
A Flexible Selection Scheme for Minimum-Effort Transfer Learning

Amélie Royer

IST Austria

aroyer@ist.ac.at

Christoph H. Lampert

IST Austria

chl@ist.ac.at

Abstract

Fine-tuning is a popular way of exploiting knowledge

contained in a pre-trained convolutional network for a new

visual recognition task. However, the orthogonal setting of

transferring knowledge from a pretrained network to a vi-

sually different yet semantically close source is rarely con-

sidered: This commonly happens with real-life data, which

is not necessarily as clean as the training source (noise, ge-

ometric transformations, different modalities, etc.).

To tackle such scenarios, we introduce a new, general-

ized form of fine-tuning, called flex-tuning, in which any

individual unit (e.g. layer) of a network can be tuned, and

the most promising one is chosen automatically. In order

to make the method appealing for practical use, we propose

two lightweight and faster selection procedures that prove

to be good approximations in practice. We study these se-

lection criteria empirically across a variety of domain shifts

and data scarcity scenarios, and show that fine-tuning indi-

vidual units, despite its simplicity, yields very good results

as an adaptation technique. As it turns out, in contrast to

common practice, rather than the last fully-connected unit it

is best to tune an intermediate or early one in many domain-

shift scenarios, which is accurately detected by flex-tuning.

1. Introduction

Deep convolutional networks have substantially ad-

vanced the state of the art in many areas of computer vi-

sion. These networks are often interpreted as a feature ex-

traction stage (typically convolutional layers), followed by

a small classifier (fully connected layers), and have the abil-

ity to learn features from data directly instead of having

them hard-coded, as was the case for previous shallow tech-

niques. However, this comes with a cost, as it requires a

lot more training data than methods relying on fixed ad-hoc

feature extraction. Consequently, it is not surprising that the

first successes of deep networks in image classification oc-

curred as large annotated datasets were made available, e.g.

MNIST [22] for digit recognition (60,000 training samples)

or ImageNet [32] for object classification (1.2 million).

When only little available training data is available,

however, training a deep feature extraction pipeline from

scratch is not possible, as it often leads to severe overfit-

ting. Instead, two main transfer learning strategies have

emerged, exploiting the fact that deep convolutional net-

works pre-trained on large datasets are freely available these

days [25, 38, 39]: Either, one isolates and “freezes” the fea-

ture extraction stage of the pre-trained model and then uses

the available new data to train only the smaller, less prone to

overfitting, classifier stage, or alternatively, one fully fine-

tunes the model, i.e. initializes the network parameters from

the pre-trained network, and then trains all layers using the

new data, typically only for a few steps, to avoid overfitting.

Choosing the best solution depends not only on the amount

of available samples, though, but also on the data charac-

teristics. For example, it has been observed that features

learned on large and varied natural images datasets, e.g. Im-

ageNet, transfer well to related domains such as aerial or

even biomedical images [19]. However, for domains with

very different low-level image statistics, e.g. sketches, fine-

tuning all layers is preferable [3]. Moreover, fine-tuning

only a few classification layers is often easier, hence when

both options are viable, one might prefer this alternative.

In this work, we argue for a more systematic approach to

exploiting pre-trained networks, in situations where the new

input domain can vary greatly in terms of visual appear-

ance, but its output space shares similar semantics with the

one the model was pre-trained on. We introduce the idea of

flex-tuning, a general-purpose transfer learning scheme that

leverages the information of an available pre-trained model

by fine-tuning a targeted part of the model, not necessarily

the last layer or all layers, but any individual layer or block

of consecutive layers, selected in a data-dependent way. In

fact, the idea of focusing training resources on specific in-

termediate layers draws inspiration from an important trans-

fer learning paradigm: It has been consistently observed

across various networks and datasets in the literature that

early convolutional layers capture elementary local proper-

ties of images such as edges or local textures, while middle

layers rather represent configurations of several such ele-

ments, and the last feature layers extract information about

2191

high-level concepts, such as object parts and their configu-

rations [5, 27, 41]. Thus, in order to adapt, for instance, a

network trained on clean natural images to work with noisy

ones, we hypothesize it is easier to fine-tune early layers,

while for adapting the same network to artistic paintings,

focusing on a later layer would be more promising.

Our contribution is three-fold: First, we formally de-

fine flex-tuning, which is a strategy for, given a pre-trained

network and a new training dataset, deciding in a data-

dependent and automatic way which of the available layers

to fine-tune, based on a selection criterion on a held-out val-

idation dataset. Second, in order to make flex-tuning more

appealing for practical use, we further introduce two vari-

ants based on a more efficient selection criterion, called fast

flex-tuning and even faster flex-tuning, that avoid the need

to train multiple fine-tuned models for the selection pro-

cess. Finally, we design an extensive experimental setup

that covers varied visual domain shifts, data scarcity sce-

narios and architectures. We show that flex-tuning almost

always improves classification accuracy over standard fine-

tuning techniques, particularly in settings where fine-tuning

all layers is prone to overfitting, such as settings with small

sample size and large networks. Furthermore, the (even)

faster flex-tuning variants are generally on par with flex-

tuning while providing a much lighter selection procedure.

