
Learning a distance function with a Siamese network

to localize anomalies in videos

Bharathkumar Ramachandra

North Carolina State University

Raleigh, NC 27695

bramach2@ncsu.edu

Michael J. Jones

Mitsubishi Electric Research Labs (MERL)

201 Broadway, 8th floor; Cambridge, MA 02478

mjones@merl.com

Ranga Raju Vatsavai

North Carolina State University

Raleigh, NC 27695

rrvatsav@ncsu.edu

Abstract

This work introduces a new approach to localize anoma-

lies in surveillance video. The main novelty is the idea of us-

ing a Siamese convolutional neural network (CNN) to learn

a distance function between a pair of video patches (spatio-

temporal regions of video). The learned distance function,

which is not specific to the target video, is used to mea-

sure the distance between each video patch in the testing

video and the video patches found in normal training video.

If a testing video patch is not similar to any normal video

patch then it must be anomalous. We compare our approach

to previously published algorithms using 4 evaluation mea-

sures and 3 challenging target benchmark datasets. Experi-

ments show that our approach either surpasses or performs

comparably to current state-of-the-art methods.

1. Introduction

Video anomaly detection is the task of localizing (spa-

tially and temporally) anomalies in videos, where anoma-

lies refer simply to unusual activity. Unusual activity is

scene dependent; what is unusual in one scene may be nor-

mal in another. In order to define what is normal, video of

normal activity from the scene is provided. In the formu-

lation of video anomaly detection that we focus on in this

paper, we assume both the normal training video as well as

the testing video come from the same single fixed camera,

the most common surveillance setting. In this application,

normal video (i.e. not containing any anomalies) is sim-

ple to gather while anomalous video is not. This is why

it makes sense to provide normal video (and only normal

video) for training. Given this formulation, the problem

becomes one of building a model of normal activity from

the normal training video and then detecting large devia-

tions from the model in testing video of the same scene as

anomalous.

Most previous methods have limitations that can be at-

tributed to one or more of the following, which serve as

the motivation for our approach: (1) The features used in

many methods are hand-crafted. Examples include spatio-

temporal gradients [24], dynamic textures [26, 38], his-

togram of gradients [12], histogram of flows [12, 32, 6],

flow fields [1, 39, 27, 2, 3] and foreground masks [29].

(2) Almost every method requires a computationally ex-

pensive model building phase requiring expert knowledge

which may not be practical for real applications. (3) Many

previous works focus on detecting only specific deviations

from normality as anomalous.

To overcome these limitations, we propose an exemplar-

based nearest neighbor approach to video anomaly detec-

tion that uses a distance function learned by a Siamese CNN

to measure how similar activity in testing video is to nor-

mal activity. Our approach builds on the work of [29],

in which normal video is used to create a model of nor-

mal activity consisting of a set of exemplars for each spa-

tial region of the video. An exemplar is a feature vector

representing a video patch, i.e., a spatio-temporal block of

video of fixed size H × W × T where H , W and T are

the height, width and temporal depth of a video patch [8].

The exemplars for a spatial region of video represent all

of the unique video patches that occur in the normal video

in that region. Exemplars are region-specific because of

the simple fact that anomalies are region-specific. To de-

tect anomalies, video patches from a particular spatial re-

gion in testing video are compared against the exemplars
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Figure 1. An illustration of the scenario where UCSD Ped2, ShanghaiTech and CUHK Avenue are used as source datasets to learn a

distance function from. Best viewed in color.

for that region, and the anomaly score is the distance to

the nearest exemplar. If a testing video patch is dissim-

ilar to every exemplar video patch, then it is anomalous.

In [29], hand-crafted features (either foreground masks or

flow fields) were used to represent video patches and a pre-

defined distance function (either L2 or normalized L1) was

used to compute distances between feature vectors. We pro-

pose learning a better feature vector and distance function

by training a Siamese CNN to measure the distance between

pairs of video patches. Our CNN is not specific to a particu-

lar scene, but is trained from video patches from several dif-

ferent source video anomaly detection datasets. This idea is

similar in spirit to the work on learning a CNN for match-

ing patches [11, 41], except extended to video. Experiments

show that our method either surpasses or performs compa-

rably to the current state of the art on the UCSD Ped1, Ped2

[26] and CUHK Avenue [24] test sets.

