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Abstract

Gas leak inspection and gas leak quantification are

nowadays of high relevance within the oil and gas indus-

try as well as in many other industrial sectors. This has

been driven by safety-related issues, economic losses and

the considerable climate impact caused by such unwanted

gas releases. Due to the latter, the efforts for developing

new and more reliable measurement techniques for detect-

ing and quantifying greenhouse gases such as methane have

increased in the recent years. In this work, a stereo camera

system based on optical gas imaging cameras is used for

computing dense 3D velocity information, i.e. scene flow,

of escaping gas structures. Here, the optical flow, the dis-

parity and the disparity change in likely gas image regions

are computed utilizing classical variational methods. The

accuracy of the applied methods and their applicability un-

der real conditions in a biogas plant are characterized and

tested. The results show that the recovered 3D gas velocity

field per camera frame approaches the average 3D velo-

city field of the measured gas structure. The accuracy of the

used method is affected, among others, when the imaged gas

structures exhibit a low contrast.

1. Introduction

Infrared (IR) cameras for gas visualization, also known

as optical gas imaging (OGI) cameras, are used within in-

dustrial environments such as refineries, biogas plants and

landfills, for spotting gas emissions without using active in-

frared sources. In the last years there have been efforts to

enhance the capabilities of such devices for gas leak local-

ization and quantification tasks with the help of image pro-

cessing and data fusion techniques [4, 18, 21, 30]. The need

for more accurate, effective and safe methods for gas leak

detection and quantification has been motivated, on the one

hand, by the international efforts for reducing the climate

effects of gas emissions from the industry and, on the other

hand, by the economic losses and safety problems caused

by gas leaks. In this regard, the estimation of gas veloci-

ties using gas images has gained special attention, since this

quantity is required for computing the emission flow rate.

Existing OGI-based methods for gas leak quantification

estimate the gas velocity by computing the projected gas

velocity in the images of a single OGI camera, i.e. by com-

puting the optical flow in differential images [4, 6]. Here,

the image plane and the main flow field direction are as-

sumed to be parallel. However, this requirement is often vi-

olated due to the stochastic nature of gas flows in real sce-

narios, where external factors such as wind speed or sud-

den temperature changes occur. This leads to gas velocity

estimates with a higher uncertainty when measuring under

uncontrolled measurement conditions. A more robust and

hence more reliable gas velocity estimation can be achieved

by computing the 3D gas velocity field with a stereo gas

camera system. The estimation of 3D velocity fields is also

known as the scene flow problem and has been addressed

in literature mainly for objects that can be measured in the

visible spectrum [14, 26].

Due to the stochastic nature of gas flows under real con-

ditions and the intrinsic characteristics of infrared cameras

subject to their working principle, the scene flow problem

for OGI cameras represents several challenges compared to

the scene flow problem in the visual range. First of all, pho-

tometric consistency in the visible range is imposed in many

computer vision problems, such as optical flow and stereo

disparity, by assuming Lambertian object surfaces. While

this assumption holds mainly for opaque objects in the vis-

ible range, it is violated when imaging semi-transparent or

highly reflecting surfaces. In the case of semi-transparent

fluids, photometric consistency can be assumed for predom-

inant incompressible fluid flows or particle-seeded flows

generated under controlled measurement conditions for par-

ticle image velocimetry (PIV) [13]. In that sense, the driving

question for binocular scene flow computation in stereo gas

images under real conditions relies on the required assump-
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tions and the reliability of the computed data. Furthermore,

spatial shifts in the images, also called jitter, originated by

the integrated camera’s cooling system, image noise, geo-

metric and radiometric differences, temporal shifts between

the two OGI cameras used and the influence of external fac-

tors such as wind speed, moving background objects and

self occlusions [17] make the scene flow computation for

gases more difficult.

In this work, a framework based on variational me-

thods for estimating scene flow of gas emissions with two

OGI cameras arranged in stereo configuration is proposed

and evaluated. The practical use of the proposed frame-

work focuses, among others, on the inspection and detection

of unwanted gas releases in industrial environments, e.g.

methane gas leaks within the oil and gas industry as well

as renewables. Optical flow, disparity, disparity change and

likely gas image regions are computed and used for com-

puting the 3D gas flow fields. Special attention is given to

the physical interpretation, accuracy and reliability of the

computed information with the proposed method. For that,

synthetic data and data acquired under real conditions are

used.