2. Related work

Transferrability of pretrained convolutional networks

across visual tasks has been often observed and extensively

studied in the computer vision literature [1, 7, 8, 40, 42]. In

fact, many state-of-the-art computer vision models are not

trained from random initialization, but rely crucially on the

re-use of weights from networks pre-trained on large classi-

fication tasks, such as ImageNet [32]. Popular examples in-

clude the YOLO object detector [31] or fully-convolutional

networks for segmentation [24]. In the weakly supervised

learning literature, pre-trained features are also used as a

compact and semantically meaningful image representa-

tion, e.g. for image retrieval [2], style transfer [11, 16], col-

orization [21], or unsupervised part detection [35]. All of

these approaches typically aim at transferring knowledge

between two tasks that have different output structures but

similar input domain appearances and distributions. Clos-

est to our work is [40], which studies the outcome of fine-

tuning from different levels of a pre-trained network for the

standard transfer learning setting. In comparison, we ana-

lyze the effect of tuning a single unit of a pre-trained net-

work, in particular for situations where source and target

domains are visually dissimilar but semantically close.

In fact, our interest lies exactly in these orthogonal sce-

narios, i.e. where one has a similar output task, typically

multi-class classification, but with –potentially significantly

– different source and target input distributions. This setting

resembles, yet differs from, the problem of domain adapta-

tion [33, 12, 10], where the goal is to construct a classifier

for a, usually unlabelled, target task by exploiting one or

more source tasks. In domain adaptation one typically as-

sumes that samples from both source and target domain are

available, while in the fine-tuning situation, one only has

access to a pre-trained network, not the data distribution

it was trained on: This aspect rules out adversarial train-

ing [17, 43], paired samples [14], or more generally, ex-

ploiting any concrete knowledge from the source distribu-

tion to improve predictions on the target domain.

In fact, with the growth of datasets and necessary com-

pute resources, the ability to tune networks without access

to the original training data is becoming more and more im-

portant: First, when dealing with very large source datasets,

training jointly on the source and target domains (as many

domain adaptation methods require) is computationally im-

practical. Second, source training data is sometimes non-

public, especially in commercial settings. Third, specific

applications require data privacy, preventing public data re-

lease, for instance for protecting individuals identities in

face recognition models. As such, learning under privacy

constraints has become a popular topic in recent years [28].

Recent work has also tackled the problem of domain

adaptation by transferring from source to target directly at

the pixel level, either via generative models [4] or by iden-

tifying simpler causal transformations [29]. Weight tuning

methods are nonetheless simpler to use, as they directly act

on feature representations, rather than learning a transfor-

mation that holds independently of the pre-trained network.

3. Flex-Tuning

Our first contribution in this work is to highlight that sim-

ple and lightweight, but surprisingly effective, model adap-

tation is possible by fine-tuning the weights of only a single

unit in a pretrained network, provided that the right unit is

chosen. Which is the right unit depends crucially, and in a

non-trivial way, on the relation between source and target

domains as well as on the amount of available data. We

propose to identify the best unit automatically in a data-

dependent manner using a procedure we call flex-tuning.

3.1. Transferring knowledge across domain shifts

First, we formally introduce the transfer learning sce-

nario we are interested in: We are given a pre-trained con-

volutional network, N , mapping input space X to an output

space Y , and whose weights were pre-trained on a training

dataset from a source domain, that is however not available

anymore. Our goal is to learn a network for a target domain,

for which a new, and potentially small, annotated dataset,

D
iid
∼ P(X,Y), is available. In contrast to the standard

transfer learning application scenario, we consider practi-

2192

cal settings where the target domain is semantically close

but visually different from the source domain. Here, by se-

mantically close, we mean that the output space of the target

task is a subset of the source task. Extending the framework

to different output structures, e.g. from a classification task

to a detection task, would be possible by fine-tuning both

the unit selected by flex-tuning and the last fully-connected

layer. In this work, we focus on thoroughly analyzing and

characterizing the influence of single units on transferring

knowledge across visually different domains and leave the

possibility of combining multiple units for future work.

Nonetheless, the setting we consider encompasses a va-

riety of real-world scenarios, where the source and target

domains do not overlap well. For example, we can consider

a source network trained on natural images, with the target

task of classifying monochrome sketches; or a source net-

work trained on scenes under daylight, that should also op-

erate at night, etc. Here we work with images as inputs, and

discrete labels as outputs. However, the underlying princi-

ples apply equally to other input domains and tasks.

3.2. Flex­tuning

We consider pre-trained multi-layer convolutional archi-

tectures, that we decompose into smaller units, which we

denote by N = NL ◦ · · · ◦ N1. In practice, a unit can

simply be a single convolutional or fully-connected layer,

or, for more complex architectures, a block of consecutive

layers. Intuitively, we think of units N1 to NL−1 as the

feature extraction part, while the last layer NL is the per-

forms the actual classification, however the method applies

to arbitrary decompositions. Given such a decomposition,

the goal of flex-tuning is to analyze the influence of tuning

specific units, not only the last one, for transferring knowl-

edge across domains with different visual appearances. Al-

gorithm 1 describes the steps of flex-tuning in pseudo-code:

For each unit of the network, we construct a fine-tuned net-

work Nft-ℓ by training the network on the available target

data, allowing only the weights of the ℓ-th unit to change,

while keeping all the others frozen. We also create a net-

work Nft-all, for which all layers are fine-tuned. We train

each network with an early stopping criterion, monitoring

its performance on the validation set, Dval. This prevents

overfitting in a way that is data-dependent and adaptive to

each training setting. In fact, different units might have very

different numbers of weight parameters, and therefore will

often need different numbers of epochs to converge. Finally,

we choose the best model out of these L + 1 networks by

comparing their accuracy on the validation set and output it

as the flex-tuned model, Nflex.