In summary, our major contributions are:

1. Our approach transforms the problem of training a

CNN to classify video patches as normal or anomalous

(which cannot be done since we have no anomalous train-

ing examples) to the problem of training a CNN that com-

putes the distance between two video patches (a problem

for which we can generate plenty of examples). We use the

same parameters for training the CNN from source datasets

regardless of the target dataset.

2. This approach allows task-specific feature learning,

allows for efficient exemplar model building from normal

video and detects a wide variety of deviations from normal-

ity as anomalous.

3. By shifting the complexity of the problem to the dis-

tance function learning task, the simple 1-NN distance-to-

exemplar anomaly detection becomes highly interpretable.

To the best of our knowledge, our paper is the first to take

this approach to anomaly detection.

2. Related Work

Due to space constraints, we cannot do justice to the

complete literature. We focus here on video anomaly de-

tection methods that follow the formulation of the prob-

lem outlined previously. A number of methods such as

[15, 7, 22, 35] use other formulations of the video anomaly

detection problem which we do not discuss here, although

we organize this section similar to [35].

2.1. Distance­based approaches

Distance-based approaches involve creating a model

from a training partition and measuring deviations from this

model to determine anomaly scores in the test partition.

The authors in [32] use the insight that ‘optimal decision

rules to determine local anomalies are local irrespective of

normal behavior exhibiting statistical dependencies at the

global scale’ to collapse the large ambient data dimension.

They propose local nearest neighbor based statistics to ap-

proximate these optimal decision rules to detect anomalies.

In [40], stacked denoising auto-encoders are used to

learn both appearance and motion representations of video

patches which are used with one-class SVMs to perform

anomaly detection.

The authors in [30] derive an anomaly score map by con-

solidating the change in image features from a pre-trained

2599



3. Exemplar learning from training video and anomaly scoring on testing video
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Figure 2. An illustration of using the learned distance function to perform exemplar extraction and anomaly scoring on the target UCSD

Ped1 dataset. Best viewed in color.

CNN over the length of a video block.

2.2. Probabilistic approaches

Probabilistic approaches are similar to distance-based

approaches, except that the model has a probabilistic inter-

pretation, for example as a probabilistic graphical model or

a high-dimensional probability distribution.

The authors in [1] use multiple fixed-location monitors

to extract optical flow fields and compute the likelihood of

an observation given the distribution stored in that monitor’s

buffer.

In [26], the authors propose a representation comprising

a mixture of dynamic textures (MDT), modeling a genera-

tive process for MDTs and discriminant saliency hypothesis

test for anomaly detection. In [38], they build off the MDT

representation to detect anomalies at multiple scales in a

conditional random field framework.

Authors in [2] contend that anomaly detection should try

to “explain away” the normality in the test data using infor-

mation learned from the training data. To this end, they use

foreground object hypotheses and take a video parsing ap-

proach, treating those object hypotheses at test time which

are necessary to explain the foreground but not explained

by the exemplar training hypotheses are anomalous. In [3],

they further build on this idea by extending the atomic unit

of processing from an image patch to a video pipe.

2.3. Reconstruction approaches

Reconstruction approaches aim to break down inputs

into their common constituent pieces and put them back to-

gether to reconstruct the input, minimizing “reconstruction

error”.

[12, 5, 21, 31] are examples of methods that use this ap-

proach. In our experience, reconstruction based approaches

seem to be naively biased against reconstructing faster mo-

tion, for the simple reason that absence of motion is much

more common and easier to reconstruct.

A subset of reconstruction approaches, sparse recon-

struction approaches have an additional constraint in that

the reconstruction must be minimialistic, that is, using only

a few essential features from a dictionary to perform the re-

construction. [24, 25, 6] are examples of methods that use

this approach.