2. Related Work

The problem of estimating 3D velocity fields from im-

ages is also known as the scene flow problem and has been

addressed widely in the computer vision literature mainly

for visible objects in different application fields such as au-

tonomous driving, robotics and surveillance. An overview

of the methods proposed to compute scene flow can be

found in [14]. In general, scene flow approaches rely on

geometric and photometric constraints assumed when using

one or multiple views of the scene. For the case of binocular

scene flow, the object’s depth, depth change and motion has

to be computed jointly or in a decoupled way by using the

so-called stereokinematic constraints [15]. With these, 3D

velocity vectors associated to the objects in the scene can

be calculated pixelwise for each time frame. The fact that

visible objects are assumed to be opaque, textured and may

exhibit a rigid motion has given the chance to propose more

accurate binocular scene flow approaches that exploit these

assumptions [24].

Despite the progress in the last years for computing

scene flow of visible objects, no applications on obtaining

scene flow of gas structures under real conditions has been

reported yet. In [28] a method for computing depth infor-

mation of refractive flows such as hot air by using a stereo

camera system and optical-flow-based features called re-

fraction wiggles. However, the computed flow velocity is

constrained to the image plane. Similarly, in [17] depth in-

formation of methane flows is obtained from a stereo OGI

camera system. Here, spatio-temporal intensity changes in

gas regions depicted in differential images were used for

computing the depth information but no information regard-

ing the velocity of the gas structures was given.

Based on the fact that gases and fluids in general are

semi-transparent structures, tomographic approaches have

been widely used in order to reconstruct their 3D motion

and density distribution over time under controlled condi-

tions. For this, multiple views of the fluid have to be taken

simultaneously. In [12], for instance, a framework for com-

puting 3D flow fields from multiple views of a particle-

seeded volume under laboratory conditions is proposed.

The fact that multiple views of the flow are available and

that particle tracers are used, enables the use of tomographic

approaches and enhances the accuracy of the fluid motion

estimation and its 3D reconstruction. Nevertheless, these

measurement conditions can be achieved mainly in elabo-

rated laboratory setups, which reduces the applicability of

the methods under real conditions. Watremez et al. [25] pro-

posed a measurement setup based on 3 infrared cameras and

tomographic methods for reconstructing the concentration

distribution over time of methane emissions in industrial en-

vironments. However, no 3D gas velocity information was

computed. Additionally, the cameras used have to be placed

around the measured gas, which constrains the portability

and applicability of the system.

Dynamic texture detection and 3D fire flame reconstruc-

tion are related applications to this work as well. In [1], a

motion competition approach was proposed for segmenting

dynamic image textures such as smoke or steam. Here, the

segmented regions are characterized by the photometric as-

sumptions used for computing the optical flow. In [27, 29],

feature-based approaches for detecting smoke in visual im-

ages are presented. Block features such as local binary pat-

terns or edge orientation histograms are used. Nevertheless,

all these methods focus on the segmentation of the dynamic

textures rather than on the accurate estimation of flow velo-

city. In [10, 19], stereo camera systems are used for gaining

spatial information from fire flames. In these approaches,

the fire flames are considered to be self emitting objects,

e.g. opaque objects which surface can be reconstructed with

a stereo camera system. Moreover, no 3D velocity informa-

tion of the flames is recovered from the stereo images.

3. Working Principle

The intensity values of an OGI camera image I(x, t) at

the pixel position x = (x, y) and time t are proportional to

the radiant power received by the detector elements of the

camera. Assuming the scene background as a black body

(BB) and a fully transparent atmosphere within the spectral

range of the camera, this relationship can be expressed as

follows:

I(x, t) ∝ ΦBB
bg (x, t)τg(x, t) + ΦBB

g (x, t)(1− τg(x, t)) (1)
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where ΦBB
bg and ΦBB

g are the black body radiant power of the

background (bg) and the gas structure (g) respectively and

τg is the gas transmittance detected by the detector element

at the position x and time t. The value of τg is described

by the Lambert-Beer Law, i.e. τg(x, t) = e−αgc̄g(x,t)lg(x,t),

and depends on the absorption coefficient of the gas αg

and its average concentration c̄g over the measurement path

length lg. Under constant gas and background temperature

and measuring with a fixed camera, differential images Idiff

can be used for increasing the contrast of the gas wrt. its

background:

I
diff(x, t) ∝

(

ΦBB
bg (x, t)− ΦBB

g (x, t)
)

τ
diff
g (x, t) (2)

with τ diff
g (x, t) = τg(x, t) − τg(x, t + 1). Several conclu-

sions can be drawn from (2). First, the intensity changes ob-

served in Idiff are proportional to the temperature difference

between the gas and the background and created by gas con-

centration and gas expansion changes arising from mixing

processes with its surroundings. Secondly, stereo differen-

tial images can be used for recovering spatial information

from gas structures when τ diff
g is similar, i.e. photometri-

cally consistent, in the field of view (FOV) of both cameras

[17]. Here, it is assumed that photometrically consistent gas

regions can be observed in consecutive differential images

as well as in stereo differential images as long as the gas

velocity can be sampled with the frame rate of the cam-

era. Based on this, 3D gas velocity fields can be computed

pixelwise with stereo differential gas images by combining

the optical flow and the stereo matching problem under the

photometric consistency assumption.