3.3. Practicality of the method

Technically, Algorithm 1 performs an exhaustive search

over the potential fine-tuned models. Therefore, the exist-

Algorithm 1 Flex-Tuning (flex)

input target training and validation sets, Dtrain and Dval

input pre-trained network with L units, N = NL ◦· · ·◦N1

1: for ℓ = 1, . . . , L do

2: Nft-ℓ ← fine-tune unit ℓ of N on Dtrain until

accuracy on Dval stops improving

3: aft-ℓ ← accuracy of Nft-ℓ on Dval

4: end for

5: Nft-all ← fine-tune all units of N on Dtrain until

accuracy on Dval stops improving

6: aft-all ← accuracy of Nft-all on Dval

7: Nflex ← Nbest for best← argmax
X∈{1,...,L,all}

aft-X

output Nflex

1 2 3 4 5 6 7
Fine-tuned unit

30

35

40

45

50

55

60

65

70

va
l a

cc
ur

ac
y

(-
)

0.001 0.01 0.1 1.0 base network fully fine-tuned

1 2 3 4 5 6 7
Fine-tuned unit

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(-

 -
)

Figure 1. Validation (-) and test (- -) accuracies for fine-tuning a

single unit of a pretrained CIFAR network to the Blurry CIFAR

(left) and Quick, Draw! (right) datasets. Each line color represents

a different subsampling ratio of the target training dataset, while

blue markers indicate the unit picked based on validation accuracy.

ing theoretical results for model selection [34] apply, and

we obtain that, in the limit, flex-tuning will indeed choose

the best of the possible models. Moreover, the difference

between flex-tuning’s accuracy estimated from the valida-

tion data and the expected accuracy on future data decreases

with a rate of O
(

√

logL

|Dval|

)

. In Figure 1, we illustrate flex-

tuning’s practical use: We apply the proposed method on a

small network (5 convolutional and 2 fully connected lay-

ers) pre-trained on CIFAR [20] and to be adapted to a sub-

set of the “Quick, Draw!” dataset [6] and a blurred variant

of CIFAR, for different sizes of the target training dataset.

These preliminary results show that (i) it is often beneficial

to fine-tune an intermediate layer rather than the last one

and that (ii) well-performing units strongly depend on the

dataset and in a non-trivial way, but can be efficiently pin-

pointed with a simple selection criterion such as flex-tuning.

For deep networks however, flex-tuning can be compu-

tationally costly: It requires training as many networks as

there are units, plus another one in which all units are fine-

tuned. Let us denote the average number of training epochs

by Eone when fine-tuning a single unit, and by Eall when

fine-tuning all. Also, let us denote the corresponding aver-

age computational cost of one such epoch as cone and call,

2193

respectively. Then the total runtime complexity of flex-

tuning is O(LEonecone + Eallcall). Even when taking into

account that typically Eall > Eone and call > cone, for rea-

sonably large networks the complexity is often dominated

by the computational cost of fine-tuning the network once

for each unit. Since ultimately only one of the models is

chosen, these computations end up wasted. To address this

issue, we introduce two improved selection criteria in the

following section to efficiently approximate flex-tuning.

4. Efficient Selection Criteria

4.1. Fast flex­tuning

To overcome the aforementioned computational ineffi-

ciency of flex-tuning, we propose a different criterion, fast

flex-tuning, for selecting the unit to be fine-tuned. It relies

on the idea that a given unit’s influence can be approximated

by a few feed-forward passes rather than a full training pro-

cess. While it does not come with formal guarantees, we

found it to work nearly as well as the exhaustive search in

practice, while at the same time requiring only 2 networks

to be trained instead of L + 1. Algorithm 2 describes fast

flex-tuning in pseudo-code: The method starts by training

one new model, Nft-all, by fine-tuning all units of the pre-

trained network on the training data available for the target

domain. From this, we construct L new networks by net-

work surgery. For any ℓ = 1, . . . , L, we create a proxy net-

work, Nprox-ℓ, by copying all units from N , except the ℓ-th

one, which is copied from the fine-tuned network, Nft-all.

Clearly, the resulting hybrid networks are not functional

models, as the l-th unit and the other units were not trained

together. Nevertheless, the construction allows us to derive

a measure which of the network units is the most promising

candidate for fine-tuning, namely the one that leads to the

biggest improvement in accuracy (if any) when applied to

the target domain. Numerically, we compute the accuracy

of each model Nprox-ℓ on the validation dataset and iden-

tify the value for ℓ with highest accuracy. We then create a

viable model by fine-tuning the selected unit on the target

dataset D. Finally, we output either this model, or the one

in which all layers were fine-tuned (which is available as we

created it at the beginning of the procedure), depending on

which achieved the higher validation accuracy. We report

the validation accuracies of the Nprox-ℓ models for our dif-

ferent experimental settings in the supplemental material.

In comparison to flex-tuning, fast flex-tuning only has to

fine-tune two networks instead of L + 1. Its runtime com-

plexity is hence O(Eonecone + Eallcall), thereby providing

substantial computational savings for large networks.

