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Abstract

Progress in video anomaly detection research is cur-

rently slowed by small datasets that lack a wide variety of

activities as well as flawed evaluation criteria. This paper

aims to help move this research effort forward by introduc-

ing a large and varied new dataset called Street Scene, as

well as two new evaluation criteria that provide a better es-

timate of how an algorithm will perform in practice. In ad-

dition to the new dataset and evaluation criteria, we present

two variations of a novel baseline video anomaly detection

algorithm and show they are much more accurate on Street

Scene than two well known algorithms from the literature.

1. Introduction

Surveillance cameras are ubiquitous, and having humans

monitor them constantly is not practical. In most cases, al-

most all of the video from a surveillance camera is unimpor-

tant and only unusual video segments are of interest. This

is the main motivation for developing video anomaly detec-

tion algorithms - to automatically find parts of a video that

are unusual and flag those for human inspection.

The problem of video anomaly detection can be formu-

lated as follows. Given one or more training videos from

a single scene containing only normal (non-anomalous)

events, detect anomalous events in testing video from the

same scene. Providing training video of normal activity is

necessary to define what is normal for a particular scene. By

anomalous event, we mean a spatially and temporally lo-

calized segment of video that is significantly different from

anything occurring in the training video. What exactly is

meant by “significantly different” is difficult to specify and

really depends on the target application. This difference

could be caused by several factors, most commonly unusual

appearance or motion of objects in the video.

It is important to point out that while many papers for-

mulate the video anomaly detection problem consistently

with our description above ([2, 15, 5, 7, 34, 22, 40, 11,

28]), there are other papers that use different formulations

([36, 12, 2, 20, 10, 1, 13]). For example, some papers do

not assume that the normal videos all come from the same

scene. Sultani et al. [36] and Liu et al. [20] both use normal

data coming from many different scenes to build a single

model. Allowing multiple scenes to define normal data re-

stricts the types of anomalies that are possible to detect. For

instance, using multiple scenes to define normal data ex-

cludes anomalies such as a person walking in a restricted

area. The only way to learn that a particular spatial region

of a scene is a restricted area is to see normal video of that

particular scene and observe the absence of people walking

in that area. Video from other cameras/scenes gives no in-

formation about what activities may be anomalous in some

areas, but not others, in a different scene. A single model

has no way of representing, for example, that a grassy area

is only a restricted area in a certain location of one scene

but in a different location of another scene (unless sepa-

rate models are created for each scene, in which case this is

equivalent to the single scene formulation). This is true of

many activities that are only anomalous in certain areas of a

particular scene (such as jaywalking, cars or bikes going the

wrong direction for a particular lane, etc). Thus, the single

scene formulation leads to a qualitatively different problem

than a multiple scene formulation. Because the single scene

formulation corresponds to the most common surveillance

use case, we are focused on it.

Another alternative formulation only defines anomalies

temporally but not spatially [36, 2, 1]. Our perspective

is that for scenes with a lot of activity, it is important to

roughly localize anomalies both temporally and spatially,

in order to have confidence that the algorithm is detecting

anomalous frames for the right reasons, and also because lo-

calizing anomalies is helpful to humans inspecting the out-

put of an anomaly detection algorithm.

After working on this problem, we think there are defi-

ciencies in existing datasets for the single scene formulation

of video anomaly detection. These deficiencies include the

simplicity of the scenes for many datasets, the small num-

ber of anomalous events, the lack of variety in anomalous

events, the very low resolution of some datasets, existence
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Figure 1: A normal frame from the Street Scene dataset.

of staged anomalies in some cases, inconsistency in anno-

tation, and the lack of spatial ground truth (in addition to

temporal) in some cases. Furthermore, the evaluation cri-

teria that have become standard practice for video anomaly

detection have problems. Namely, the criteria do not prop-

erly evaluate spatial localization and do not properly count

false positives. In short, they do not give a realistic picture

of how an algorithm will perform in practice.