Many of the methods mentioned above use deep net-

works. All of the previous papers that use deep networks

for video anomaly detection that we are aware of use them

in one of two techniques: (1) either to provide higher level

features to represent video frames or (2) to learn to recon-

struct only normal video frames. Much of the previous work

builds on the basic idea of using a CNN, either pre-trained

on image classification or other tasks [13, 25, 30, 33] or

trained on the training partitions of each video anomaly

detection dataset [40], to provide a feature vector for rep-

resenting video frames. The CNN feature maps provide

higher level features than raw pixels. The other major theme

of deep network approaches is to learn an auto-encoder

[12, 5] or generative adversarial network [31, 21] to learn

to reconstruct or predict only normal video frames. Re-

construction error is then used as an anomaly score. Our

method follows neither of these previous techniques and in-

stead presents a new way to take advantage of the power

of deep networks for video anomaly detection. Namely,

we use a CNN to learn a distance function between pairs

of video patches. Thus, ours is a novel distance-based ap-

proach.

3. Method

By building on the exemplar-based nearest neighbor ap-

proach of [29], our main problem is to learn a distance func-

tion for comparing video patches from testing video to ex-

emplar video patches that represent all of the unique video

patches found in the normal video. To do this we use a

Siamese network (see Figure 1) similar to the one first in-

troduced by Bromley and LeCun [4]. In essence, by mak-

ing the anomaly detection task itself a rather simple nearest

neighbor distance computation (see Figure 2), we seek to

offload the burden of modeling the complexity in this prob-
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lem to the task of learning a distance function. This learn-

ing problem can be done offline and has a large amount of

training data available from source datasets. Ideally this can

be done once and the resulting feature representation and

distance function used on a wide variety of different target

datasets.

In this section, we go into more detail in each of the

steps shown in Figures 1 and 2, provide justifications for

our design decisions and setup some language essential for

the Experiments section.

3.1. Generating training video patch pairs

The main difficulty with training a Siamese network to

estimate the distance between a pair of video patches is de-

termining how to generate the training set of similar and

dissimilar video patch pairs. One training example con-

sists of a pair of video patches plus a binary label indicating

whether the two video patches are similar or dissimilar (see

Figure 1 part 1). Video patch pairs should be selected to

correctly correspond to their ground truth labels of “simi-

lar” or “dissimilar”. Pairs should also be picked such that

coverage of the possible domain of inputs to the CNN dur-

ing test time is high. This is to ensure that the CNN is not

asked to operate on out-of-domain inputs at test time.

How can we determine whether two video patches are

similar or dissimilar and how can we select a varied set of

video patch pairs that are relevant to video anomaly detec-

tion? An important insight is that we can use existing video

anomaly detection datasets to do this. We use a source set of

labeled video anomaly detection datasets to generate similar

and dissimilar video patch pairs. The labeled datasets used

to generate training examples should of course be disjoint

from the target video anomaly detection dataset on which

testing will eventually be done. The basic insight is as fol-

lows: for each source dataset,

(1) A non-anomalous video patch from the test partition

is similar to at least one video patch from the same spatial

region in the train partition. If it were not similar to any

normal video patches it would be anomalous.

(2) An anomalous video patch from the test partition is

dissimilar to all possible patches from the same spatial re-

gion in the train partition. Moreover, it is dissimilar to even

the most similar video patch.

The first rule generates a single pair for each normal

video patch in a test video, although since there are many

normal video patches in any test video, this rule can gener-

ate many similar pairs. The second rule generates many dif-

ferent dissimilar pairs for each anomalous video patch in a

test video. The first rule requires a distance function to find

the most similar train video patch to a test video patch. It

is also useful in the second rule to have a distance function

to know which dissimilar pairs are the most difficult (i.e.

similar) since these are the most useful for training. We use

a simple normalized L1 distance as our distance function

along with the representation of video patches described in

Section 3.2.

A reasonable concern about using a predefined distance

function to help select training examples is that the Siamese

network might simply learn this distance function. This

does not happen for a few reasons. One is that the label for

each example pair is not the L1 distance, but rather a 0 or 1

indicating whether the pair is similar or dissimilar, respec-

tively. Secondly, it is possible for the L1 distance between

two similar pairs to be larger than the L1 distance between

two dissimilar pairs.

