-vector equal to

[1, 0, 1, 0]. If we assume independence on each dimension,

the resulting probability of a match passing all thresholds is

the multiplication of individual probabilities. With this in

mind, we claim that rough thresholds are enough to obtain

good performances and that there is no need to optimize

them. Thus, we propose to further refine inliers by accept-

ing only those matches also satisfying

α (AE , AH) <
[

2,
π

4
, 2,

π

8

]

, (14)

where the above logical operation is true if and only if it

holds true for each dimension.

We call RANSACaffine the version of RANSAC2pts that in-

cludes the affine consensus presented in this section.

6. Experiments

To the best of our knowledge, the most suitable and

effective means of estimating affine maps connecting two
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λ− λGT ψ − ψGT t− tGT φ− φGT x− xGT y − yGT

Figure 5. Affine error prediction in terms of the affine decomposition of Equation 1 (namely zoom λ, camera rotation ψ, tilt t, tilt direction

φ, and translation x, y), for the proposed LOCATE method, the network [6] (4 points), the Affnet method [23] and the identity map method.

The used dataset [37] contains 3352 patch pairs with corresponding groundtruth. The sub-index GT means groundtruth, conversely, no

sub-index stands for estimated parameters.

(a) Initial correct matches from SIFT-AID.

(b) Homography consistent matches after guiding with LOCATE.

Figure 6. Guided matching for the adam pair, EVD [22].

patches are: Affnet [23], the network [6], and now the LO-

CATE method. The procedure described in Subsection 3.2

works for both networks: [6] and LOCATE. On the other

hand, Affnet was conceived to predict normalizing ellipse

shapes for single patches based on a 3-variable parametriza-

tion. The connection provided by two Affnet-normalizing

affine maps for the query and target patches is richer than

each normalizing transformation. Indeed, for different

choices of A1 = T1R1 and A2 = T2R2 one would need the

four parameters (zoom, camera rotation, tilt and tilt direc-

tion) in Equation 1 in order to express A2A
−1
1 . However,

Affnet does not estimate translations. We claim that the

LOCATE method out-performs the other two state-of-the-art

methods in terms of precision.

Please note that the networks were trained exclusively

with simulated patches, let us now try on real patches. The

passage from affine cameras to real cameras is a big gap to

fill by both [6] and LOCATE networks. We expect them to

generalize the affine world to all sorts of geometry as long

as the Taylor approximation holds.

Does precision really matter? As a first evaluation of

the precision in a realistic environment we used the view-

point dataset from SIFT-AID [37], consisting of five pairs of

images with their groundtruth homographies and 3352 true

matches. Notice that Equations 5-6 allow us to compute

groundtruth local affine maps around each match. Figure 5

shows the accuracy of Affnet [23], the 4 points network [6]

and LOCATE, represented by error density functions with re-

spect to the affine decomposition appearing in Equation 1.

Ideally, we expect a Dirac delta function centered at 0 for a

perfect method. This is approximately true for the LOCATE

method. The experiment also illustrates the failure of the

network [6] in predicting zoom and translation (as shown

in Figure 4). Note in Figure 5 that translations from the

Affnet [23] method do not quite match those from the Iden-

tity method; this difference can be explained by the connect-

ing mapping itself as A1→2 (x) = A2

(

A−1
1 x−A−1

1 c
)

+ c

is different from A2A
−1
1 x, where c denotes the center of

patch domain and Ai are the estimated affine maps by

Affnet. LOCATE, with the only addition of tracking points

movements associated to the inverse affine map, obtains

better result than [6]. As expected, both [6] and LOCATE

perform better than Affnet [23]. Indeed, Affnet analyzes

one patch at a time, whereas [6] and LOCATE have access

to both patches simultaneously. However, in practice, using

Affnet involves less computations.

The following experiment shows that the precision im-

provement of LOCATE indeed results in better guided image

matching performance. Table 1 shows that LOCATE has the

overall best performance of all methods. LOCATE usually

boost the number of inliers as well as the ratio of inliers

while always being the lowest or close to lowest average

pixel error. By construction, this boost in inliers means that

new areas are connected between the image pairs, see Fig-

ure 6 for an example. Moreover, the probability of success

of RANSAC USAC [30] is not diminished with respect to

the matching method itself, this is observed in the “None”

rows of Table 1. We remark the capacity of our guided

matching method to expand true matches while keeping the

number of false matches low.

Can RANSACaffine improve homography estimation?

In the previous paragraphs we established the precision of
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SIFT-AID dataset [37] EVD dataset [22] OxAff Viewpoint dataset [20]