The goal of this paper is to shift the focus of video

anomaly detection research to more realistic datasets and

more useful evaluation criteria. We introduce a new dataset

for video anomaly detection, called Street Scene, that has

more labeled anomalous events and a greater variety of

anomalies than previous datasets for single scene anomaly

detection. Street Scene contains video of a two-way ur-

ban street including bike lanes and pedestrian sidewalks

(see Figure 1). The video is high resolution and captures

a scene with a large variety of activity. We also suggest two

new evaluation criteria which we believe give a more accu-

rate picture of how video anomaly detection algorithms will

perform in practice than the existing criteria. Finally, we

present two variations of a novel algorithm which outper-

form two state-of-the-art algorithms on Street Scene and set

a more realistic baseline for future work to compare against.

2. Existing Datasets and Evaluation Criteria

There are a handful of publicly available datasets used to

evaluate video anomaly detection algorithms. We discuss

each of these below and summarize them in Table 1.

UCSD Pedestrian: The most widely used video

anomaly detection dataset is the UCSD pedestrian anomaly

dataset [18] which consists of two separate datasets contain-

ing video from two different static cameras (labeled Ped1

and Ped2), each looking at a pedestrian walkway. The

test videos contain 5 different types of anomalies: “bike”,

“skater”, “cart”, “walk across”, and “other”.

Despite being widely used, this dataset has various defi-

ciencies. One is that it is modest in size, in terms of number

of frames, total anomalies, and number of different types

of anomalies. Another is that all of the anomalies can be

detected by only analyzing a single frame at a time.

Subway: The Subway dataset [2] contains two long

videos of a subway entrance and exit that mainly capture

people entering and leaving through turnstiles. It is also ac-

tually two separate datasets. Anomalous activities include

people jumping or squeezing around the turnstiles, walking

the wrong direction, and a person cleaning the walls. Be-

cause only two long videos are provided, there are various

ambiguities with this dataset such as what frame rate to ex-

tract frames, which frames to use as train/test and exactly

which frames are labeled as anomalous. Also, there is no

spatial ground truth provided.

CUHK Avenue: Another widely used dataset is called

CUHK Avenue [22]. This dataset consists of short video

clips taken from a single outdoor surveillance camera look-

ing at the side of a building with a pedestrian walkway in

front of it. The main activity consists of people walking

and going into or out of the building. Anomalies are mostly

staged and consist of actions such as a person throwing pa-

pers or a backpack into the air, or a child skipping across the

walkway. Like UCSD, this dataset also has a small number

and variety of anomalies.

UMN: The UMN dataset contains 11 short clips of 3

scenes of people meandering around an outdoor field, an

outdoor courtyard, or an indoor foyer. In each of the clips

the anomaly consists of all of the people suddenly running

away, hinting at a frantic evacuation scenario. The scene is

staged and there is one anomalous event per clip. There is

no clear specification of a split between training and testing

frames and anomalies are only labeled temporally.

Other Datasets: There are two other datasets that

should be mentioned although they do not fall under the

single scene formulation of video anomaly detection. One

is the ShanghaiTech dataset introduced in a paper by Liu et

al. [20]. It consists of 13 different scenes each with multi-

ple training and testing sequences. The dataset is intended

to be used to learn a single model and thus does not follow

the single scene formulation. While it is conceivable to treat

it as 13 separate datasets, this is problematic since many of

the videos for a particular scene have significant changes in

viewpoint and some have very little training video. Further-

more, treating it as separate datasets would yield an average

of 10 anomalous events per scene which is very small.