One important point to note is that normalized L1 dis-

tance is far from ideal to measure distance between video

patches. For example, this distance does not take into ac-

count many variations in natural images such as scale, il-

lumination and pose of objects. Because these variations

mostly exist across different regions in the camera’s field

of view, we determine an adaptive threshold on normalized

L1 distance below which to perform these pairings. The

threshold for a region is determined by taking into account

the above rules in combination with inspecting the distribu-

tion of nearest neighbor distances in a given region. Specifi-

cally, an adaptive threshold for a given region in the camera

frame is determined simply as µ+α∗σ where µ is the mean

of nearest neighbor distances between testing video patches

and training video patches, σ is the corresponding standard

deviation and α is determined by identifying an elbow in

the distribution of nearest neighbor distances (we set it to

0.2 consistently in experiments). The adaptive threshold is

common across the source datasets but different for similar

and dissimilar pairs. Notice that dissimilar pairs that have

large distances are more likely to be easy to discriminate for

the Siamese network; on the other hand, we require some of

these pairings despite this property to achieve high domain

converage. Thus, we include candidate pairs with proba-

bility inversely proportional to the distance between them,

achieving high domain coverage, but also a sufficient num-

ber of examples close to the decision boundary. We also

include as similar pairs random video patches paired with

slightly augmented (random translation and/or central scal-

ing) versions of them. Our final video patch pair dataset

consists of an equal number of similar and dissimilar pairs.

3.2. Learning a distance function

Choice of representation: At this point, it is important

to choose how video patches are represented, such that the

learned distance function will perform well in the anomaly

detection task. Our choice of representation consists of a

H ×W ×C cuboid. In light of all anomalies being appear-

ance or motion based, we adopt a multi-modal representa-

tion. In all our experiments that follow, the first channel is

a grayscale image patch and the next 12 channels are image
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Figure 3. Architecture of the Siamese neural network that learns a distance function between video patches. Best viewed in electronic form

in color; color coding denotes unique structure.

patches from absolute values of x and y directional gradi-

ents of dense optical flow fields (we use [20]) between the

subsequent 6 pairs of image patches. This sets C = 13 and

we set H = 20 and W = 20 for all experiments. See Figure

1 (part 2) for an illustration.

Pre-processing: Data augmentation of a random

amount is performed on every video patch pair x1, x2 dur-

ing training in order to improve the robustness of the learned

distance function to these variations. The data augmentation

involves randomly flipping left to right, centrally scaling in

[0.7, 1] and brightness jittering of the first channel in [-0.2,

0.2] in a stochastic manner on both video patches in a pair.

Pre-processing also involves linearly scaling intensity val-

ues of each video patch from [0, 255] to [-1, 1].

Network architecture and training: Figure 3 outlines

our network architecture. Each video patch in a pair is first

processed independently using conv-relu-batchnorm opera-

tions with 2× 2 max-pooling after every other convolution

in what we call convolutional twin “tails”. Weight tying be-

tween the tails guarantees that two extremely similar video

patches could not possibly have very different intermediate

representations because each tail computes the same func-

tion. Finally, flattened feature vectors from the two twin

tails (conv5, conv5 5) are subtracted element-wise and pro-

cessed consequently in a typical classification pipeline min-

imizing a cross-entropy loss. All convolutions use 3 × 3
filters with a stride of 1. We find that subtracting the feature

maps at conv5 produces faster optimization when compared

to concatenation. We think this is because element-wise

subtraction induces a stronger structural prior on the net-

work architecture. Let B represent minibatch size, where i

indexes the minibatch and y(x
(i)
1 , x

(i)
2 ) be a length-B vec-

tor which contains the labels for the mini-batch, where we

assume y(x
(i)
1 , x

(i)
2 ) = 0 whenever x1 and x2 are similar

video patches and y(x
(i)
1 , x

(i)
2 ) = 1 otherwise. The cross-

entropy loss is of the form:

L(x
(i)
1 , x

(i)
2 ) = −γ ∗ y(x

(i)
1 , x

(i)
2 ) log p(x

(i)
1 , x

(i)
2 )