4.2. Even faster flex­tuning

In some situations, training from scratch or fine-tuning

the complete network is simply computationally too costly:

Algorithm 2 Fast Flex-Tuning (fast-flex)

input target training and validation sets, Dtrain and Dval

input pre-trained network with L units, N = NL ◦· · ·◦N1

1: Nft-all ← fine-tune all units of N on Dtrain until

accuracy on Dval stops improving

2: aft-all ← accuracy of Nft-all on Dval

3: for ℓ = 1, . . . , L do

4: Nprox-ℓ ← NL◦· · ·◦Nl+1◦[Nft-all]ℓ◦Nℓ−1◦· · ·◦N1

5: aℓ ← accuracy of Nprox-ℓ on Dval

6: end for

7: best← argmaxℓ aℓ, ℓ ∈ {1,...,L}
8: Nbest ← fine-tune unit best of N on Dtrain until

accuracy on Dval stops improving

9: aft-best ← accuracy of Nbest on Dval

10: Nflex ← if aft-best ≥ aft-all then Nbest else Nft-all

output Nflex

Algorithm 3 Even Faster Flex-Tuning (faster-flex)

input target training and validation sets, Dtrain and Dval

input pre-trained network with L units, N = NL ◦· · ·◦N1

1: Nft-all ← fine-tune all units of N on Dtrain

for a single epoch

2: for ℓ = 1, . . . , L do

3: Nprox-ℓ ← NL◦· · ·◦Nl+1◦[Nft-all]ℓ◦Nℓ−1◦· · ·◦N1

4: aℓ ← accuracy of Nprox-ℓ on Dval

5: end for

6: best← argmaxℓ aℓ, ℓ ∈ {1,...,L}
7: Nflex ← fine-tune unit best of N on Dtrain until

accuracy on Dval stops improving

output Nflex

Neither flex-tuning nor fast flex-tuning are applicable, as

both require training a network by fine-tuning all units as

the first step of their selection process. To overcome this, we

propose an even faster variant, as described in Algorithm 3.

Even faster flex-tuning resembles fast flex-tuning in that

it selects a unit to be fine-tuned based on the accuracies

of different proxy models that are obtained by network

surgery, each time preserving L − 1 units from the pre-

trained source network and replacing the remaining one

with its fine-tuned counterpart. The difference lies in that

the fine-tuned units are obtained from a network in which

all units have been fine-tuned for just a single epoch. This

results in a total computational runtime of O(Eonecone+call).
We consider this close to optimal for an adaptive technique,

as at least the cost Eonecone clearly cannot be avoided, if the

goal is to produce a network in which at least one unit has

been fine-tuned. The drawback of the acceleration is that

the even faster flex-tuning algorithm does not have access

to a reliable estimate of what performance a network with

all units fully fine-tuned would have achieved. This is how-

ever not relevant here as, by assumption, the computational

2194

method computational cost

flex LEonecone + Eallcall

fast-flex Eonecone + Eallcall

faster-flex Eonecone + call

ft-fc Eonecone

ft-all Eallcall

Table 1. Runtime complexities. L is the number of units in the

network, Eone and cone are the average number of epochs until early

stopping for fine-tuning one unit, and the estimated cost of one

such epoch. Eall and call are the analogous quantities when fine-

tuning all network units. In general, Eall > Eone and call > cone.

budget does not suffice for training such a model anyway.

In summary, even faster flex-tuning is a generalization of

fine-tuning the last unit of the network, as is often done in

practice, but instead the most promising unit is chosen by

a brief selection process. Table 1 summarizes the runtime

complexity of all proposed models, as well as the two main

baselines we use in our experiments: ft-fc, which fine-

tunes always the last unit (i.e. the fully-connected layer(s)),

and ft-all, which fine-tunes always all layers.

5. Experiments

In this section, we introduce our experimental setup, cov-

ering a large number of domain shifts and data scarcity sce-

narios. We then describe fine-tuning baselines commonly

used in the literature, and compare them to the proposed

methods, flex-tuning (flex), fast flex-tuning (fast-flex)

and even faster flex-tuning (faster-flex).

5.1. Experimental set­up

We build several domain shift scenarios, ranging from

simple parametric transformations to severe visual appear-

ance shifts. In order to explore the impact of data scarcity,

we additionally consider several subsampled versions of

each target dataset, ranging from a few images per class

to hundreds of them. The different settings are thus mainly

characterized by: (i) the depth of the base source network,

(ii) the size of the target dataset we tune on, and (iii) the type

of input domain shift: simple parametric transformations,

e.g. manipulating color channels, complex (non-trivially in-

vertible) parametric transformations, and general free-range

transformations. We summarize our setup in Table 2.

Medium-sized experiments. We first consider a small 4

layers network (which we decompose in 4 one-layer units:

2 convolutional layers followed by 2 fully-connected ones)

pretrained on a subset of MNIST training images. We use

the remaining samples (except 5000 of them that we keep

for validation) to build synthetic domain shifts such as affine

transformations (randomized or fixed for all images), or

random occlusions. Second, we build a 7 layers network (7

one-layer units: 5 convolutional and 2 fully connected ones)

that we pre-train on half of the CIFAR training set [20]. As

target domains, we consider several synthetic transforma-

tions of the remaining samples, as well as a subset of the

QuickDraw dataset [6]: We restrict ourselves to the object

classes they have in common, i.e. all CIFAR classes except

for “deer”. We also consider the converse setting, i.e. pre-

training on QuickDraw and using as target domains CIFAR

and synthetically generated blurry and noisy QuickDraw

samples. Since both aforementioned architectures have two

fully connected layers, we consider two baselines, ft-fc

(1) and ft-fc (2), corresponding to fine-tuning only the

last, or the last two fully-connected layers respectively.

