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Abstract

Rock climbing is a sport in which blind people have tra-

ditionally found it extremely difficult to excel due to the high

degree of visual problem solving required, and also the re-

quirement to climb with a sighted assistant. We present a

system which automates the role of the sighted assistant in

order to provide blind people with the freedom to climb and

train on their own. We address climbing-specific limitations

of a state-of-the-art skeleton tracking system, and discuss

the ways in which we mitigated these limitations using post-

processing techniques tuned specially for a climbing sce-

nario. We also describe the auditory feedback system used

to instruct the blind climber, and demonstrate that a user

can learn to follow it in a relatively short time by showing

a significant improvement in performance over just a few

trials with the system.

1. Introduction

The motivation for this research is the growing popular-

ity of indoor climbing in recent times [5]. To complete

a route at a climbing gym, climbers must generally em-

ploy a great deal of visual problem solving to find the most

efficient way to progress between foot- and hand- holds

(called a ‘move’). Sighted climbers enjoy the freedom to

climb on their own, allowing for demanding training rou-

tines to be undertaken with very little logistical effort. Vi-

sually impaired climbers generally climb with a sighted as-

sistant, whose role it is to direct the climber verbally from

the ground. We investigate the feasibility of extending the

same freedom to visually impaired climbers by replacing

this assistant with a computational aid, with the lofty aim

of reducing barriers to training, and hence helping to push

standards for paraclimbers.

The sighted assistant performs many tasks which present

a significant computational challenge. We chose to focus

primarily on two particularly challenging aspects of the as-

sistant’s role:

• Tracking the climber - our system must be able

to reason about the pose of the climber’s body with

respect to the wall in order to generate meaningful

feedback. Previous attempts to characterise climbers’

movements, such as ClimbAX [11] and a study by

Sibella et al. [21], focus on large-scale quantities (such

as a climber’s centre of gravity) and as such cannot

provide sufficiently detailed information about the po-

sitions of a climber’s hands and feet. To our knowl-

edge, vision-based skeleton tracking has not previ-

ously been applied with the specific purpose of aid-

ing or augmenting the activity of climbing. We found

that existing solutions for skeleton tracking did not per-

form well on the types of body positions commonly

exhibited by rock climbers, with self-occlusions and

crossed limbs being very common. This meant that ex-

tensive post-processing was required in order to track

the climber’s skeleton with sufficient accuracy to pro-

vide effective feedback.

• Auditory feedback - previous work aimed at assisting

blind climbers has been primarily associated with the

sensory substitution system Brainport [9], famously

used by Erik Weihenmayer, the first blind person to

climb Everest. We believe that the complexity of the

output from such sensory substitution systems is not

necessary for our specific use case, and that the amount

of training required by such systems would present

a very significant obstacle to many visually impaired

climbers. Instead we chose to replicate the role of the

sighted assistant more directly. The sighted assistant

does not attempt to describe the entire scene to the

climber, only those details pertinent to the next transi-

tion between holds. By following an approach similar

to those used by more ‘object-based’ assistive systems

such as those described in Section 2, we aimed to de-

velop a system with a comparatively shallow learning

curve which still delivers the information necessary for

the climber to complete their route.

In this paper we outline our approach to tracking the
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climber, including post-processing techniques to address

various limitations in skeleton tracking specific to this sce-

nario, and a higher-level framework which allows for view-

independent reasoning about a climber’s progress through

their route. We also present our method of delivering feed-

back to the user, which addresses a well-explored problem

of directing a blind user to a target in space, with the added

complication that it is crucial that they reach the target with

the correct hand or foot. Finally we present a detailed eval-

uation of the effectiveness of this feedback based on user

testing in a controlled environment.

2. Related Work

Object-based assistants: Our system can be thought

of as a form of ‘object-based’ assistant. We use this term to

refer to systems which help a blind person to locate an ob-

ject in space. Object-based assistive systems rely on object

recognition and tracking techniques to help direct users to-

wards an object of interest. We are not so much interested in

the object recognition techniques used in such systems (the

targets which we are interested in are fixed in space, and can

be obtained by the methods described in Section 4.1.3) as in

the feedback systems used to indicate an object’s location to

a user.