−(1− y(x
(i)
1 , x

(i)
2 )) log (1− p(x

(i)
1 , x

(i)
2 ))

(1)

where p(x
(i)
1 , x

(i)
2 ) is the probability of the patches being

dissimilar as output by the softmax function. Note that in

the loss, we set class weight for the dissimilar class γ as

0.2 to penalize incorrectly classified dissimilar pairs less

than incorrectly classified similar pairs. This further serves

our objective at the anomaly detection phase to have low

false positive rates at high true positive rates (where anoma-

lies are denoted positive class). For training, the objec-

tive is combined with the standard backpropagation algo-

rithm with the Adam optimizer [18], saving the best net-

work weights by testing on the validation set (a set of held-

out training examples) periodically. The gradient is additive

across the twin tails due to tied weights. We use a batch size

of 128 with an initial learning rate of 0.001 and train for a

maximum of 500 iterations. Xavier-Glorot weight initial-

ization [10] sampling from a normal distribution is used in

tandem with ReLU activations in all layers. One important

point to note is that, rather than save the network weights

that maximize validation accuracy or minimize validation

loss, we save that which maximizes validation area under

the receiver operating characteristic curve (AUC) for false

positive rates up to 0.3. This ROC curve is obtained by

plotting true positive rate as a function of false positive rate,

where the dissimilar class is denoted positive. By maximiz-

ing this AUC, the network that orders distances in a way

that achieves high true positive rate at low false positive

rates is preferred, the behavior we would like to see when it

comes time for the anomaly detection phase. We use label

smoothing regularization [36] set to 0.1 to aid generaliza-

tion. We find that adding label smoothing regularization

is helpful for two reasons. The first is that the video patch

pairing process has to in a sense guess what a future learned

function should call similar and different in order to achieve

good performance on anomaly detection, so it produces a

dataset with noisy labels. The second arises from the ob-
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Method
UCSD Ped1