Consider a non-stationary gas structure with velocity Vg

observed simultaneously by two fixed OGI cameras. The

optical centers of the left (L) and right (R) camera are placed

at OL and OR, respectively (see Figure 1). The horizontal

distance between the cameras is defined by the baseline b.
Considering three different time instants t0 = t, t1 = t+ 1
and t2 = t+2, two pairs of consecutive differential images,

i.e. Idiff
L/R

at t0 and t1, can be created. Corresponding spatio-

temporal gas concentration and flow changes that emerge

in differential images can be described by using following

assumptions [26]:

a. I
diff
R (xL + pL, t0)− I

diff
L (xL, t0)

︸ ︷︷ ︸

E1

= 0

b. I
diff
L (xL +wL, t1)− I

diff
L (xL, t0)

︸ ︷︷ ︸

E2

= 0

c. I
diff
R (xL + pL + p

′

L +wL, t1)− I
diff
R (xL + pL, t0)

︸ ︷︷ ︸

E3

= 0

d. I
diff
R (xL + pL + p

′

L +wL, t1)− I
diff
L (xL +wL, t1)

︸ ︷︷ ︸

E4

= 0

(3)

Here, pL(xL) = (dL(xL), 0) is the disparity field,

dL(xL) is the disparity, p′
L(xL) = (d′L(xL), 0) is the change

Vgt0 Vgt1 Vgt2

XL

YL

ZL

OL

Image Plane
xL

yL

xL xL +wL

XR

YR

ZR

OR

b

xR

yR

xR

xR +wR

Figure 1. Measurement setup for computing 3D gas velocity fields.

of the disparity field wrt. the next frame, d′L(xL) the dispa-

rity change and wL(xL) = (uL(xL), vL(xL)) is the optical

flow in the left camera. Notice also that xR = xL + pL in

Figure 1. The data term E1 relates to the epipolar constraint

in stereo images, E2 and E3 relate to the optical flow con-

straint in each camera and E4 describes the disparity flow

constraint. The computation of wL, pL and p′
L can be car-

ried out either separately as proposed in [20] or jointly. For

the joint estimation of wL, pL and p′
L, the constraints ex-

pressed in (3) are combined partly or completely within an

optimization framework [8, 26].

With wL, pL and p′
L a pixelwise 3D gas velocity vector

field V (xL) in ms−1 wrt. OL can be obtained as follows:





VX(xL)
VY (xL)
VZ(xL)





︸ ︷︷ ︸

V (xL)

= f · b ·







xL−x0+uL(xL)
dL(xL)+d′

L
(xL)

− xL−x0
dL(xL)

yL−y0+vL(xL)
dL(xL)+d′

L
(xL)

− yL−y0
dL(xL)

s

dL(xL)+d′
L
(xL)

− s
dL(xL)







(4)

where (x0, y0) is the principal point of the left image in px,

s is the camera constant in px, b the stereo baseline in m
and f the camera frame rate in Hz. It is worth mentioning

that the computed 3D velocity field corresponds to the path-

averaged and concentration-weighted 3D velocity field of

the measured gas structure. This means that V belongs to a

virtual surface that is placed in the average 3D position of

the observed gas [17].

In general, just a region of the 3D velocity field calcu-

lated with (4) is of interest for post-processing tasks such as

mean gas velocity estimation or flow rate estimation. The

gas detection limit of OGI cameras, also called noise equiv-

alent concentration length (NECL), given in ppmm, is re-

lated to a gas boundary in the image, where the gas signal

cannot be differentiated from the camera noise anymore. An

image segmentation approach can be applied to compute

this boundary.

4. Measurement System and Methods

In this application, the measurement system consists of

two OGI cameras, arranged with parallel image planes,

which work within the spectral range of 3.2 - 3.4 µm. In this
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Stereo image acquisition

Pre-Processing

Optical flow (wL) computation

Disparity and disparity
change (pL, p′

L) computation

Image segmenta-
tion (gas region Ωg)

Spatio-temporal informa-
tion (V ) computation

Figure 2. Processing steps for estimating spatio-temporal informa-

tion of gas flows from a stereo OGI camera system.

particular range, volatile organic compounds (VOC) such

as methane (CH4) or butane (C4H10) absorb part of the in-

coming infrared radiation. The used images have a size of

m× n = 240× 320 px, the camera constant is s = 780 px
and the camera’s frame rate is f = 30Hz. The baseline b of

the stereo setup is variable and is set between 0.2 - 0.65 m.