One such system is presented by Schauerte et al. [17],

which explores an approach to helping blind people find ob-

jects which they have previously lost. An important distinc-

tion between our system and Schauerte et al.’s is that, in our

case, it is crucial that the object of interest is grasped with

the correct hand or foot, something which their approach

has no capacity to specify. WiYG, presented by Billah et

al. [7], uses an approach very similar to ours to enable blind

people to fill out printed forms. This high-precision haptic

task is conceptually not dissimilar to the task of reaching

to grasp a hold on a climbing wall. However WiYG oper-

ates within a much smaller area of space than our system,

providing no large-scale instruction to direct the user to the

general area of their target, and, like Schauerte et al.’s sys-

tem, has no capability to specify which limb must be used

to complete a task.

One important distinction when considering assistive

systems for blind people is that of auditory versus tac-

tile feedback. Two recent successful tactile systems are

DLWV2 [18] and Palmsight [22]. Both use bulky hand-

mounted devices which would be prohibitively restrictive

if used while climbing. Mante and Weiland [14] evaluate

the relative performance of tactile versus auditory feedback.

Neither system showed any great advantage over the other,

and as such we decided to use an auditory feedback system

based on convenience.

The systems we have described up to now employ wear-

able devices (in fact, almost all such assistants do). Another

important distinction for our work is that it is not appro-

priate for the system to be wearable. This is because it is

entirely impractical for a climber to wear a camera or spe-

cialised device while climbing. The weight of a complex

device would significantly add to the difficulty of climbing

a route, and the risk of falling off and damaging the device

makes the prospect of a wearable system less than ideal.

Instead we chose to make use of a camera in a fixed loca-

tion situated near the climbing wall. The fixed location of

the camera meant that, once the system had been calibrated

(as in functional requirement 4.1.3), the locations of all the

holds in the image were easy to calculate by forward pro-

jection, meaning that object recognition techniques such as

in the above systems were unnecessary.

Free-hands electronic travel aids: The system can

also be considered a highly specialised form of electronic

travel aid (ETA). Free-hands ETAs are ETAs in which feed-

back is delivered in such a way that the user is free to use

their hands (an example of a non-free-hands system is a pair

of gloves with vibrating elements in the fingertips [23]).

Clearly we require a free-hands system for this research. A

famous example of a free-hands ETA is Navbelt [19], pro-

posed by Shoval et al. Navbelt delivers directional cues us-

ing a similar mechanism to our system however, like many

free-hands ETAs [10] [12], it uses a wearable device. The

nature of an ETA generally means that a wearable device

is necessary in order to ensure constant monitoring of the

subject. However even modern systems designed to operate

in pre-determined environments, such as presented by Li et

al. [13], use wearable devices, making them unsuitable for

physically demanding tasks.

All ETAs studied, as well as the object-based systems,

required a significant effort for the user to become comfort-

able using them. None of these systems aimed for immedi-

ate usability, but instead demonstrated their appropriateness

by indicating an improvement in performance over time, ei-

ther qualitatively or quantitatively (and often both). For this

reason we aimed to demonstrate the same short-term learn-

ability with our system, rather than attempting a longitu-

dinal study to show that use of the system could become

instinctive after prolonged use.

3. System Outline

The proposed system makes use of a device called

a Moonboard (described in Section 3.1), which can be

thought of as a subset of the sport of indoor bouldering.