Another dataset from Sultani et al. [36] (the UCF-Crime

dataset) contains a large set of internet videos taken from

hundreds of different cameras. This dataset is intended for a

very different formulation of video anomaly detection more

akin to activity detection. In their formulation, both anoma-

lous and normal video is given for training. The dataset

consists of videos from many scenes labeled with prede-

fined anomalous activities as well as video with only ”nor-

mal” activities. For testing, only temporal labels are avail-

able, meaning spatial evaluation cannot be done. While this
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Dataset Total Training Testing Anomalous Anomaly Ground Resolution

Frames Frames Frames Events Types Truth

UCSD Ped1 14,000 6800 7200 54 5 Spatial, Temporal 238 x 158

UCSD Ped2 4560 2550 2010 23 5 Spatial, Temporal 360 x 240

Subway entrance∗ 86,535 18,000 68,535 66 5 Temporal 512 x 384

Subway exit∗ 38,940 4,500 34,440 19 3 Temporal 512 x 384

CUHK Avenue 30,652 15,328 15,324 47 5 Spatial, Temporal 640 x 360

UMN∗∗ 3,855 N/A N/A 11 1 Temporal 320 x 240

Street Scene 203,257 56,847 146,410 205 17 Spatial, Temporal 1280 x 720

Table 1: Characteristics of video anomaly detection datasets for the single scene formulation. ∗using 15fps ∗∗aggregates

from 3 cameras.

dataset is interesting, it is for a very different version of the

problem and is not applicable to the single scene version

that we are concerned with here.

General video surveillance/recognition datasets such as

[19, 41, 26, 27] have not been used to evaluate video

anomaly detection since they are not specifically curated for

this purpose and do not contain sufficient ground truth an-

notations.

2.1. Evaluation Criteria

Almost every recent paper for video anomaly detection

[24, 25, 38, 16, 33, 30, 6, 23, 39, 37, 40, 10, 7, 34, 22, 31,

20, 3, 4, 11, 12, 21, 29, 28, 35, 32, 14, 13] has used one

or both of the evaluation criteria specified in Li et al. [18]

which also introduced the UCSD pedestrian dataset. The

first criterion, referred to as the frame-level criterion, counts

a frame with any detected anomalous pixels as a positive

frame and all other frames as negative. The frame-level

ground truth annotations are then used to determine which

detected frames are true positives and which are false posi-

tives, thus yielding frame-level true positive and false pos-

itive rates. This criterion uses no spatial localization and

counts a frame as a correct detection (true positive) even

if the detected anomalous pixels do not overlap with any

ground truth anomalous pixels. Even the authors who pro-

posed this criterion stated that they did not think it was the

best one to use [18]. We have observed that some meth-

ods that claim state-of-the-art performance on frame-level

criterion perform poor spatial localization in practice.

The other criterion is the pixel-level criterion and tries to

take into account the spatial locations of anomalies. Unfor-

tunately, it does so in a problematic way. The pixel-level

criterion still counts true and false positive frames as op-

posed to true and false positive anomalous regions. A frame

with ground truth anomalies is counted as a true positive

detection if at least 40% of the ground truth anomalous pix-

els are detected. Other pixels detected as anomalous that

do not overlap with ground truth are ignored. Any frame

with no ground truth anomalies is counted as a false pos-

itive frame if at least one pixel is detected as anomalous.

Given these rules, a simple post-processing of the anomaly

score maps makes the pixel-level criterion equivalent to the

frame-level criterion. The post-processing is: for any frame

with at least one detected anomalous pixel, label every pixel

in that frame as anomalous. This would guarantee a correct

detection if the frame has a ground truth anomaly (since

all of the ground truth anomalous pixels are covered) and

would not further increase the false positive rate if it does

not (since one or more detected pixels on a frame with no

anomalies counts as a single false positive). This makes it

clear that the pixel-level criterion does not reward tightness

of localization or penalize looseness of it nor does it prop-

erly count false positives since false positive regions are not

even counted for frames containing ground truth anomalies,

and a frame with no ground truth anomaly can only have

a single false positive even if an algorithm falsely detects

many different false positive regions in that frame.

Better evaluation criteria are clearly needed.