In order to compute spatio-temporal information of the

measured gas structures by using (4), the acquired images

have to undergo a pipeline of processing steps (see Figure 2

and following sections). Here, it is proposed to compute the

optical flow, disparity and disparity change fields by using

classical variational methods together with a multi-scale op-

timization approach. In the first step, wL is computed alone.

In a second step, dL and d′
L are computed jointly using wL.

Additionally, image regions with likely gas information are

extracted for further evaluation by using a variational seg-

mentation approach based on level sets.

The decoupled computation of the optical flow from the

disparities is motivated by several reasons. First, it is as-

sumed that disparities tend to be larger than the optical flow.

Therefore, it is expected that less scaled image representa-

tions are needed for computing the optical flow. Since varia-

tional methods with multi-scale strategy exhibit larger com-

putation errors when dealing with small image structures

that exhibit larger motions [23], the number of scaled rep-

resentations used plays an important role. Secondly, decou-

pling the computation of the optical flow from the disparity

and disparity changes reduces the computational complex-

ity of the algorithms and hence increases the efficiency of

the data processing framework [15].

4.1. Pre-Processing Step

The calibration of the stereo camera system enhances the

accuracy of the computed data due to the correction of sys-

tematic errors that the system may exhibit. In this applica-

tion geometric and radiometric discrepancies between the

cameras are corrected by estimating the intrinsic and extrin-

sic camera parameters as well as their radiometric charac-

teristic curves as described in [16]. Temporal shifts between

the camera images cannot be fully avoided in the current

setup since the used OGI cameras cannot be triggered si-

multaneously. Nevertheless, image timestamps are used for

evaluating stereo images with small time shifts.

(a) (b)
Figure 3. Corresponding images with intensity values along an im-

age row, (a) raw and (b) differential. The effect of the used smooth-

ing filter in the differential image is depicted as well (black curve).

The rectified images are used to create differential im-

ages (see Fig. 3) as described in (2). These are normalized

to [0, 1]. Due to the fact that OGI cameras use a cooling en-

gine to guarantee the necessary detector sensitivity for gas

detection, small spatial shifts in sub-pixel range or jitter can

be observed in the differential images. Here, the jitter effect

on differential gas images is reduced by image registration

[21].

In a final pre-processing step, the stochastic spatial noise

in the differential images is reduced. Several tests have

shown that energy-based denoising approaches are more

appropriate for preserving gas structures in differential im-

ages while reducing the spatial noise. Figure 3b shows the

filtered information from an image row (red line) with an

energy-based denoising filter with Sobolev prior [11].

4.2. Optical Flow Computation

The projected gas motion wL in the differential gas im-

ages of the left OGI camera is computed by using a classical

variational method and the numerical approach proposed by

Brox et al. in [3], where the following objective function is

minimized for a given image domain Ω by using a multi-

scale approach:

EOF(wL) =

∫

Ω

ψ
(
|E2|

2)+ βψ
(
|∇E2|

2)+ αψ (SOF) dxL (5)

with SOF = |∇uL|2 + |∇vL|2. The first term relates to the

brightness constancy assumption for differential gas images

(see (3a)), the second term with ∇ = (∂/∂x, ∂/∂y) ac-

counts for spatial gradient similarities between the images

and the third term imposes smoothness on the 2D flow field

wL. The factors α and β weight the terms for the smooth-

ness constraint and the gradient constancy, respectively, and

the function ψ(r2) =
√
r2 + ǫ2 with ǫ = 0.001 reduces the

influence of outliers during the minimization.

4.3. Disparity and Scene Flow Computation

The computation of the disparity and the disparity

change per stereo image pair wrt. the left image is carried

177



out jointly by minimizing the following objective function:

ESF(pL,p
′

L) =

∫

Ω

γ1ψ
(
|∇dL|

2)+ γ2ψ
(∣
∣∇d′L

∣
∣2
)

dxL

+

∫

Ω

ψ
(
|E1|

2)+ ψ
(
|E3|

2)+ ψ
(
|E4|

2)
dxL

(6)

where γ1 and γ2 penalize the smoothness of the disparity

field and disparity change field, respectively. The objective

function (6) is minimized in a similar fashion as for the op-

tical flow. It can be observed that ESF only depends on pL

and p′
L since wL was computed previously. In order to avoid

local minima during the minimization of (6), a minimum

disparity d0 has to be given as initialization parameter.