Large-scale setting. Finally, we consider two large-scale

settings using the Inception2 architecture [13, 39, 37]. We

decompose the model so as to not separate layers belong-

ing to the same Inception module, which results in 13 units,

the last one being the single fully-connected classification

layer of the architecture. We first experiment on synthetic

transformations of natural images. For this setting, we use

a network pretrained on ILSVRC2012-train. We then split

ILSVRC2012-val in three parts. 25k images are used to

create target datasets, 5k are kept for validation and the

remaining 20k are used for testing. Second, we consider

the more challenging setting of stylistic transformations us-

ing the PACS dataset [23], initially introduced for the task

of domain generalization: We use art paintings, cartoons

and sketches, as target domains, which we further split into

train/val/test sets. In this setting, the target task is a sub-

set of the source ILSVRC classification task (ignoring the

“person” class in PACS as it does not have an equivalent).

Baselines. We first consider the two most common trans-

fer learning schemes as baselines. Starting with a network

initialized with the same weights and architectures as the

source pre-trained network, N : (i) ft-all consists in fine-

tuning all layers N1, . . . NL on the training set D from the

target domain, and (ii) ft-fc, which corresponds to fine-

tuning only the last fully-connected units of the network,

while keeping earlier units frozen. We also consider using

scaling and shifting operations as in [36] and refer to this

baseline as ft-ss: It consists in fine-tuning the last classi-

fication layer as well as lightweight kernel-scaling and bias-

shifting parameters at every layer. Thus ft-ss acts on all

levels of the architecture, but requires few additional learn-

ing parameters, hoping to prevent overfitting problems.

Training. We measure performance as top-1 classifica-

tion accuracy, and top-5 for ILSVRC-based domains. We

use the same hyperparameters as were used during training

of the base source network. As is common, for finetun-

ing, we use a lower base learning rate: 10−3 for the small

convolutional networks, and 10−4 for the Inception2 net-

works. We train all models using the Adam [18] optimizer.

As mentioned previously, we also employ an early stopping

criterion based on validation accuracy, regularly computed

2195

Source Target domains

MNIST (subset) [22]
25k images
10 classes
4-layers

top-1: 0.989

Blurry
top-1: 0.748

Occluded
top-1: 0.581

MNIST-M [9]
top-1: 0.439

Transform
(random)

top-1: 0.322
SVHN [26]
top-1: 0.211

Transform
(fixed)

top-1: 0.160

ratios ∼ 3, 30, 300 and 3k images per class

CIFAR (subset) [20]
18k images

9 classes
7-layers

top-1: 0.738

Noisy
top-1: 0.540

Blurry
top-1: 0.324

QuickDraw [6]
top-1: 0.291

ratios ∼ 2, 20, 200 and 2k images per class

ILSVRC [32]
(’12 train split)

1M images
1000 classes
Inception2

top-5: 0.918

YUV
top-5: 0.841

Fixed rotation
top-5: 0.743

Fixed scaling
(symmetric pad)
top-5: 0.519

Fixed scaling
(stretch pad)
top-5: 0.440

HSV
top-5: 0.384

ratios ∼ 2, 12 and 25 images per class

Art
top-1: 0.532

Cartoon
top-1: 0.346

Sketch
top-1: 0.142

ratios ∼ 2, 20 and 200 images per class

Table 2. Source domains and architectures (left) we consider, with

the corresponding target domains (right) and the training dataset

subsampling ratios we consider, as the average number of images

per class: the last entry corresponds to the full dataset size.

during training (every 5-10 epochs). This also dampens

the negative effect of overfitting in scenarios that are overly

prone to it (e.g. ft-all with small sample size and a large

network). Finally, in the very scarce data setting (∼ 1 image

per class) we report metrics averaged over 20 runs, to avoid

a potential bias towards the sampled training images.

5.2. Main results

In Table 3 we compare the proposed method and base-

lines on the MNIST, CIFAR and ILSVRC-based settings,

for one subsampling ratio of the target training set. Results

for other ratios show similar trends and are available in the

supplemental material. For the more challenging PACS sce-

nario, which exhibits both a strong visual shift and slight se-

mantic labels shift from the source task, we report complete

results across all subsampling ratios.

We observe that flex outperforms fine-tuning baselines

in almost all settings. It very rarely loses to the ft-fc

baseline, but is sometimes tied with ft-all, which is

a subcase of flex and fast-flex through the selec-

tion criterion. More precisely, over all subsampling ratios

and domain shifts we have in total 72 transfer scenarios.

Out of these, the two overall best methods are flex and

fast-flex, achieving best accuracy 60 and 41 times re-

spectively. Compared to this, ft-all only reaches the

best accuracy 26 times, mostly for large sample size and

medium-sized networks. It consistently loses due to over-

fitting in other scenarios. More interestingly, in terms of

absolute values, we observe that when flex strictly wins,

i.e. when it reaches the best accuracy and not in a tie with

ft-all, it typically does so by a higher margin than in the

reverse scenario, i.e. when one of the baselines strictly wins.

We detail our main observations in the rest of the section.

Comparison to baselines. In the medium network or

large sample size settings, flex-tuning expectedly generally

chooses to fine-tune all layers, i.e. flex recovers ft-all.

However, as the dataset size to network depth ratio de-

creases, fine-tuning all layers becomes more prone overfit-

ting. In that case, flex prefers to fine-tune a specific unit,

which generally performs better than the ft-fc baseline.

