Localizing Grouped Instances for Efficient Detection in Low-Resource Scenarios

Amélie Royer
IST Austria
aroyer@ist.ac.at

Christoph H. Lampert
IST Austria
chl@ist.ac.at

Abstract

State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.

To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures.

1. Introduction

As a core component of natural scene understanding, object detection in natural images has made remarkable progress in recent years through the adoption of deep convolutional networks. A driving force in this growth was the rise of large public benchmarks, such as PASCAL VOC [5] and MS COCO [15], which provide extensive bounding box annotations for objects in natural images across a large diversity of semantic categories and appearances.

However, many real-life detection problems exhibit drastically different data distributions and computational requirements, for which state-of-the-art detection systems are not well suited, as summarized in Figure 1. For example, object detection in aerial or satellite imagery often requires localizing objects of a single class, e.g., cars [37], houses [19] or swimming pools [31]. Similarly, in biomedical applications, only some specific objects are relevant, e.g., certain types of cells [35]. Moreover, input images in practical detection tasks are often of much higher resolution, yet contain small and sparsely distributed objects of interest, such that only a very limited fraction of pixels is actually relevant, while most academic benchmarks often contain more salient objects and cluttered scenes. Last but not least, detection speed is often at least as important as detection accuracy for practical applications. This is particularly apparent when models are meant to run on embedded devices, such as autonomous drones, which have limited computational resources and battery capacity.

In this work, we propose ODGI (Object Detection with Grouped Instances), a top-down detection scheme specifically designed for efficiently handling inhomogeneous object distributions, while preserving detection performance. Its key benefits and components are summarized as follows:

(i) a multi-stage pipeline, in which each stage selects only a few promising regions to be analyzed by the next stage, while discarding irrelevant image regions.

![Figure 1](Image 379x535 to 424x571)

![Figure 2](Image 434x531 to 484x571)

![Figure 3](Image 492x533 to 540x571)
We then report main quantitative

(ii) Fast single-shot detectors augmented with the ability
to identify groups of objects rather than just individual
objects, thereby substantially reducing the number of
regions that have to be considered.

(iii) ODGI reaches similar accuracies than ordinary single-
shot detectors while operating at lower resolution be-
cause groups of objects are generally larger and easier
to detect than individual objects. This allows for a fur-
ther reduction of computational requirements.

We present the proposed method, ODGI, and its training
procedure in Section 3. We then report main quantitative
results as well as several ablation experiments in Section 4.

2. Related work

A popular approach to object
detection consists in extracting numerous region proposals
and then classifying them as one of the object categories
of interest. This includes models such as RFCN [3], RCNN
and variants [7, 8, 2], or SPPNet [9]. Proposal-based meth-
ods are very effective and can handle inhomogeneously dis-
tributed objects, but are usually too slow for real-time us-
age, due to the large amount of proposals generated. Fur-
thermore, with the exception of [25], the proposals are gen-
ernally class-independent, which makes these methods more
suitable for general scene understanding tasks, where one
is interested in a wide variety of classes. When targetting
a specific object category, class-independent proposals are
wasteful, as most proposal regions are irrelevant to the task.

In contrast, single-shot detectors, such as SSD [17], or
YOLO [22, 23, 24], split the image into a regular grid of
regions and predict object bounding boxes in each grid cell.
These single-shot detectors are efficient and can be made
fast enough for real-time operation, but only provide a good
speed-versus-accuracy trade-off when the objects of inter-
est are distributed homogeneously on the grid. In fact, the
grid size has to be chosen with worst case scenarios in
mind: in order to identify all objects, the grid resolution
has to be fine enough to capture all objects even in image
regions with high object density, which might rarely occur,
leading to numerous empty cells. Furthermore, the number
of operations scales quadratically with the grid size, hence
precise detection of individual small objects in dense clus-
ters is often mutually exclusive with fast operation. Recent
work [16, 30, 20, 17, 18, 36] proposes to additionally ex-
plot multi-scale feature pyramids to better detect objects
across varying scales. This helps mitigate the aforemen-
tioned problem but does not suppress it, and, in fact, these
models are still better tailored for dense object detection.

Orthogonal to this, ODGI focuses on making the best of
the given input resolution and resources and instead resort
to grouping objects when individual small instances are too
hard to detect, following the paradigms that “coarse predic-
tions are better than none”. These groups are then refined in
subsequent stages if necessary for the task at hand.

Speed versus accuracy trade-off. Both designs in-
volve intrinsic speed-versus-accuracy trade-offs, see for in-
stance [10] for a deeper discussion, that make neither of
them entirely satisfactory for real-world challenges, such as
controlling an autonomous drone [38], localizing all objects
of a certain type in aerial imagery [1] or efficiently detecting
spatial arrangements of many small objects [32].