The basic use case is as follows: the user points a camera

at the Moonboard and selects a problem from the Moon-

board database. The user is then ‘walked through’ the se-

lected problem, as the system tracks their motion through

the route. They are informed of the position of the next

hold whenever they complete a move, and given feedback

as to the direction and proximity of the next hold as they

move towards it. The system should detect when the user
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has fallen off the route, so that it can stop attempting to di-

rect them (note that it is very common and safe to fall off

when climbing on a Moonboard, as discussed in Section

3.3).
A number of climbing-related terms are defined here for

the reader’s understanding:
Hold A small 3D shape made of plastic or wood which

a climber can either grasp with their hand or push

off with their foot

Move A transition from one hold to another. In the sys-

tem a move is considered to be the location of a

hold in board space, and the joint (hand or foot)

which needs to get there

Route A sequence of moves, also referred to as a prob-

lem

Board space Though not a term in most climbers’ vocabu-

lary, ‘board space’ is used to refer to the 2-

dimensional grid on which the Moonboard holds

lie. For example, the hold circled in red in the

second image in Figure 1 is at position (4, 0) in

board space

3.1. The Moonboard

The Moonboard (shown in Figure 1), invented by Ben Moon

in 2005, is a device used as a training tool by climbers worldwide.

It consists of a single panel 2.44m high and 3.15m wide, with 142

holds arranged in an 18x11 grid. A ‘problem’ on a Moonboard is

given by specifying a set of holds (e.g. Start = F5, End =
F18, Intermediates = {E8, H10, F12, G13, D15}), where

the indices are grid positions of the allowed holds. It is up to the

climber to work out the transitions between holds, or moves. The

totally standardised nature of the Moonboard makes it a good can-

didate for a task involving computer vision, as we already know

where every hold is, so can fit a model of this to our image. Thou-

sands of identical Moonboards exist worldwide, meaning the sys-

tem can be used at many gyms (bouldering problems outside of the

Moonboard have no ‘standard’), as well as allowing climbers to

follow detailed and structured training plans with very little logis-

tical effort, wherever and whenever they like. A database of thou-

sands of Moonboard routes exists online, meaning we can easily

access many climbs for our user to try.

In images involving a climbing route, such as Figure 1, holds

will often be indicated by coloured circles. The convention used

by Moonboard is that holds circled in green are the starting holds

(which the user must be holding before they begin to climb) and

holds circled in red are the finishing holds, which the user must

grasp with both hands to complete the route. Holds circled in blue

are known as intermediates and can be used at any time.

3.2. Functional Requirements

A. Skeleton tracking - the system must be able to determine, from

the camera stream, the position in image space of the climber’s

hands and feet. This is so that, when either a hand or a foot is

moving towards a hold, effective feedback can be provided to in-

dicate the proximity of the limb to the target hold.

B. Image-to-board projection - projecting the climber’s body

pose into board space allows us to provide instructions which are

Figure 1. Image space view of a climber, and the corresponding

projection to board space. The hold circled in red in the top image

is the current goal

invariant to the position of the camera. ETAs are most intuitively

followed when instructions are delivered with respect to the di-

rection in which the recipient is facing. Since the climber can be

assumed to be facing into the climbing wall, board space provides

a good approximation to this.

C. Fall detection & route completion - if a climber falls off a

route, it is usual to try again from the start, not continue from

where they fell off. The system should therefore be able to detect

when the climber has fallen off the route, and stop giving feedback

accordingly. Similarly, once the climber has held the finishing
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hold with both hands (the customary way to complete a boulder

problem), the system should exit.

D. Auditory feedback

1. Next hold instruction - the direction and distance to the next

hold, and the hand or foot to be used, should be announced

to the climber on completion of a move.

2. Proximity indication - the distance and direction of the hold

which the climber is currently moving to should be indicated

continuously by some non-verbal signal.

E. Route Planning - in order for the system to be considered fully

autonomous, it should include the functionality to predict the op-

timal sequence of moves required to complete a route. Despite

being explored by Pfeil et al. [16] the general problem remains

a very difficult task, and one with which even very experienced

human climbers often struggle. There is however very often only

one way of climbing a route on a Moonboard, and as such the

climber who grasps a hold with their left hand which should have

been grasped with their right will usually be unable to readjust and

complete the route. This style of climbing means that the move

sequence does not have be planned as the user climbs, but instead

can be found out by a sighted climber, who will hand-annotate the

routes in the system offline prior to running them.

3.3. Risk Analysis

Though the research involves indoor climbing, seen by some as

an extreme sport, the risk to users of the system remains very low.