More generally, the behavior of ft-fc strongly correlates

with the difficulty of the input domain shift: it performs best

in settings where the source domain early layers generalize

well to the target domain, e.g. in the noisy CIFAR setting

where the small additive random noise does not impact ac-

tivations significantly. When the domain shift is more pro-

nounced however, ft-fc is often outperformed by flex,

fast-flex and faster-flex which pick a more ade-

quate unit to tune. This shows there is a benefit to having

the method pick the best unit to fine-tune, rather than re-

stricting transfer learning to the last fully-connected layers.

These conclusions also hold for ft-ss, although it pro-

vides a much stronger baseline than ft-fc and is some-

times on-par or outperforms the faster flextuning variants.

However, its performance seems to depend on the type of

domain shift: For instance, ft-ss performs moderately

well on the colorized-ILSVRC setting. We attribute it to the

fact that this setting involves a recombination of the chan-

nels which is not well captured by affine transformations of

the parameters. Finally, flex and its variants are easier

to implement in practice as they do not introduce additional

parameters nor require to know how layers actually operate.

Selecting the best unit. We observe that the most promis-

ing unit selected by flex-tuning is often an intermediate one

and does not follow an obvious pattern, showing that dif-

ferent domain shifts affect layer representations at different

depths of the architecture: This is illustrated in Figure 2.

On the same figure, we see that fast flex-tuning and even

faster flex-tuning are good approximations of flex-tuning as

2196

ILSVRC
flex ft-

flex fast faster fc ss all

ratio: 2 images per class

Art (0.53) 0.669 0.703 0.655 0.626 0.630 0.628

Cartoon (0.32) 0.639 0.683 0.593 0.618 0.647 0.507

Sketch (0.14) 0.625 0.606 0.414 0.554 0.581 0.337

ratio: 20 images per class

Art (0.53) 0.870 0.851 0.861 0.729 0.849 0.724

Cartoon (0.32) 0.912 0.893 0.841 0.820 0.887 0.709

Sketch (0.14) 0.852 0.638 0.638 0.766 0.801 0.542

ratio: 200 images per class

Art (0.53) 0.906 0.906 0.823 0.791 0.887 0.746

Cartoon (0.32) 0.958 0.956 0.952 0.868 0.956 0.925

Sketch (0.14) 0.924 0.924 0.890 0.767 0.916 0.875

Table 3. Break-down of results comparing our proposed flex,

fast-flex and faster-flex, to fine-tuning baselines, ft-all

and ft-fc. In each table, the first column lists each source→ tar-

get domain shifts, with the base accuracy reached by the pretrained

source network on the target test set. Bold entries indicate the score

is better than that of all baselines (ft-). For space reason, we only

report results for a specific subsampling ratio for settings other than

PACS (roughly 30 images per class for MNIST, 20 for CIFAR, 12 for

ILSVRC). Full results are in the supplemental material.

MNIST
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.75) 0.926 0.926 0.926 0.921 0.928 0.928 0.921

Occluded (0.58) 0.806 0.806 0.801 0.785 0.801 0.792 0.806

MNIST-M (0.44) 0.683 0.683 0.671 0.615 0.670 0.675 0.683

SVHN (0.21) 0.669 0.669 0.572 0.451 0.595 0.657 0.669

Transf. (rnd) (0.32) 0.644 0.644 0.644 0.573 0.638 0.624 0.625

Transf. (fix) (0.16) 0.908 0.887 0.879 0.839 0.875 0.866 0.887

CIFAR
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.32) 0.577 0.577 0.512 0.444 0.501 0.569 0.577

Noisy (0.54) 0.624 0.624 0.624 0.583 0.597 0.618 0.621

QuickDraw (0.29) 0.518 0.517 0.517 0.475 0.525 0.495 0.501

QuickDraw
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.19) 0.642 0.631 0.560 0.426 0.468 0.707 0.631

Noisy (0.63) 0.801 0.801 0.795 0.788 0.792 0.805 0.801

CIFAR (0.20) 0.424 0.424 0.401 0.333 0.347 0.388 0.424

ILSVRC
flex ft-

flex fast faster fc ss all

YUV (0.84) 0.893 0.893 0.893 0.835 0.699 0.808

HSV (0.38) 0.856 0.856 0.856 0.533 0.646 0.687

Scaling (stretch) (0.44) 0.724 0.696 0.696 0.502 0.584 0.653

Scaling (sym.) (0.52) 0.770 0.757 0.757 0.663 0.650 0.716

Rotation (0.74) 0.826 0.832 0.812 0.667 0.652 0.771

PACS

Art
flex
fast-flex
faster-flex

QuickDraw Cartoon

MNIST Blurry QuickDraw Sketch

Blurry Noisy QuickDraw ILSVRC

Occluded CIFAR YUV

MNIST-M CIFAR HSV

SVHN Blurry CIFAR Scaling (stretch)

Transform (rnd) Noisy CIFAR Scaling (sym)

1 2 3 4
Layer

Transform (fix)
1 2 3 4 5 6 7

Layer

QuickDraw
1 2 3 4 5 6 7 8 9 10 11 12 13

Layer

Rotation

Figure 2. Individual units selected by flex, fast-flex and faster-flex, based on validation set accuracy. Triangles denote

actual picks for flex, fast-flex (if ignoring the option to fine-tune all units) and faster-flex. The background values is obtained

by summing the selection ranks of each unit across ratios, based on their test performance: in other words, the darker the color, the

best performance fine-tuning this unit yields on the test set. We observe that flex-tuning’s selection criterion generally chooses the best

performing unit. The two variants’ choices are more scattered, but overall positively correlate with flex-tuning’s decisions.

they often pick similar units. Similarly in Table 3 we ob-

serve that they both often outperform fine-tuning baselines,

although still being somewhat subpar to flex. This shows

that only a few gradient updates, as is done in even faster

flex-tuning, are enough to pin-point relevant units.