M
at

ch
in

g

m
et

h
o
d Guiding

affine map
S 5 inl. AvE R S 15 inl. AvE R S 10 inl. AvE R

S
IF

T
-A

ID

None 500 5 508 6.2 0.24 100 1 162 6.2 0.11 1000 10 1840 4.1 0.43

Identity 487 5 114 6.3 0.33 100 1 19 6.9 0.46 1000 10 1546 4.6 0.62

LOCATE 500 5 1438 5.2 0.44 200 2 862 3.8 0.49 1000 10 7198 2.7 0.71

4 points 500 5 1166 5.1 0.41 200 2 548 4.1 0.46 1000 10 6725 2.8 0.70

Affnet 487 5 328 7.0 0.31 103 2 142 6.7 0.50 1000 10 2223 5.4 0.57

S
IF

T
-A

ff
n
et

None 400 4 99 3.8 0.79 235 3 13 7.9 0.64 1000 10 1185 2.1 0.96

Identity 300 3 32 4.2 0.71 0 0 0 - - 895 9 1336 3.5 0.94

LOCATE 400 4 620 4.7 0.72 200 2 151 5.6 0.98 1000 10 6871 2.5 0.96

4 points 400 4 448 4.6 0.73 101 2 169 3.1 0.94 1000 10 6164 2.7 0.94

Affnet 400 4 78 5.8 0.69 100 1 28 5.6 0.86 1000 10 1724 4.8 0.88

Table 1. Guided matching and refinement performances on three viewpoint datasets with seed correspondences from two affine invariant

matching methods: SIFT-AID [37] and SIFT-Affnet[23]-HardNet[21] (SIFT-Affnet). After refinement and guiding on each image pair,

RANSAC-USAC [30] is run 100 times to measure its probability of success in retrieving corresponding ground truth homographies.

Legend: S - the number of successes (bounded by 100× number ); the number of correctly matched image pairs; inl. - the average number

of correct inliers; AvE - the average pixel error; R - the ratio of inliers/total. The numbers of image pairs in a dataset are boxed.

EF dataset [44] EVD dataset [22] OxAff dataset [20] SymB dataset [11]

M
at

ch
in

g

m
et

h
o
d Homography

Estimator
S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

R
o
o
tS

IF
T RANSAC 2403 26 51 3.2 0 0 0 - 3806 39 580 1.2 2693 31 102 2.8

RANSAC2pts 2633 28 46 3.7 0 0 0 - 3893 39 566 1.2 3219 34 84 3.3

RANSACaffine 2805 30 28 3.4 0 0 0 - 3899 39 404 1.1 3297 36 54 3.4

S
IF

T
-A

ID

RANSAC 879 23 78 6.6 82 1 40 7.8 3600 39 1477 4.8 1014 19 450 6.8

RANSAC2pts 1829 27 84 6.1 99 1 72 6.3 3917 40 1459 4.5 1867 30 327 6.5

RANSACaffine 1996 30 39 5.8 166 5 37 8.2 3939 40 852 4.0 2341 38 138 6.6

S
IF

T
-A

ff
n
et RANSAC 2475 25 47 3.7 200 2 16 8.0 4000 40 805 2.3 2999 31 108 3.5

RANSAC2pts 2707 28 43 3.6 300 3 10 7.6 4000 40 805 2.3 3268 34 99 3.4

RANSACaffine 2826 29 29 3.5 200 2 12 7.4 4000 40 562 2.2 3285 36 65 3.5

Table 2. Homography estimation performances for RANSAC, RANSAC2pts and RANSACaffine for three matching methods: RootSIFT [1],

SIFT-AID [37], and SIFT-Affnet[23]-HardNet[21] (SIFT-Affnet). Each RANSAC ran for 1000 internal iterations. To measure probability

of success, all RANSACs were run 100 times on resulting matches from each pair of images. Legend: S - the number of successes (bounded

by 100× number ); the number of correctly matched image pairs; inl. - the average number of correct inliers; AvE - the average pixel

error. The numbers of image pairs in a dataset are boxed.

the local affine maps provided by the LOCATE method.

We now focus on the evaluation of the three variants of

RANSAC. In order to highlight the benefits of local geom-

etry in estimating homographies, we drop all the improve-

ments in RANSAC USAC [30] and head back to the base

RANSAC. But notice that most improvements proposed in

RANSAC USAC [30] can also be applied to RANSAC2pts

and RANSACaffine. The following experiment was con-

ducted on four well known datasets for homography esti-

mation. All datasets include groundtruth homographies that

were used to verify accuracy. First, local features were

detected and matched, then each homography estimation

method (RANSAC, RANSAC2pts and RANSACaffine) was

applied and we declared a success if at least 80% of in-

liers (in consensus with the estimated homography) were

in consensus with the groundtruth homography. The two

steps of RANSAC (fitting and consensus) are iterated a

1000 times for each of the three variants. Therefore, the

processing time spent in applying LOCATE could be com-

pensated later on by decreasing the number of internal it-

erations. For equal settings, rows ‘None’ in Table 1 and

rows ‘RANSAC’ in Table 2 do not correspond; this is be-

cause RANSAC USAC [30] was used in the former while

baseline RANSAC in the latter.

7. Conclusions

We proposed a CNN based method to locally estimate

affine maps between images. Our experiments show that

the LOCATE method provides accurate first-order approxi-

mations of local geometry. This information proved to be

valuable for two applications: Guided matching of SIFT

keypoints with precise locations, orientations and scales;

and homography estimation, for which we presented a

RANSAC version that systematically improved results in

four well known datasets [44, 22, 20, 11]. Training LO-

CATE to handle occlusions as well as applications to stereo

matching will be explored in future work.
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[27] P. Musé, F. Sur, F. Cao, and Y. Gousseau. Unsuper-

vised thresholds for shape matching. ICIP, 2003.
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