3. Description of Street Scene

To address the deficiencies of existing datasets, we in-

troduce the Street Scene dataset. Street Scene consists of

46 training video sequences and 35 testing video sequences

taken from a static USB camera looking down on a scene of

a two-lane street with bike lanes and pedestrian sidewalks.

See Figure 1 for a typical frame from the dataset. Videos

were collected from the camera at various times during two

consecutive summers. All of the videos were taken dur-

ing the daytime. The dataset is challenging because of the

variety of activity taking place such as cars driving, turn-

ing, stopping and parking; pedestrians walking, jogging and

pushing strollers; and bikers riding in bike lanes. In ad-

dition the videos contain changing shadows, and moving

background such as a flag and trees blowing in the wind.

There are a total of 203,257 color video frames (56,847 for

training and 146,410 for testing) each of size 1280 x 720

pixels. The frames were extracted from the original videos

at 15 frames per second.

We wanted the dataset to contain only “natural” anoma-

lies, i.e. not staged by “actors”. To this end, the training

sequences were chosen to meet the following conditions:

(1) If people are present, they are walking, jogging or

pushing a stroller in one direction on a sidewalk; or they are

getting into or out of their car including walking alongside
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Anomaly Class Instances Anomaly Class Instances Anomaly Class Instances

1. Jaywalking 61 7. Biker on sidewalk 7 13. Skateboarder in bike lane 2

2. Biker outside lane 42 8. Pedestrian reverses direction 6 14. Person sitting on bench 2

3. Loitering 36 9. Car u-turn 5 15. Metermaid ticketing car 1

4. Dog on sidewalk 11 10. Car illegally parked 5 16. Car turning from parking space 1

5. Car outside lane 10 11. Person opening trunk 4 17. Motorcycle drives onto sidewalk 1

6. Worker in bushes 8 12. Person exits car on street 3

Table 2: Meta-data of anomaly classes and number of instances of each in the Street Scene dataset.

their car; or they are stopped in front of a parking meter.

(2) If a car is present, it is legally parked; or it is driving

in the appropriate direction in a car lane; or stopped in a car

lane due to traffic; or making a legal turn across traffic; or

leaving/entering a parking spot on the side of the street.

(3) If bikers are present, they are riding in the correct

direction in a bike lane; or turning from an intersecting road

into a bike lane or from a bike lane onto an intersecting road.

These conditions for normal activity imply that the fol-

lowing activities, for example, are anomalous and thus do

not appear in the training videos: Pedestrians jaywalk-

ing across the road, pedestrians loitering on the sidewalk,

pedestrians walking one direction and then turning around

and walking the opposite direction, bikers on the sidewalk,

bikers outside a bike lane (except when turning into a bike

lane from the intersecting street) cars making u-turns, cars

parked illegally, cars outside a car lane (except when turn-

ing or parked, parking or leaving a parking spot).

The 35 testing sequences have a total of 205 anomalous

events consisting of 17 different anomaly types. A complete

list of anomaly types and the number of each in the test set

is given in Table 2, for descriptive purposes only.

The Street Scene dataset can be downloaded from

http://www.merl.com/demos/video-anomaly-detection.

Ground truth annotations are provided for each testing

video in the form of bounding boxes around each anoma-

lous event in each frame. Each bounding box is also labeled

with a track number, meaning each anomalous event is

labeled as a track of bounding boxes. A single frame can

have more than one anomaly labeled.

4. New Evaluation Criteria

As discussed in Section 2.1, the main criteria used by

previous work to evaluate video anomaly detection accu-

racy have significant problems. Sabokrou et al. [32] also

recognized the problems with the standard criteria and pro-

posed the Dual Pixel Level criteria. While this is an im-

provement, it still cannot correctly count true positives and

false positives in frames with (a) multiple anomalies, (b)

both true positive as well as false positive detections and (c)

multiple false positive detections. A good evaluation crite-

rion should measure the fraction of anomalies an algorithm

can detect and the number of false positive regions an algo-

rithm can be expected to mistakenly find per frame.