The quality of the computed optical flow, disparities and

disparity changes can be quantified pixelwise by evaluating

the assumptions from (6) and the imposed smoothness con-

straint on the disparity and the disparity change:

USF(xL) = γ1ψ
(
|∇dL|

2)+ γ2ψ
(∣
∣∇d′L

∣
∣2
)

+ψ
(
|E1|

2)+ ψ
(
|E3|

2)+ ψ
(
|E4|

2)
(7)

The values of USF(xL) are low or close to zero when the

stereokinematic assumptions hold and are directly related to

the uncertainty of the computed data. However, their range

may vary depending on the measurement scene and the im-

age intensity values. Additionally, homogeneous image re-

gions or regions without texture information may exhibit

lower USF(xL) values than image regions with gas informa-

tion. To avoid the effect of untextured regions on the quality

measure, the coefficient cUSF
is computed per frame over a

defined region Ωg as follows:

cUSF
= |Ωg|

−1
∑

Ωg

e
−USF(xL)

(8)

where |Ωg| is the number of pixels in Ωg. The image region

Ωg is described as a region of interest (ROI), in which gas

structures are present, and its computation is described in

the next section.

4.4. Image Segmentation with Gas Information

The approaches presented in sections 4.2 and 4.3 allow

obtaining pixelwise information over the image domain Ω.

In practice, captured gas structures do not cover the entire

FOV of the OGI cameras and hence just a part of the dif-

ferential gas image is of interest. The segmentation of the

differential gas images is not a trivial problem since ex-

ternal moving objects and sudden radiation or temperature

changes in the measured scene may cause misleading re-

sults. For the sake of simplicity and for further evaluation of

the computed spatio-temporal information about the mea-

sured gas structures, it is assumed that motion and image

intensity distribution are sufficient features for separating

gas segments from the image background. Based on this,

ΩgΩg

ΩbgΩbg

(a)

Image intensity

F
re

q
.

|w|

lo
g

F
re

q
.

(b)
Figure 4. (a) Segmentation of differential image with the used

approach and optical flow (magenta). (b) Image intensity (top),

i.e. Idiff and logarithm of normed optical flow (bottom), i.e. |w|,
distribution in image regions Ωg (black) and Ωbg (red).

the following objective function is used for segmenting dif-

ferential gas images in two regions Ω = Ωg ∪ Ωbg:

EROI(Φ(xL)) = ν

∫

Ω

|∇H(Φ)|dxL −

∫

Ω

H(Φ) log qdiff
g dxL

−

∫

Ω

(1−H(Φ)) log qdiff
bg dxL

(9)

where Ωg ∩ Ωbg = ∅, qdiff
i (Idiff, u, v) = qi(I

diff)qi(u)qi(v)
for i ∈ {g, bg}, H is a smoothed version of the Heavi-

side function and Φ(xL) is an embedding function, which

is positive within Ωg and negative within Ωbg. qi(k) is the

probability density function that models the distribution of

image intensities Idiff and horizontal u and vertical motions

v within the region indexed by i. Here, qi is assumed as

the normal distribution (see Figure 4). As in the previous

sections, EROI is minimized by using gradient descent and

a multi-scale strategy. The use of more sophisticated ap-

proaches for segmenting objects such as machine-learning-

based algorithms are out of the scope of this work.

5. Experiments

In order to quantify the accuracy and reliability of the

used approach compared to alternative methods, several

tests were carried out by using synthetic and real data. Sev-

eral field measurements were carried out and evaluated for

assessing the applicability of the system.

In a first step, suitable parameters α and β for the op-

tical flow computation were found by using benchmark data

from the Middlebury dataset [2] (see Table 1). The avera-

ged Euclidean distance, also called 2D averaged endpoint

error (AEE), between the computed and the ground truth

optical flow was used as error metric. Table 1 shows that

α has a more significant effect on the accuracy of the op-

tical flow than β for the tested dataset. It is also observed

that the used method exhibits a slightly larger AEE com-

pared to other optical flow strategies such as Farnebäck [5]

or FlowNet 3.0 with pre-trained weights [9]. Nevertheless,
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Table 1. Optical flow’s AEE in px for used method (Brox) and

for different parameters α and β in three benchmark scenes:

(Dimetrodon, Hydrangea, Urban2) [2]. Results for the Farnebäck

(Fbck) and FlowNet 3.0 (FN3) methods are also presented.
Brox

Fbck FN3
α β = 1.0 β = 0.5 β = 0.01

0.5 (0.7, 0.7, 7.0) (0.8, 1.3, 7.3) (0.9, 1.6, 7.5)
(0.3,

0.2,

0.9)