frame AUC/EER

UCSD Ped1

pixel AUC*

UCSD Ped2

frame AUC/EER

UCSD Ped2

pixel AUC

CUHK Avenue

frame AUC/EER

Adam [1] 65.0%/38.0% 46.1% 63.0%/42.0% 18.0% -/-

Social force [27] 67.5%/31.0% 19.7% 63.0%/42.0% 21.0% -/-

MPPCA [26] 59.0%/40.0% 20.5% 77.0%/30.0% 14.0% -/-

Social force + MPPCA [26] 67.0%/32.0% 21.3% 71.0%/36.0% 21.0% -/-

MDT [26] 81.8%/25.0% 44.1% 85.0%/25.0% 44.0% -/-

AMDN [40] 92.1%/16.0% 67.2% 90.8%/17.0% - -/-

Video parsing [2] 91.0%/18.0% 83.6% 92.0%/14.0% 76.0% -/-

Local statistical aggregates [32] 92.7%/16.0% - -/- - -/-

Detection at 150 FPS [24] 91.8%/15.0% 63.8% -/- - -/-

Sparse reconstruction [6] 86.0%/19.0% 45.3% -/- - -/-

HMDT CRF [38] -/17.8% 82.7% -/18.5% - -/-

ST video parsing [3] 93.9%/12.9% 84.2% 94.6%/10.6% 81.1% -/-

Conv-AE [12] 81.0%27.9% - 90.0%/21.7% - 70.2%/25.1%

Deep event models [9] 92.5%/15.1% 69.9% -/- - -/-

Compact feature sets [19] 82.0%/21.1% 57.0% 84.0%/19.2% - -/-

Convex polytope ensembles [37] 78.2%/24.0% 62.2% 80.7%/19.0% - -/-

Joint detection and recounting [13] -/- - 92.2%/13.9% 89.1% -/-

Sparse coding revisit [25] -/- - 92.2%/- - 81.7%/-

GAN [31] 97.4%/8.0% 70.3% 93.5%/14.0% - -/-

Future frame prediction [21] 83.1%/- - 95.4%/- - 85.1%/-

Plug and play CNN [30] 95.7%/8.0% 64.5% 88.4%/18.0% - -/-

Narrowed normality clusters [16] -/- - -/- - 88.9%/-

Object-centric auto-encoders [14] -/- - 97.8%/- - 90.4%/-

NN on video patch FG masks [29] 77.3%/25.9% 69.3% 88.3%/18.9% 83.9% 72.0%/33.0%

Ours 86.0%/23.3% 80.4% 94.0%/14.1% 93.0% 87.2%/18.8%

Table 1. Traditional frame-level and pixel-level evaluation criteria on the UCSD Ped1, UCSD Ped2 and CUHK Avenue benchmark datasets

from related literature, ordered chronologically, complied from this same list. Our approach either surpasses or performs comparably on

these evaluation criteria when compared to previous methods. *Some of the earlier works unfortunately use only a partially annotated

subset available at the time to report performance.

servation that minimizing the cross entropy is equivalent to

maximizing the log-likelihood of the correct label, which

makes the network try to increase the logit corresponding

to the correct label and make it much larger than the other

logits, causing it to overfit to the training data and become

too confident about its predictions. Label smoothing helps

with both of these by making the network less confident

about its predictions. We also use dropout [34] of 0.3 on the

activations of the second to last fully connected layer (fc1).

3.3. Exemplar learning and anomaly detection on
target dataset

Detecting anomalies on a target dataset involves two

stages: exemplar model building using the train partition of

the dataset and anomaly detection on the test partition. Both

stages use the previously trained Siamese network to mea-

sure distance between video patches. This is done by sim-

ply treating the softmax of the logit value that corresponds

to the video patches being different as a measure of distance

between the patches. Because the softmax output can also

be interpreted as a probability, the distance measured can

also be interpreted as the probability of patches being differ-

ent. We emphasize that the training of the Siamese network

is independent of the exemplar model building and anomaly

detection stages. The Siamese network is trained on a dif-

ferent set of source datasets than the target video anomaly

detection dataset.

Exemplar learning on train partition of target

dataset: Since videos contain a large amount of tempo-

ral redundancies, we use the exemplar learning approach of

[17] to build a model of normal activity in the target dataset.

The exemplar model consists of sets of region-specific ex-

emplar video patches from the videos in the train partition

using a sliding spatio-temporal window with spatial stride

(H/2, W/2) and temporal stride of 1. The point of ex-

emplar learning is to represent the set of all video patches

in the train partition using a smaller set of unique, repre-

sentative video patches. The feature vector learned by the

Siamese network is used to represent a video patch and the

distance function learned by the Siamese network measures

the distance between two feature vectors. A video patch is

added to the exemplar set for a particular spatial region if

its distance to the nearest exemplar for that region is above

a threshold, which we set to 0.3 for all experiments. Figure

2 illustrates a subset of exemplar video patches extracted

from one region of the camera’s field of view in the UCSD

Ped1 dataset by our CNN. One big advantage of the exem-

plar learning approach is that updating the exemplar set in

a streaming fashion is possible. This makes the approach

scalable and adaptable to environmental changes over time.
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Anomaly detection on test partition of target dataset:

At test time, overlapping patches with spatial stride (H/2,

W/2) and temporal stride of 1 are extracted from the

test partition and distances to nearest exemplars produce

anomaly scores (see Figure 2). In both the exemplar learn-

ing and anomaly scoring phases, we achieve additional

speedup by ignoring video patches that contain little or no

motion. Specifically, a video patch is ignored if under 20%
of its pixels across the channel dimension do not satisfy

a threshold on flow magnitude or a threshold on the raw

pixel value difference between the current and the previous

frame. Furthermore, the brute-force nearest neighbor search

used in the experiments could be replaced by a fast approxi-

mate nearest neighbors algorithm [28] for further speed-up.

Anomaly scores are stored and aggregated in a pixel map

and the final anomaly score of a pixel is simply the mean

of all anomaly scores it received as part of patches it par-

ticipated in (due to overlap of patches in space and time).

The anomaly detection is region-specific, so a patch is only

compared to exemplars extracted from the same region.