Our new evaluation criteria are informed by the follow-

ing considerations. Similar to object detection criteria, us-

ing the intersection over union (IOU) between a ground

truth anomalous region and a detected anomalous region

for determining whether an anomaly is detected is a good

way to insure rough spatial localization. For video anomaly

detection, the IOU threshold should be low to allow some

imprecision in localization because of issues like imprecise

labeling (bounding boxes) and the fact that some algorithms

detect anomalies that are close to each other as one large

anomalous region which should not be penalized. Sim-

ilarly, shadows may cause larger anomalous regions than

what are labeled. We do not think such larger than expected

anomalous-region detections should be penalized. We use

an IOU threshold of 0.1 in our experiments.

Also, because a single frame can have multiple ground-

truth anomalous regions, correct detections should be

counted at the level of anomalous regions, not frames.

False positives should be counted for each falsely de-

tected anomalous region, i.e. by each detected anomalous

region that does not significantly overlap with a ground

truth anomalous region. This allows more than one false

positive per frame and also false positives in frames with

ground truth annotations, unlike the previous criteria.

In practice, for an anomaly that occurs over many

frames, it is important to detect the anomalous region in

at least some of the frames, but it is usually not impor-

tant to detect the region in every frame in the track. This

is especially true considering the ambiguities for when to

begin and end an anomalous track mentioned earlier, and

in cases where anomalous activity is severely occluded for

a few frames. Because the Street Scene dataset provides

track numbers for each anomalous region which uniquely

identify the event to which an anomalous region belongs,

it is easy to compute such a criterion. The new criteria re-

sulting from these considerations are similar to evaluation

criteria used in object detection and object tracking [9, 8]

but similar criteria have not been used for video anomaly

detection in the past.

4.1. Track­Based Detection Criterion

The track-based detection criterion measures the track-

based detection rate (TBDR) versus the number of false

positive regions per frame.

A ground truth track is considered detected if at least a
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fraction α of the ground truth regions in the track are de-

tected.

A ground truth region in a frame is considered detected if

the intersection over union (IOU) between the ground truth

region and a detected region is greater than or equal to β.

TBDR =
num. of anomalous tracks detected

total num. of anomalous tracks
. (1)

A detected region in a frame is a false positive if the IOU

between it and every ground truth region in that frame is

less than β.

FPR =
total false positive regions

total frames
(2)

where FPR is the false-positive rate per frame.

Note that a single detected region can cover two or more

different ground truth regions so that each ground truth re-

gion is detected (although this is rare).

In our experiments below, we use α = 0.1 and β = 0.1.

4.2. Region­Based Detection Criterion

The region-based detection criterion measures the

region-based detection rate (RBDR) over all frames in the

test set versus the number of false positive regions per

frame.

As with the track-based detection criterion, a ground

truth region in a frame is considered detected if the inter-

section over union (IOU) between the ground truth region

and a detected region is greater than or equal to β.

RBDR =
num. of anomalous regions detected

total num. of anomalous regions
. (3)

The RBDR is computed over all ground truth anomalous

regions in all frames of the test set.

The number of false positives per frame is calculated in

the same way as with the track-based detection criterion.

As with any detection criterion, there is a trade-off be-

tween detection rate (true positive rate) and false positive

rate which can be captured in a ROC curve computed by

changing the threshold on the anomaly score that deter-

mines which regions are detected as anomalous.

When a single number is desired, we suggest summariz-

ing the performance with the average detection rate for false

positive rates from 0 to 1, i.e. the area under the ROC curve

for false positive rates less than or equal to 1.