The aim of the Moonboard is to provide an interesting training

experience, not a long climb, and climbers’ feet are generally no

more than 1.5 metres from the ground, meaning any fall is likely

to be short and easy to control. Boards are also surrounded by soft

mats in order to cushion any falls, vastly reducing impact force in

the event of a climber falling.

4. Methodology

The primary data pipeline which will be followed while a user

is climbing is shown in Figure 2. This pipeline will become avail-

able once the user has calibrated the system (or loaded a pre-

existing calibration) and selected a route. The first component,

Figure 2. Data flow diagram for main system loop

OpenPose, will respond to frames received from the camera, and

pass the skeleton keypoints on to the pipeline. OpenPose keypoints

tend to be noisy, so post-processing will be applied in the form

of various filtering algorithms in order to smooth the keypoints,

which will then be projected to board space. Board space coordi-

nates will be used to update a model of the climbers progress in

the chosen route, and the progress will be used to inform the feed-

back system on the type of sound to be emitted. In this section we

describe our approach to each component of the pipeline.

A key component of the data pipeline is the climber tracker

model, which will follow a goal-based loop. A goal is simply a

move, as defined in Section 3. When the user selects a route, the

goal is set to the first move in that route. When a new goal is set,

it will be announced verbally to the climber. From that point until

the goal is considered to have been achieved, a tone will be played

indicating the proximity of the relevant joint to the target point in

board space.

4.1. Tracking the Climber

4.1.1 Skeleton Tracking

We experimented with several different skeleton tracking tech-

nologies. Physical constraints on where the camera can be placed

in relation to a Moonboard mean that the climber will always be

facing away from the camera, and will generally be at least two

metres from it. Due to this effect, and the unorthodox body po-

sitions commonly exhibited by climbers, we found that existing

libraries such as OpenNI with NITE [1] were almost always un-

able to resolve the body pose of the climber. We found Open-

Pose [8] [2] to be the most effective solution, and so adopted this as

the first component of the data pipeline. Keypoints were returned

from OpenPose in 2D image space, which was then augmented

with depth for reasons described in Section 4.1.3.

Two possible implementations of OpenPose were considered,

CMU’s original Caffe implementation [3] and a reimplementation

using TensorFlow [2]. The TensorFlow version was chosen, as it

can operate in real time at 30 frames per second, whereas the Caffe

version is limited to around 10, and responsiveness of feedback

was a critical priority for the project.

4.1.2 Post-Processing

Several post-processing filters were applied to the OpenPose key-

points in order to reduce noise. A Kalman filter, implemented in

a similar to way to Shu et al. [20] and tuned specifically for the

system, reduced small-scale noise. By applying a median filter to

the velocity of keypoints, which provided the motion model in the

Kalman filter, we introduced ‘inertia’ to keypoints, limiting the ef-

fect of large-scale spikes in acceleration characteristic of incorrect

keypoint classification. Finally we made the observation that, due

to the style of body positions found in climbing, in the case when

a climber’s hand or foot is occluded by some other part of their

body, that joint is very often stationary. By running the above fil-

ters as normal in the case of an occluded joint, we would see the

keypoint drift away from the climber, as its velocity from before it

had been occluded would continue to be applied to it. In the case

of an occluded joint, we instead just assume that the joint remains

stationary, which contributes a surprisingly large improvement to
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Figure 3. The effect of the combined filters. We show the x coor-

dinate of the raw keypoint and smoothed keypoint for a climber’s

left hand from a four second video segment

accuracy. Figure 3 shows the effectiveness of this approach on a

short segment of OpenPose output.

4.1.3 Projection to Board Space

In order to obtain a view-independent estimate of the climber’s

progress, we require a transformation T such that

[

xb

yb

]

= T

[

xi

yi

]

where

[

xb

yb

]

is a point in board space and

[

xi

yi

]

is a point in im-

age space. T may be non-linear, meaning that a two-dimensional

image is not sufficient for the projection. Using a depth cam-

era allows us to augment the image with depth information zi,

meaning we can express T as a perspective projection, where
[

xi yi zi 1
]T

are our world coordinates. Note that, while

this approach seems slightly backwards (in conventional terms we

are treating the 3D image as our object, and the board as our im-

age), we found that it worked very well in practice, as shown in

Figure 1. The user supplies the position in image space of a num-

ber of pre-determined calibration holds by clicking on the pixel

containing them in a video feed from the camera. These are then

augmented with the corresponding value in the depth map to give

the world space coordinates. T is then calculated by minimisation

using OpenCV [4], using the coordinates of the holds in board

space as the image space coordinates.