4. Experiments

4.1. Experimental setup ­ Datasets and evaluation
measures

Datasets: We perform experiments on 3 benchmark

datasets: UCSD Ped1, UCSD Ped2 [26] and CUHK Avenue

[24]. Each of these datasets includes pre-defined train and

test partitions from a single static camera where train parti-

tions contain sequences of normal activity only and test par-

titions contain sequences with both normal and anomalous

activity, and with spatial anomaly annotations per frame.

Evaluation measures: To compare against other works

we use the widely-used frame-level and pixel-level area un-

der the curve (AUC) and equal error rate (EER) criteria pro-

posed in [26].

In addition, we report performance using two new cri-

teria presented in [29], which are more representative of

real-world performance as argued in that paper. The first

is a region-based criterion: A true positive occurs if a

ground truth annotated region has a minimum intersection

over union (IOU) of 0.1 with a detection region. Detected

regions are formed as connected components of detected

pixels. The total number of positives is correspondingly the

total number of anomalous regions in the test data. A false

positive occurs if a detected region simply does not satisfy

the minimum IOU threshold of 0.1 with any ground truth

region. The region-based ROC curve plots the true posi-

tive rate (which is the fraction of ground truth anomalous

regions detected) versus the false positive rate per frame.

The second is a track-based criterion: A true positive oc-

curs if at least 10% of the frames comprising a ground truth

anomaly’s track satisfy the region-based criterion. The to-

Target dataset Source datasets

UCSD Ped1

Shanghai Tech camera 06 (quarterscale),

Shanghai Tech camera 10 (quarterscale),

UCSD Ped2 (halfscale, rotated at 45 degrees),

CUHK Avenue (quarterscale)

UCSD Ped2 UCSD Ped1, CUHK Avenue (halfscale)

CUHK Avenue

(halfscale)
UCSD Ped1, UCSD Ped2

Table 2. Source dataset configuration for each target dataset.

tal number of positives is the number of ground truth an-

notated tracks in the test data. False positives are counted

identically to the region-based criterion. The track-based

ROC curve plots the true positive rate (which is the fraction

of ground truth anomalous tracks detected) versus the false

positive rate per frame. AUCs for both criteria are calcu-

lated for false positive rates from 0.0 up to 1.0. Because

the track-based criterion requires ground truth annotations

to have a track ID, we relabeled the Ped1, Ped2, and Avenue

test sets with bounding boxes that include a track ID. These

new labels will be made publicly available. Old labels are

used for the frame and pixel-level criteria.

4.2. Comparison against state of the art

Method track AUC region AUC

Ped1 Ped2 Avenue Ped1 Ped2 Avenue

[29] (FG masks) 84.6% 80.5% 80.9% 46.6% 62.5% 35.8%

[29] (Flow) 86.5% 83.2% 78.4% 48.3% 55.0% 27.3%

Ours 90.0% 89.3% 78.6% 59.2% 74.0% 41.2%

Table 3. Track and region-based criteria, area under the curve for

false positive rates up to 1.0.

To evaluate our approach, we compare against results re-

ported on the traditional evaluation measures by papers in

the recent literature. For each of our experiments, a new

CNN was trained using only datasets other than the tar-

get dataset to curate the training data for the Siamese net-

work (see Table 2), but each newly trained network used the

same aforementioned regularization parameters. A simple

heuristic was used to choose which source datasets should

be used for a given target dataset - those datasets in which

the scale of objects roughly match that in the target dataset

for a H × W image patch. In future work, we plan to use

more labeled videos to train a single Siamese network that

works well across many different target datasets.

Table 1 presents frame and pixel-level AUC measures on

the UCSD Ped1, UCSD Ped2 and CUHK Avenue datasets.

Our approach sets new state of the art on UCSD Ped2 pixel-

level AUC by around 4% as well as on CUHK Avenue

frame EER by around 6%. Upon visualizing the detections,

we find that our approach finds it particularly difficult to de-

tect anomalies at very small scales that exist in the UCSD

Ped1 test set. Also, our method, like most others in Ta-

ble 1, is unable to detect loitering anomalies present in the
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CUHK Avenue dataset. This is mainly due to our use of

a “motion check” that ignores video patches with little or

no motion for efficiency reasons. This could be replaced

by a more sophisticated background model that is slower to

absorb stationary objects.