5. Baseline Algorithms

We describe two variations of a novel algorithm for video

anomaly detection which we evaluate along with two pre-

viously published algorithms on the Street Scene dataset in

Section 6. The new algorithm is based on dividing the video

into spatio-temporal regions which we call video patches,

storing a set of exemplars to represent the variety of video

Figure 2: Illustration of a grid of regions partitioning a

video frame and a video patch encompassing 4 frames.

This figure show non-overlapping regions, but in our ex-

periments we use overlapping regions.

patches occuring in each region, and then using the distance

from a testing video patch to the nearest neighbor exem-

plar as the anomaly score. As with previous work such as

[14, 22], our baseline algorithm uses video patches (also

called spatio-temporal cubes) as the basic building block,

but differs in the features and type of model we use.

First, each video is divided into a grid of spatio-temporal

regions of size H×W×T pixels with spatial step size s and

temporal step size 1 frame. In the experiments in Section 6

we choose H=40 pixels, W=40 pixels, T=4 or 7 frames,

and s = 20 pixels. See Figure 2 for an illustration.

The baseline algorithm has two phases: a training or

model-building phase and a testing or anomaly detection

phase. In the model-building phase, the training (normal)

videos are used to find a set of video patches (represented

by feature vectors described later) for each spatial region

that represent the variety of activity in that spatial region.

We call these representative video patches, exemplars. In

the anomaly detection phase, the testing video is split into

the same regions used in training and for each testing video

patch, the nearest exemplar from its spatial region is found.

The distance to the nearest exemplar is the anomaly score.

The only differences between the two variations are the

feature vector used to represent each video patch and the

distance function used to compare two feature vectors.

The foreground (FG) mask variation uses blurred FG

masks for each frame in a video patch. The FG masks are

computed using a background (BG) model that is updated

as the video is processed. The BG model used in the exper-

iments is a very simple mean color value per pixel although

a more sophisticated model could be easily substituted.

The FG mask is then blurred using a Gaussian kernel to

make the L2 distance between FG masks more robust. The

FG mask feature vector is formed by concatenating all of

the blurred FG masks from all frames in a video patch and

then vectorizing (see Figure 3).
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The flow-based variation uses optical flow fields com-

puted between consecutive frames in place of FG masks.

The flow fields within the region of each video patch frame

are concatenated and then vectorized to yield a feature vec-

tor twice the length of the feature vector from the FG mask

baseline (due to the dx and dy components of the flow field).

In our experiments we use the optical flow algorithm of

Kroeger et al. [17] to compute flow fields.

In the model building phase, a distinct set of exemplars is

selected to represent normal activity in each spatial region.

Our exemplar selection method is straightforward. For a

particular spatial region, the exemplar set is initialized to the

empty set. We slide a spatial-temporal window (with step

size equal to one frame) along the temporal dimension of

each training video to give a series of video patches which

we represent by either a FG-mask based feature vector or a

flow-based feature vector depending on the algorithm varia-

tion as described above. For each video patch, we compare

it to the current set of exemplars. If the distance to the near-

est exemplar is less than a threshold then we discard that

video patch. Otherwise we add it to the set of exemplars.

The distance function used to compare two exemplars

depends on the feature vector. For blurred FG mask feature

vectors, we use L2 distance. For flow-field feature vectors

we use normalized L1 distance:

dist(u,v) =
∑

i

|ui − vi|

|ui|+ |vi|+ ǫ
(4)

where u and v are two flow-based feature vectors and ǫ is a

small positive constant used to avoid division by zero.

Given a model of normal video which consists of a dif-

ferent set of exemplars for each spatial region of the video,

the anomaly detection is simply a series of nearest neighbor

lookups. For each spatial region in a sequence of T frames

of a testing video, compute the feature vector representing

the video patch and then find the nearest neighbor in that

region’s exemplar set. The distance to the closest exemplar

is the anomaly score for that video patch.