Effect of the domain shift on flex. From Figure 2,

we distinguish three input domain shifts categories: For

local pixel-level transformations, such as noisy CIFAR,

or YUV/HSV ILSVRC, flex-tuning tends to choose early

units. This coincides with the fact that (i) early layers are

most affected by local pixel-level changes, and (ii) such

transformations are easy to correct in early layers: e.g. YUV

is a linear transformation of RGB. For geometric affine

transformations, flex-tuning picks more central units of the

architecture. In fact, such transformations do not change

the global appearance of images and, moreover, most mod-

ern deep learning architecture are trained for invariance

to small geometric manipulations (e.g. flip, rotations) via

synthetic data augmentation, hence earlier layers are more

easily transferable across these domain shifts. The free-

transform scenarios are harder to generalize: First, we ob-

serve that natural images features transfer particularly well

across various domains. As such, flex-tuning often picks

later layer in the architecture for general transforms scenar-

ios with natural images as their source domain, e.g. photo→
{art, cartoon, sketch}. However, this does not seem to be

2197

YUV HSV Art Cartoon Sketch

ft-fc 0.80 0.47 0.66 0.53 0.39

ft-all 0.75 0.52 0.80 0.83 0.85

flex 0.85 0.85 0.88 0.86 0.86

Table 4. mAP@10 retrieval results for the fine– and flex-tuned net-

work embeddings, queried against the source domain embeddings

the case in the reverse scenario, e.g. QuickDraw→ CIFAR

and MNIST→ SVHN, which indicates that features learned

from the simple structure and particular distribution of bi-

nary sketches do not generalize as well to natural images.

Second, in some complex settings such as PACS, it can be

the case that two non-consecutive units are good fine-tuning

candidates. This suggests that units sometimes interact in

complex patterns and that considering combination of units

rather than single ones is an interesting future direction.

5.3. Retrieval Experiments

A benefit of fine-tuning the last layer only is that it pre-

serves a common feature representation across domains.

However this property breaks in our setting: Images visu-

ally different from the training set fall out of the usual op-

eration zone of the feature extractor. One can still learn a

good classifier from these features [30], but the representa-

tions themselves are meaningless with respect to the initial

source domain. On the other hand, tuning an intermediate

unit instead could help to “mend” the representation. To

evaluate this, we use a retrieval experiment: We extract fea-

tures for the initial source validation domain through the

source network, and for the target domain through the flex-

tuned or finetuned network. For each target sample, we re-

trieve its top-k nearest neighbors in the source domain and

consider them correctly retrieved if they share the same se-

mantic class, and evaluate the average precision (AP@k).

For space reasons, we only report AP@10, on the most

challenging scenarios, in Table 4. Full results are reported

in the supplemental material. The results follow our previ-

ous observations: For small networks (MNIST, CIFAR) the

result of fine-tuning all layers is often better aligned with

the initial representations. However for the larger architec-

tures, tuning an intermediate unit better recover the initial

source embedding space as shown in Table 4.

5.4. Towards pixel­level adaptation

An alternative to tuning a pre-trained network is to in-

stead learn to map target samples back to the source domain

while keeping the network’s weights untouched; This has

the advantage of only depending on the domain shift and not

on the architecture. Such image-to-image mapping mod-

ules have been studied for domain adapation, but typically

require data from both source and target domains [4, 43].

Building on this idea, we introduce an image-to-image

transformation unit as a pre-processing module before the

feature extraction phase of the pre-trained source network.

(a) Blurry MNIST (b) Blurry QuickDraw (c) MNIST-M

(d) Transformed (rnd) (e) YUV (1 layer) (f) Scaling (symmetric)

Figure 3. Example images generated by the pre-processing mod-

ule. For each pair, the left image is the input from the target do-

main and the right one is the pre-processed output.

The resulting architecture is considered as a new model

selection option for flex-tuning, where only the image-to-

image unit’s weights are trained and the rest of the net-

work is frozen. We implement this image-to-image unit as a

small Pix2Pix network [14] except in a few secnarios where

we leverage our prior knowledge of the domain shift: For

example, color channel transformations occur pixel-wise,

thus we build the preprocessing module for YUV and HSV

ILSVRC with 1x1 convolutions. Similarly, for geometric

transforms, we use a Spatial Transformer Network [15].

Figure 3 shows exemplary outputs of the learned image-to-

image units. Quantitative results are in the supplemental

material. The specialized pre-processing modules performs

very well for simple parametric transformations, and results

are also encouraging on simple domain shifts such as blur,

noise and added random background. We believe this to be

a consequence of the skip connections in the Pix2Pix archi-

tecture, which enforce local pixel constraints between the

input and output. In all these succesful cases, flex-tuning’s

selection criterion also selects the image-to-image unit as

the most promising unit to tune. For complex transforma-

tions, e.g. photo→ sketch, the pre-processing module per-

forms poorly. Nevertheless, flex-tuning is able to notice this

and falls back to one of the other units to adapt.