4.1.4 Tracking Algorithm

The tracking model provides a high-level view of the climber’s

progress in their route. It is implemented as a simple goal-based

loop, where a goal is the position of a hold in board space and

the joint which must go to it. When a new goal is selected, it

is announced verbally as described in Section 4.2.1. From that

point until the goal is achieved, a tone is played as described in

Section 4.2.2. If the climber falls off, or the final goal is achieved,

the loop exits.

Fall Detection: In general the problem of fall detection is very

complex [15] [6], however in climbing it is greatly simplified, as

while the climber is progressing, they will be travelling upwards

in board space (Moonboard routes never include any element of

down-climbing). The origin in board space is in the top left, there-

fore once the climber’s average velocity becomes positive in the y

axis, we can conclude that they have fallen off, and stop tracking

them.

Goal Completion: We use three thresholds to predict whether

a goal has been achieved. Tdist is a threshold for the distance from

the joint to the target hold, below which the joint is considered to

be situated on the hold. Tv is a threshold for the joint’s velocity,

below which the joint is considered to to be stationary. A keypoint

is considered to have achieved its goal if it is closer than Tdist

to the target hold, and has been stationary (according to Tv) for

Ttime frames. We followed a trial-and-error procedure to tune

the three thresholds. Precision is improved by reducing Tv and

increasing Tdist and Ttime, and recall is improved by doing the

reverse. We found that Tv = 6 pixels per frame, Ttime = 5
frames and Tdist = 20 pixels gave 100% recall, but around 70%

precision when evaluated on our small set of sample videos.

4.2. Directing the Climber

4.2.1 Verbal Feedback

Verbal feedback gives a high-level instruction to the user as to the

location of the next hold, and the hand or foot which needs to go

to it. In order to provide some reference, the position of the hold is

given in relation to the opposite joint to the one which is involved

in the move. For example a typical verbal instruction is something

like “A14 with your left hand. This is two right and horizontally

in a line with your right hand”. A14 refers to the grid position

of the hold in Moonboard space. Using the fixed reference point

(i.e. the stationary joint in the instruction) means that the climber

can use their own proprioception to begin to find the hold, instead

of relying solely on the grid position. The verbal feedback was

generated by the Python pyttxs library.

4.2.2 Tonal Feedback

The verbal feedback provides a rough estimate for where in space

the goal is, and the tone provides feedback by which the climber

can make the small adjustments needed to reach the goal precisely.

Two approaches for the tone were implemented. The first was a

‘linear tone’, whose pitch was linearly proportional to that of the

distance from the relevant joint to the target hold. The frequency

F is scaled between Fmax = 600Hz and Fmin = 200Hz, the

range of frequencies deemed comfortable by our test users, by the

following:

F = Fmax − s ∗

∣

∣

∣

∣

∣

∣

∣

∣

(

xtarget

ytarget

)

−

(

xjoint

yjoint

)
∣

∣

∣

∣

∣

∣

∣

∣

∗ (Fmax − Fmin)

(1)

where s is a constant to bring the distance into the same order

of magnitude as the frequency. Moves were generally no longer

than 15 units in board space (the length of a move is measured by

the distance to the target from the target of the last move which

involved the joint associated with that move). Solving equation 1

for s with target-joint distance 15 gives s ≈ 11. The second tone

was a ‘quadratic tone’, which provided more fine-grained changes

in pitch as the relevant joint moved closer to the target. The reason

for this was that users found it easy to move the joint to the general
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Figure 4. The times taken to complete a move in each trial, where

a blue spot is the time taken for one move and orange spots are

the means across that trial. We can see a clear improvement for

participants 1 and 2, and an average improvement

vicinity of the target, but found the linear tone too imprecise to be

able to make the small adjustments needed to complete the move.