This yields an anomaly score per overlapping video

patch. These are used to create a per-pixel anomaly score

matrix for each frame. The anomaly score for a video patch

is stored in the middle frame for that set of T frames. The

first T/2− 1 frames and the last T/2+1 frames of the test-

ing video are not assigned any anomaly scores from video

patches and thus get all 0’s. A pixel covered by two or more

video patches is assigned the average score from all video

patches that include the pixel.

When computing ROC curves according to either of the

track-based or region-based criteria, for a given threshold,

all pixels with anomaly scores above the threshold are la-

beled anomalous. Then anomalous regions are found by

computing the connected components of anomalous pixels.

Figure 3: Example blurred FG masks, concatenated and

vectorized into a feature vector. a and c show two video

patches consisting of 7 frames cropped around a spatial re-

gion. b and d show the corresponding blurred FG masks.

These anomalous regions are compared to the ground truth

regions according to one of the above criteria.

6. Experiments

In addition to the two variations of our baseline video

anomaly detection method, we also tested two previously

published methods. The first is the dictionary method of

Lu et al. [22] which fits a sparse combination of dictio-

nary basis feature vectors to a feature vector representing

each spatio-temporal window of the test video. A dictionary

of basis feature vectors is learned from the normal training

videos for each spatial region independently. This method

reported good results on UCSD, Subway and CUHK Av-

enue datasets. Code was provided by the authors.

The second method is from Hasan et al. [10] which uses

a deep network auto-encoder to learn a model of normal

frames. The anomaly score for each pixel is the recon-

struction error incurred by passing a clip containing the

pixel through the auto-encoder. This assumes that anoma-

lous regions of a frame will not be well reconstucted. This

method is also competitive with other state-of-the-art results

on standard datasets and evaluation criteria. We used our

own implementation of this method.

We have been unable to find code available for other al-

gorithms, but hope that researchers will report the results of

their algorithms on Street Scene in the near future.

Figures 4 (a) and (b) show ROC curves for our baseline

methods as well as the dictionary and auto-encoder methods

on Street Scene using the newly proposed track-based and

region-based criteria. The numbers in parentheses for each

method in the figure legends are the areas under the curve

for false positive rates from 0 to 1. Clearly, the dictionary

and auto-encoder methods perform poorly on Street Scene.

Our baseline methods do much better although there is still

much room for improvement.

While the dictionary method works well on other,

smaller datasets, the sparse dictionary model does not seem
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Figure 4: Track-based (a) and region-based (b) ROC curves for different methods on Street Scene

Figure 5: Frame-level (a) and pixel-level (b) ROC curves for different methods on Street Scene

to be expressive enough to reconstruct many normal testing

video patches on the larger and more varied Street Scene.

The auto-encoder method tries to model whole frames

at once as opposed to creating smaller models for differ-

ent spatial regions. While this seems to work on previous

datasets, it does not seem to work with the huge variety of

normal variations present in Street Scene.

Our baseline algorithms perform reasonably well on

Street Scene. They store a large set of exemplars (typically

between 1000 and 3000 exemplars) in regions where there

is a lot of activity such as the street, sidewalk and bike lane

regions. On other regions such as the building walls or roof

tops, only a single exemplar is stored.

For the two baseline variations using the track-based cri-

teria, the flow-based method does best for low false-positive

rates (arguably the most important part of the ROC curve).

The flow field provides more useful information than FG

masks for most of the anomalies (the main exception being

loitering anomalies which are discussed below). The FG-

based method does better using the region-based criterion.

The number of frames used in a video patch (4 or 7) does

not have a large effect on either variation.

The baseline algorithms do best at detecting anomalous

activities such as jaywalking, illegal u-turn, and bikers or

cars outside their lanes because these anomalies have dis-

tinctive motions compared to the typical motions in the re-

gions where they occur.