6. Conclusions

We introduce a new transfer learning method for neural

networks, flex-tuning, that adapts a pre-trained network to a

new domain by tuning just a single network unit (e.g. a layer

or block layers). Our experiments on a variety of scenarios

show that this is a surprisingly strong adaptation technique,

as long as the right unit is chosen. Specifically, we study the

case where output classes stay consistent but the input data

characteristics change, potentially dramatically, e.g. from

images to sketch drawings. We find that, contrary to com-

mon practice, it is then rarely the last fully-connected unit,

but rather an intermediate or early unit, that leads to the best

adaptation results, and flex-tuning reliably identifies it. We

also introduce two accelerated variants that perform almost

equally good but are significantly more computationally ef-

ficient in selecting the unit to be fine-tuned.

2198

References

[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. Factors of transferability for a generic ConvNet

representation. IEEE Transactions on Pattern Analysis and

Machine Intelligence (T-PAMI), 2016. 2

[2] A. Babenko and V. S. Lempitsky. Aggregating local deep

features for image retrieval. In International Conference on

Computer Vision (ICCV), 2015. 2

[3] P. Ballester and R. M. Araujo. On the performance of

GoogLeNet and AlexNet applied to sketches. In Conference

on Artificial Intelligence (AAAI), 2016. 1

[4] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-

ishnan. Unsupervised pixel-level domain adaptation with

generative adversarial networks. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 2, 8

[5] S. A. Cadena, M. A. Weis, L. A. Gatys, M. Bethge, and A. S.

Ecker. Diverse feature visualizations reveal invariances in

early layers of deep neural networks. In European Confer-

ence on Computer Vision (ECCV), 2018. 2

[6] S. Cheema, S. Gulwani, and J. LaViola. QuickDraw: Im-

proving drawing experience for geometric diagrams. In Con-

ference on Human Factors in Computing Systems (SIGCHI),

2012. 3, 5, 6

[7] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, and T. Dar-

rell. Best practices for fine-tuning visual classifiers to new

domains. In ECCV Workshop TASK-CV: Transferring and

Adapting Source Knowledge in Computer Vision, 2016. 2

[8] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-

vation feature for generic visual recognition. In International

Conference on Machine Learing (ICML), 2014. 2

[9] Y. Ganin and V. Lempitsky. Unsupervised domain adap-

tation by backpropagation. In International Conference on

Machine Learing (ICML), 2015. 6

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. Journal of Machine

Learning Research (JMLR), 2016. 2

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style trans-

fer using convolutional neural networks. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. 2

[12] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for

object recognition: An unsupervised approach. In Interna-

tional Conference on Computer Vision (ICCV), 2011. 2

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

Journal of Machine Learning Research (JMLR), 2015. 5

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2017. 2, 8

[15] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

Conference on Neural Information Processing Systems

(NIPS), 2015. 8

[16] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision (ECCV), 2016. 2

[17] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to

discover cross-domain relations with generative adversarial

networks. In International Conference on Machine Learing

(ICML), 2017. 2

[18] D. P. Kingma and J. L. Ba. Adam: a method for stochas-

tic optimization. In International Conference on Learning

Representations (ICLR), 2015. 5

[19] S. Kornblith, J. Shlens, and Q. V. Le. Do better ImageNet

models transfer better? In Conference on Computer Vision

and Pattern Recognition (CVPR), 2019. 1

[20] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

3, 5, 6

[21] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-

resentations for automatic colorization. In European Confer-

ence on Computer Vision (ECCV), 2016. 2

[22] Y. LeCun and C. Cortes. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/. 1, 6

[23] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper,

broader and artier domain generalization. In International

Conference on Computer Vision (ICCV), 2017. 5

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2015. 2

[25] Deep Learning Model Zoo. https://modelzoo.co/.

1

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS Workshop on Deep Learning and Un-

supervised Feature Learning, 2011. 6

[27] C. Olah, A. Mordvintsev, and L. Schubert. Feature vi-

sualization. Distill, 2017. https://distill.pub/2017/feature-

visualization. 2

[28] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow, and

K. Talwar. Semi-supervised knowledge transfer for deep

learning from private training data. In International Con-

ference on Learning Representations (ICLR), 2017. 2

[29] G. Parascandolo, N. Kilbertus, M. Rojas-Carulla, and

B. Schölkopf. Learning independent causal mechanisms.

In International Conference on Machine Learing (ICML),

2018. 2

[30] A. Rahimi and B. Recht. Weighted sums of random kitchen

sinks: Replacing minimization with randomization in learn-

ing. In Conference on Neural Information Processing Sys-

tems (NIPS), 2008. 8

[31] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 2015. 1, 2, 6

2199

[33] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In European Confer-

ence on Computer Vision (ECCV), 2010. 2

[34] S. Shalev-Shwartz and S. Ben-David. Understanding ma-

chine learning: From theory to algorithms. Cambridge Uni-

versity Press, 2014. 3

[35] M. Simon and E. Rodner. Neural activation constellations:

Unsupervised part model discovery with convolutional net-

works. In International Conference on Computer Vision

(ICCV), 2015. 2

[36] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer

learning for few-shot learning. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2019. 5

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2015. 5

[38] TensorFlow Hub. https://www.tensorflow.org/

hub/. 1

[39] TensorNets. https://github.com/taehoonlee/

tensornets. 1, 5

[40] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Conference

on Neural Information Processing Systems (NIPS), 2014. 2

[41] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European Conference on Com-

puter Vision (ECCV), 2014. 2

[42] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a percep-

tual metric. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired

image-to-image translation using cycle-consistent adversar-

ial networks. In International Conference on Computer Vi-

sion (ICCV), 2017. 2, 8

2200