The quadratic tone aimed to address this issue:

F = Fmin + s ∗
1

∣

∣

∣

∣

∣

∣

∣

∣

(

xtarget

ytarget

)

−

(

xjoint

yjoint

)
∣

∣

∣

∣

∣

∣

∣

∣

2 ∗ (Fmax −Fmin)

(2)

Experimentally, we found s = 0.1 to provide good respon-

siveness. The ‘angle’ (the balance between left and right channels

in a stereophonic system) of the tone was also controlled, in or-

der to communicate which side of the joint the target is on, by

θ =
s∗(xjoint−xtarget)

2
, where θ is the balance of amplitudes in

the left and right channels of a stereophonic system (θ = 1 for

entirely left, 0 for right, and 0.5 for equal balance), and s is a scale

factor to normalise xjoint − xtarget between -1 and 1. We found

s = 1
7

to be appropriate, as the horizontal length of a move rarely

exceeded 7.

The tone was generated by the C++ portaudio library,

which provides a cross-platform wrapper around the computer’s

sound card. We implemented a ROS node which constantly gener-

ates a sine wave, and responds to messages to control its frequency,

angle and amplitude.

5. Experimental Results

5.1. Evaluation Method

For various logistical reasons we were unable to evaluate the

system at a real climbing wall, instead simulating a climbing wall

by directing the user to arbitrary spots on a vertical wall (see

Section 5.5). The duration of the research did not allow for a

long-term longitudinal study to investigate the transition from con-

scious to subconscious following of the auditory feedback. In-

stead we sought to demonstrate immediate learnability by showing

that, over several sessions with the system, a user’s performance

in terms of the average time taken to achieve a goal showed sig-

nificant improvement. As well as being a good indicator of the

fluency with which a user is able to interpret the auditory feed-

back, the time taken to complete a move is pertinent to the case of

a climber, as if the user cannot interpret and follow the feedback

quickly and precisely, it is likely that they will just become tired

and fall off the wall. We created several ‘routes’ in the simulated

climbing wall designed to mimic the type of movements character-

istic of climbing. We then tested the system on a sample of three

participants over three trials each, recording the time to complete

each move.

5.2. Participants

The participants were 2 females and one male between 20 and

23 years of age. One participant had around 5 years of climb-

ing experience, and the other two were novice climbers. Inter-

estingly the experienced climber showed no significantly greater

aptitude for using the system than the two novices, suggesting that

the greater degree of physical coordination commonly exhibited

by experienced rock climbers is not necessary to become profi-

cient using the system. We did not have an opportunity to evaluate

the system with users who were totally unfamiliar with climbing,

however our study is able to suggest that the system could offer

an aid to experienced climbers who have lost their sight but would

like to continue to climb.

5.3. Quantitative Evaluation

We can see from Figure 4 that the direction of the difference

between means showed improvement between trial 1 (mean =

7.0s) and trial 3 (mean = 4.8s). The difference between means

was statistically significant as determined by one-way ANOVA

(F (1, 1) = 6.8, p = 0.01). The ANOVA shows that the im-

provement was statistically significant (p < 0.01). We conclude

that it is reasonable to expect the performance of a user of our sys-

tem to improve with experience, however the evidence available

to us is not sufficient to show that use of the system becomes truly

intuitive.

5.4. User Study

Participants were asked to complete a short questionnaire

following their final trial. The results are summarised below:
Question Mean

Answer

In your first trial, how easy did you find the system to use? 2

(1 =very difficult, 5 = very easy)

In your final trial, how easy did you find the system to use? 5

(1 = very difficult, 5 = very easy)

In your first trial, how intuitive did you find the system to

use?

3.33

(1 = very non-intuitive, 5 = very intuitive)

In your final trial, how intuitive did you find the system to

use?

3.67

(1 = very non-intuitive, 5 = very intuitive)

How important did you find the spoken instructions? 4.33

(1 = unnecessary, 5 = crucial)

How easy did you find it to interpret the spoken instruc-

tions?