Further, we report AUC for false positive rates up to 1.0

for the track and region based criteria in Table 3. We reim-

plemented the work of [29] for these results. Clearly, our

approach surpasses that of [29], meaning we detect more

anomalous events (tracks and regions) while also producing

fewer false positives per frame overall.

UCSD Ped1 UCSD Ped2 CUHK Avenue

Figure 4. Examples of true positives (first row) and false positives

(second row) from our detector on all 3 datasets. Green bounding

box annotations denote ground truth anomalies and red regions our

model’s detections (intersections are orange-ish).

Frame 100: normal

Frame 500: wrong direction

Frame 900: throwing bag

Figure 5. Anomaly score as a function of frame number for CUHK

Avenue Test sequence number 6. Green shading on the plot de-

notes ground truth anomalous frames.

These ROC curves and AUC measures do not com-

pletely capture the behavior of video anomaly detection ap-

proaches. In [23], the authors present an excellent analysis

of the problems with an evaluation measure such as AUC.

Thus, we present a set of qualitative results here. Figure

4 shows some detection results at a fixed anomaly score

threshold. We notice that the quality of false positives in our

approach is high, and often we are able to attribute reasons

for these errors. For example, the false positive shown in the

figure for UCSD Ped1 dataset is due to the fact that a person

is never seen walking across the grass in this specific man-

ner in the train partition. A similar argument explains the

false positives shown for the other two datasets as well. This

could either indicate that the train partition is incomplete,

or highlight the subjectivity involved in ground truth anno-

tation processes. Figure 5 illustrates how anomaly score per

frame, computed as the maximum of anomaly scores of pix-

els in the frame, varies for one test sequence of CUHK Av-

enue. The high variance in anomaly scores during the “bag

throwing” anomaly even indicates how this event might in-

tersperse normal and anomalous frames, seeming normal

when the bag leaves the camera frame and vice versa.

4.3. Ablation study on source datasets used

Source datasets Target = Ped2

Ped1 Avenue ShanghaiTech Frame AUC Pixel AUC

Y 90.9% 89.4%

Y 90.4% 88.7%

Y 93.7% 93.0%

Y Y 94.0% 93.0%

Y Y 91.8% 91.0%

Y Y 91.7% 90.7%

Y Y Y 93.0% 91.9%

Table 4. Ablation study on the choice of source datasets for a par-

ticular target dataset. ‘Y‘ denotes that the dataset was used in the

source pool.

We perform an ablation study to understand the effect of

picking source datasets for a particular target dataset. Since

it is prohibitive to perform a complete ablation study, for

this study we set the target to be UCSD Ped2 and vary all

non-empty subsets of source datasets from the set {UCSD

Ped1, CUHK Avenue, ShanghaiTech (cameras 06 and 10)},

training only once. The results presented in Table 4 show

that while there is some sensitivity to the choice of source

datasets, on both the frame and pixel level measures, we see

a variation of < 5%. This variation is from a combination of

variation due to stochasticity during training (batching, ran-

dom initialization, dropout) and choice of source datasets.

5. Conclusion

We have presented a novel approach to video anomaly

detection that introduces a new way to use a deep network

for this problem. We substitute the problem of classifying

a video patch as anomalous or not for the problem of esti-

mating a distance between two video patches, for which we

can generate plenty of labeled training data. The learned

distance function (which also learns a feature vector to rep-

resent a video patch) can then be used in a straightforward

video anomaly detection method that measures the distance

from each testing video patch to the nearest exemplar video

patch for that region. We have shown that our approach ei-

ther surpasses or performs comparably to the previous state

of the art without any training of the Siamese network on

data from the target dataset. Our approach also possesses

some favorable properties in being a plug-and-play method

(learned distance function can be used out-of-the-box on

target dataset), and in being scalable and resistant to envi-

ronmental changes (updation of the exemplar set is easy).
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