The loitering anomalies (and other largely static anoma-

lies such as illegally parked cars) are the most difficult for

the baseline methods because they do not contain any mo-

tion except at the beginning in which a walking person tran-

sitions to loitering. For the flow-based method, the loiter-

ing anomalies are completely invisible. For the FG-based

method, the beginning of the loitering anomaly is visible

since the BG model takes a few frames to absorb the mo-

tionless person. This is the main reason why the flow-based

method is worse than the FG-based method for higher de-

tection rates. The FG-based method can detect some of the

loitering anomalies while the flow-based method cannot.

A similar effect explains the region-based results in

which the FG-based method does better than the flow-based

method. The loitering and other “static” anomalies make

up a disproportionate fraction of the total anomalous re-

gions because many of them occur over many frames. The

FG-based method detects some of these regions while the

flow-based method misses essentially all of them. So even

though the flow-based method detects a greater fraction of

all anomalous tracks (at low false positive rates) it detects a
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Figure 6: Detection result for flow baseline showing cor-

rectly detected motorcycle driving onto the sidewalk.

Figure 7: Detection result for flow baseline that is counted

as missed detection but no false positive by pixel-level cri-

terion and is counted as one correct detection and one false

positive by the track-based and region-based criteria.

Figure 8: Detection result for flow baseline showing missed

detection and false positive region that is counted as correct

detection with no false positives by frame-level criterion.

smaller fraction of all anomalous regions.

Some visualizations of the detection results for the flow-

based method (using T=4) are shown in Figures 6 and 7.

In the figures, red tinted pixels are anomaly detections and

blue boxes show the ground truth annotations. Figure 6

shows the correct detection of a motorcycle that rides onto

a sidewalk. Figure 7 shows a detected jaywalker as well as

a false positive region.

We also show results for the two baseline algorithms as

well as the dictionary and auto-encoder methods using the

traditional frame-level and pixel-level criteria in Figures 5

(a) and (b). We show the results for the purpose of illustrat-

ing the deficiencies of these criteria, but not for comparison

with future work. We do not think these criteria should be

used for Street Scene going forward. The frame-level re-

sults (which do not take spatial localization into account)

suggest that the auto-encoder method does about as well as

the foreground baseline and the dictionary method is almost

as good as the flow baseline. However, when we look at

what regions of each frame the auto-encoder and dictionary

methods actually detect as anomalous, the accuracy is quite

poor. This can be seen in the track-based, region-based and

pixel-level ROC curves as well as by visual inspection. Fig-

ure 8 shows the output of the flow baseline for a frame that

contains a “person opening trunk” anomaly in the top, left.

The frame-level criterion counts this frame as a correct de-

tection even though the detected pixels are nowhere near

the ground truth anomaly but are in fact a false positive.

The pixel-level ROC curves in Figure 5 (b) are more rea-

sonable and in better agreement with the track-based and

region-based ROC curves, but as mentioned earlier this cri-

teria has the serious flaw that a very simple post-processing

of anomaly scores would boost these curves so they are ex-

actly the same as the frame-level ROC curves. Figure 7

shows an example of a jaywalk anomaly that has fewer than

40% of its pixels detected and is therefore a missed detec-

tion according to the pixel-level criterion. This criteria also

ignores a false-positive region below the car. The region and

track-based criterion would count this as a correct detection

and one false positive. We argue that this is a better fit to

human intuition about how this frame should be counted.

7. Conclusions

We have presented a new large-scale dataset and new

evaluation criteria for video anomaly detection that we hope

will help to spur new innovations in this field. The Street

Scene dataset is a more complex scene and has almost as

many anomalous events as all currently available datasets

combined. The new evaluation criteria fix the problems with

the criteria typically used in this field, and will give a more

realistic idea of how well an algorithm performs in practice.

In addition, we have presented two variations of a new

video anomaly detection algorithm as a baseline for future

work to compare against; they are straightforward and out-

perform two previously published algorithms which do well

on previous datasets but not on Street Scene. The new

nearest-neighbor based algorithms may form an interesting

foundation to build on.
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