3

(1 = very difficult, 5 = very easy)

How important did you find the tone? 4.67

(1 = unnecessary, 5 = crucial)

How easy did you find it to interpret the tone? 4.33

(1 = very difficult, 5 = very easy)
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Figure 5. Image space view of a Twister player, and the corresponding projection to Twister space. As in Figure 1, the hold circled in red

in the left image is the current goal. Note that the black patches represent blind spots in the depth camera.

1. The users reported that the system became easier to follow

as they became more familiar with it, which explains the im-

provement in the time taken to complete each move. They

did not find that it became more “intuitive”, though we did

not expect to see this effect over such a short trial.

2. Participants occasionally found the spoken feedback confus-

ing. We describe in Section 4.2.1 how target positions are

given with respect to the position of another hold which the

opposite limb is supposedly currently holding. This was nec-

essarily the case when the user was climbing, for example if

a move involved a left hand, we could safely assume that

the right hand would not have moved since it was last in-

volved in a move, otherwise the climber would have fallen

off. However the same assumption could not be made about

users in our simulated climbing wall, as there was no physi-

cal requirement to keep the hand or foot in position once the

move was over. The limb would often drift from its original

target, meaning that feedback with respect to this point was

sometimes misleading. It is expected that the reference posi-

tion would be more useful when the user of the system was a

climber, however we would have to conduct a more thorough

study to establish this.

5.4.1 Feedback Models

The above analysis is for the quadratic tone described in Section

4.2.2. Though we initially experimented with the linear tone, all

participants stated very early on that they found it extremely diffi-

cult to make small adjustments in order to achieve the target when

following the linear tone, and that the quadratic tone was much

easier to follow. For this reason, we adopted the quadratic tone for

the remainder of the study, and abandoned the linear tone.

5.4.2 Self-Occlusion Avoidance

One interesting observation that we made during the evaluation

process was that, as they became more familiar with the system,

users became more adept at dealing with errors in skeleton track-

ing. In cases where a joint could not be found in the image, possi-

bly due to self-occlusion, the joint would simply remain stationary

in the position in which it was last detected. This manifested to the

user as a constant tone, regardless of how much they moved the

limb being tracked. The participants all learned to recognise this

symptom, and were observed to experiment with different body

positions in order to allow the lost joint to be found again.

5.5. Applying to Twister

We also experimented with applying our system to another

whole-body reaching task, namely the popular game Twister. We

were able to adapt the projection model to Twister very easily, pro-

viding as calibration points the centres of each spot on the Twister

mat, and performing the calibration in the same way as for the

Moonboard. As well as showing that our system is robust enough

to handle a variety of complex reaching tasks, this extension pro-

vided the ‘simulated climbing wall’ described in Section 5.1. We

achieved this by hanging the Twister mat on a wall, and creating

routes to mimic the type of body positions commonly exhibited by

climbers. Figure 5 shows the system being used in this way.

6. Conclusion

The presented system has been shown to be an effective ap-

proach to assisting blind users in whole-body reaching tasks. The

view-independent model of the climber’s progress provides a ro-

bust mechanism to reason about body pose in the complex domain

of rock climbing. By showing a statistically significant improve-

ment in user performance over a small period of time we have

shown that users can become familiar with the system with rela-

tively little training. Though not evaluated at a real climbing wall,

we believe that we simulated a climbing wall closely enough to

present our system as a viable proof-of-concept in a climbing en-

vironment. We would be extremely interested to investigate the

system’s effectiveness at a real climbing wall over a much longer

period of time and with a larger number of participants to deter-
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mine whether it is possible for users to begin to use it truly intu-

itively.

Another interesting extension would be to augment the sensor

model of the Kalman filter with data from wearable devices such

as accelerometers on the wrists and ankles of the climber. We

believe this would be an effective way to mitigate the issue of self-

occlusion of the climbers joints. Instead of assuming that occluded

joints remain stationary, which worked reasonably well but did

cause issues during user testing, acceleration information could be

used to further inform the measurement update step in the case that

positional information was not available.
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