(0.2,

0.3,

0.4)

0.1 (0.4, 0.5, 1.4) (0.4, 0.5, 1.1) (0.4, 0.5, 1.1)

0.05 (0.3, 0.5, 1.2) (0.3, 0.5, 1.1) (0.4, 0.5, 1.1)

0.01 (0.4, 0.8, 1.5) (0.4, 0.7, 1.2) (0.4, 0.5, 1.1)

(a) (b) (c) (d)
Figure 5. Color encoded optical flow computation on real differ-

ential gas images with different methods. (a) Differential image,

optical flow: (b) Brox, (c) Farnebäck and (d) FlowNet 3.0 with

pre-trained weights .

previous tests on real differential images have shown that

the used method is more suitable for differential gas images

due to its robustness against image noise (see Fig. 5). Tak-

ing the previous tests into account, the parameters γ1 and

γ2, are set to be within a range of the same order of mag-

nitude than α and β. For the further experiments, α, β, γ1
and γ2 were set to 0.05, 0.1, 0.05 and 0.5 respectively. The

parameter ν for segmenting the image was set empirically

through previous tests to 0.5 for all experiments.

5.1. Synthetic Data

A simulation environment for generating synthetic stereo

images of dynamic fluids was developed for evaluating the

reliability of the computed optical flow, 3D gas position

and the 3D gas velocity under ideal conditions (i.e. no lens

distortion, no jitter, no radiometric differences between the

cameras, zero spatial noise and stationary background). The

algorithm proposed in [22] was used for generating three

different dynamic flows and hence three different stereo dif-

ferential image sequences (S) of an incompressible buoyant

fluid within a volume of 100×100×100 voxels, with voxel

size of 4mm3, for 11 time steps of 1 ms and flow velocities

within the range [0, 6.5] m s−1. Concentration and 3D velo-

city information per voxel were obtained at each time step.

A volume ray casting approach and pre-defined geometric

parameters of the stereo camera system (camera constant

s = 780 px, baseline b = 0.2 m) were used for projecting

the path-averaged and concentration-weighted 3D gas ve-

locities V ∗(x) and 3D gas positions into stereo images. The

image size was set to 320× 240 px. Considering a distance

between gas volume and stereo camera system of about 2m,

optical flows up to 2.5 px per frame are expected.

The differences between the three image sequences are

shown in Table 2. The magnitude of the mean 3D flow

Table 2. Characteristic information of used synthetic sequences.

S
|V ∗

avg| /

mms−1
(θ∗

avgX
, θ∗

avgY
, θ∗

avgZ
) / ◦ σ|V ∗(x)|

/ mms−1 N / px

1 3265.3 (86.7, 175.97, 92.26) 1382.0 8088.2

2 2667.3 (71.0, 161.0, 89.3) 972.8 7491.4

3 2683.8 (101.3, 160.4, 105.8) 1248.7 8023.3

velocity per frame |V ∗
avg|, the directional angles1 of the

mean 3D flow per frame, i.e. θ∗avgX
, θ∗avgY

and θ∗avgZ
, the

standard deviation of the pixelwise velocity magnitude per

frame σ|V ∗(x)| and the number of pixels N occupied by

the gas within the left image were averaged over all se-

quence frames for characterizing each image sequence. The

orientation angle can be considered as the main difference.

Nevertheless the second sequence differs the most from the

other two.

After generating stereo differential images for each se-

quence, a 3D velocity field V (x) was computed per frame

with the approach proposed in section 4.3. The decoupled

method for scene flow computation presented in [20] was

also used for comparing the results. For the latter, the op-

tical flow methods after Brox and Farnebäck together with

the semi-global matching method (SGM) [7] for disparity

computation were considered. Following evaluation metrics

were used for assessing the results:

RMVE = 100% ·
∣
∣
∣
|V ∗

avg|−|Vavg|

|V ∗
avg|

∣
∣
∣ 3D AEE =

∑

Ωg
|V ∗−V |

|Ωg|

AEMV = cos−1
(

V
∗

avg·Vavg

|V ∗
avg||Vavg|

)

3D AAE =

∑

Ωg
cos−1

(

V
∗·V

|V ∗||V |

)

|Ωg|

(10)

where RMVE is the absolute value of the relative mean ve-

locity error per frame in %, AEMV is the angular error of

mean velocity per frame in px, 3D AEE is the 3D aver-

age endpoint error per frame in px and 3D AAE is the 3D

averaged angular error per frame in ◦. For the 3D AEE and

3D AAE, the 3D flow field between three consecutive syn-

thetic raw frames was used as reference V ∗(x). Addition-

ally, the distribution of the computed 3D flow field compo-

nents per frame, i.e. VX(x), VY (x) and VZ(x), was com-

pared with the distribution of the reference flow field com-

ponents by calculating the corresponding correlation factor

r̄SFX/Y/Z
between their histograms. For that, the histogram

value range was set to [0,max (V ∗
X/Y/Zi

)] and divided in 50

bins for each frame i. The performance of the segmentation

approach for gas structures was tested as well. For that, the

ratio (SA) between the segmented image region with likely

gas information and the reference gas region was used.

As depicted in Table 3, a smaller RMVE can be achieved

with the proposed approach compared to the alternative me-

thods tested. In addition, the average magnitude and direc-

tion of the measured flow field per frame was computed

1Directional angles are defined as the inverse cosine of each normalized

vector component.
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Table 3. Assessment of computed 3D flow field of synthetic gas images. The values of the error metrics were averaged over whole sequence.

s
Proposed Method SGM+Brox SGM+Fbck

RMVE / % AEMV / ◦ 3D AEE / mms−1 3D AAE / ◦ cU SF SA / % (r̄SFX
, r̄SFY

, r̄SFZ
) RMVE / % RMVE / %

1 6.56 ± 5.65 12.20 ± 5.41 72.00 33.79 0.92 58.31 (0.68, 0.79, 0.73) 16.06 ± 5.51 36.07 ± 2.37

2 15.35 ± 4.52 11.61 ± 5.98 66.78 30.84 0.91 67.57 (0.56, 0.74, 0.56) 35.31 ± 8.05 46.74 ± 6.25

3 9.60 ± 4.30 11.59 ± 5.35 72.43 34.09 0.90 71.40 (0.44, 0.73, 1.00) 47.10 ± 14.70 65.81 ± 9.30

(a)

XL

YL

OL

(b)
Figure 6. Synthetic differential image 3D gas flow field for third

dataset with reference (red) and computed flow field (dark).

with a relative error up to 10 % for the first and third se-

quence. The RMVE for the second sequence is relatively

large (up to 15 %). Considering that the velocities in the

reference 3D flow field of the second sequence vary less

than in the other sequences, less texture variations in the

differential images are produced. Untextured image regions

affect directly the optical flow and disparity computation

and therefore lead to an increased error.

As the calculated 3D AEE, 3D AAE, rSF and figure 6b

show, the 3D gas velocity fields recovered with stereo dif-

ferential images agree with the dominant gas velocity and

direction of the reference. However, small flow variations

cannot be reconstructed. This can be observed through the

large angle errors in the pixelwise assessment and the rela-

tively low correlation factor between the magnitudes of the

two fields.

5.2. Field Measurements

The performance of the measurement system and the

proposed method for computing 3D gas velocity fields was

evaluated under real measurement conditions in a biogas fa-

cility (see Figure 7). For this, methane was released from a

XL

YL

ZL

OL

Nozzle

3D Anemometer

�

�

(a)

Idiff
R

Idiff
L

(b)
Figure 7. Field measurement setup. (a) Equipment used and (b)

exemplary stereo differential image after pre-processing step.

nozzle at a distance of approx. 6m away from the stereo

OGI camera system with a baseline of b = 0.65 m. Addi-

tionally, a 3D ultrasonic anemometer was placed next to the

nozzle for measuring the wind speed and direction with a

sampling rate of 5Hz. Here, it is assumed that the methane

flow field captured by the camera system is dominated by

the wind speed and direction. Moving objects in the back-

ground were avoided during the experiment for enhancing

the image segmentation. It is worth mentioning that mea-

sured wind speed with the anemometer cannot be taken di-

rectly as a reference due to the placement of the anemome-

ter wrt. the nozzle.

Table 4 shows the mean velocity vector Vavg and the

mean directional angles (θavgX
, θavgY

, θavgZ
) per frame

measured with the system for three image sequences

(S), each consisting of 500 frames. The image regions

considered for evaluating the mean velocity vector were

extracted by using the proposed segmentation method.

The mean wind velocity |V ∗
avg| and mean wind direc-

tion (θ∗avgX
, θ∗avgY

, θ∗avgZ
) per sequence measured with the

anemometer are presented as well. First of all, it can be

observed that the magnitude of |Vavg| is underestimated

(see Table 4) when comparing with |V ∗
avg|. Nevertheless,

the joint computation of the disparity and disparity changes

in stereo differential images leads to smoother results with

cUSF
≈ 0.8 within the segmented image region with gas in-

formation when comparing with the decoupled scene flow

method SGM+Brox (see Figure 8). It is also observed that

the computed velocity and direction values approach the

wind speed and direction over time. Due to the discrepancy

regarding the sampling rates between the cameras and the

anemometer, sudden wind velocity and direction changes

can be seen in the measured velocities with the camera sys-

tem (see Figure 8a). The measurement uncertainty of the

proposed system regarding the obtained 3D velocity fields

is subject to systematic geometric, radiometric and tempo-

ral inaccuracies of the cameras. Besides this, the discrep-

ancy between the computed mean velocities and the mea-

sured wind speed during the experiments is mainly caused

by inaccuracies in the optical flow computation in gas re-

gions with poor contrast, segmented image regions with no

gas information and the spatial offset between the nozzle

and the anemometer.
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Table 4. Measurement results from field experiments.

s

Gas (stereo OGI camera system)
Wind (3D anemometer)

Proposed method SGM+Brox

|Vavg| / ms−1 (θavgX
, θavgY

, θavgZ
) / ◦ cU SF |Vavg| / ms−1 (θavgX

, θavgY
, θavgZ

) / ◦ |V ∗
avg| / ms−1 (θ∗

avgX
, θ∗

avgY
, θ∗

avgZ
) / ◦

1 0.73 ± 0.25 (87.5, 74.4, 81.2) 0.84 0.80 ± 0.35 (98.02, 76.09, 75.25) 1.20 ± 0.45 (87.53, 82.27, 117.98)

2 0.82 ± 0.33 (115.09, 85.72, 123.45) 0.83 1.12 ± 4.72 (126.06, 86.98, 111.34) 1.52 ± 0.5 (112.24, 94.06, 154.30)

3 0.80 ± 0.33 (115.27, 72.24, 131.25) 0.82 0.76 ± 0.33 (123.61, 74.90, 92.24) 0.98 ± 0.5 (106.39, 84.59, 123.89)
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Figure 8. Results obtained in field experiments for image sequence 3 wrt. (a) gas velocity magnitude and (b) directional angles over time.

6. Discussion

The application of variational methods for computing the

scene flow in stereo differential images with gas informa-

tion has shown to be adequate but constrained by photomet-

ric and geometric assumptions. In this regard, it has been

observed that mean 3D velocity profiles can be computed

with the proposed approach and can be used for gas inspec-

tion applications where the main flow characteristics of the

escaping gas are of importance. The tests on synthetic data

have shown that small variations in the 3D flow or in the

concentration distribution cannot be measured in a reliable

way with the system. When building differential images,

small spatio-temporal gas concentration changes do not cre-

ate a significant change in the measured radiant power cap-

tured by the camera detectors. For this reason, laminar gas

flows cannot be fully measured with this approach. Untex-

tured gas regions can also occur when the thermal contrast

between the observed gas and its background is low or the

gas concentration along the measurement path is reduced.

Besides the photometric assumptions needed for com-

puting the scene flow in differential gas images, it has also

been shown that the joint computation of the disparity and

the disparity change reduces the variance of the computed

3D velocity fields. In this regard, the smoothness constraints

used for computing wL, pL, and p′
L are suitable for gas tex-

tures due to the natural smooth gas concentration transitions

between the gas boundaries and the image background. It

is important to mention that the weighting parameters α, β,

γ1/2 and ν have an effect on the accuracy of the method and

suitable values may depend on the measurement conditions.

As for the scene flow computation, the performance of

the segmentation approach is affected by the contrast of

the gas textures in the differential images. Gas regions with

low contrast are likely to be labeled as background. On the

other hand, moving objects in the scene such as flies, trees

or clouds may be assigned to the gas regions due to their

movement. These outliers have a direct effect on the accu-

racy of the estimated mean gas velocity and mean gas di-

rection. Further gas descriptors such as motion parameters

could be used for enhancing the performance of the image

segmentation.

7. Conclusions

In this work, the computation of 3D gas velocity fields,
i.e. scene flow, by using differential images from a stereo
OGI camera system was presented and tested. For this,
a data processing framework was used, where the optical
flow, the disparity and the disparity change in the measured
scene are computed. It was shown that the obtained 3D gas
velocity field relies on a mean virtual surface placed inside
the measured gas and represents the dominant velocity com-
ponents of the real gas flow. Additionally, a simplified im-
age segmentation approach is used for deriving image re-
gions with likely gas information. By this, most of the back-
ground information that causes misleading results is sup-
pressed. In general, the accuracy of the proposed method is
affected by systematic errors due to geometric, radiometric
and temporal offsets in the measurement system and by the
measurement conditions. Field experiments in a biogas fa-
cility have shown the applicability of the system under real
measurement conditions.
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