Our proposed method, ODGI, falls into neither of these
two designs, but rather combines the strength of both in a
flexible multi-stage pipeline: It identifies a small number of
specific regions of interest, which can also be interpreted
as a form of proposals, thereby concentrating most of its
computations on important regions. Despite the sequential
nature of the pipeline, each individual prediction stage is
based on a coarse, low resolution, grid, and thus very ef-
ficient. ODGI’s design resembles classical detection cas-
cades [14, 27, 33], but differs from them in that it does
not sequentially refine classification decisions for individ-
ual boxes but rather refines the actual region coordinates.

As such, it is conceptually similar to techniques based on
branch-and-bound [12, 13], or on region selection by rein-
forcement learning [6]. Nonetheless, it strongly differs from
these on a technical level as it only requires minor modifi-
cations of existing object detectors and can be trained with
standard backpropagation instead of discrete optimization
or reinforcement learning. Additionally, ODGI generates
meaningful groups of objects as intermediate representa-
tions, which can potentially be useful for other visual tasks.
For example, it was argued in [28] that recurring group
structures can facilitate the detection of individual objects
in complex scenes. Currently, however, we only make use
of the fact that groups are visually more salient and easier
to detect than individuals, especially at low image resolution.

3. ODGI: Detection with Grouped Instances

In Section 3.1 we introduce the proposed multi-stage ar-
chitecture and the notion of group of objects. We then detail
the training and evaluation procedures in Section 3.2.

3.1. Proposed architecture

We design ODGI as a multi-stage detection architecture
\phi_S \odot \cdots \odot \phi_1, S > 1. Each stage \phi_s is a detection network,
whose outputs can either be individual objects or groups of
objects. In the latter case, the predicted bounding box de-
defines a relevant image subregion, for which detections can
be refined by feeding it as input to the next stage. To com-
pare the model with standard detection systems, we also
constrain the last stage to only output individual objects.
Grouped instances for detection. We design each stage as a lightweight neural network that performs fast object detection. In our experiments, we build on standard single-shot detectors such as YOLO [22] or SSD [17]. More precisely, ϕ_s, consists of a fully-convolutional network with output map $[I, J]$ directly proportional to the input image resolution. For each of the $I \times J$ cells in this uniform grid, the model predicts bounding boxes characterized by four coordinates—the box center (x, y), its width w and height h, and a predicted confidence score $c \in [0, 1]$. Following common practice [22, 23, 17], we express the width and height as a fraction of the total image width and height, while the coordinates of the center are parameterized relatively to the cell it is linked to. The confidence score c is used for ranking the bounding boxes at inference time.

For intermediate stages $s \leq S - 1$, we further incorporate the two following characteristics: **First**, we augment each predicted box with a binary group flag, g, as well as two real-valued offset values (o_w, o_h): The flag indicates whether the detector considers the prediction to be a single object, $g = 0$, or a group of objects, $g = 1$. The offset values are used to appropriately rescale the stage outputs which are then passed on to subsequent stages. **Second,** we design the intermediate stages to predict one bounding box per cell. This choice provides us with an intuitive definition of groups, which automatically adapts itself to the input image resolution without introducing additional hyperparameters: If the model resolution $[I, J]$ is fine enough, there is at most one individual object per cell, in which case the problem reduces to standard object detection. Otherwise, if a cell is densely occupied, then the model resorts to predicting one group enclosing the relevant objects. We provide further details on the group training process in Section 3.2.

Multi-stage pipeline. An overview of ODGI’s multi-stage prediction pipeline is given in Figure 2.

Each intermediate stage takes as inputs the outputs of the previous stage, which are processed to produce image regions in the following way: Let B be a bounding box predicted at stage ϕ_s, with confidence c and binary group flag g. We distinguish three possibilities: (i) the box can be discarded, (ii) it can be accepted as an individual object prediction, or (iii) it can be passed on to the next stage for further refinement. This decision is made based on two confidence thresholds, τ_{low} and τ_{high}, leading to one of the three following actions:

(i) if $c \leq \tau_{low}$: The box B is discarded.

(ii) if $c > \tau_{high}$ and $g = 0$: The box B is considered a strong individual object candidate: we make it “exit” the pipeline and directly propagate it to the last stage’s output as it is. We denote the set of such boxes as B_s.

(iii) if $(c > \tau_{low}$ and $g = 1)$ or $(\tau_{high} \geq c > \tau_{low}$ and $g = 0$): The box B is either a group or an individual with medium confidence and is a candidate for refinement.

After this filtering step, we apply non-maximum suppression (NMS) with threshold γ_{nms} to the set of refinement candidates, in order to obtain (at most) γ_{s} boxes with high confidence and little overlap. The resulting γ_{s} bounding boxes are then processed to build the image regions that will be passed on to the next stage by multiplying each box’s width and height by $1/o_w$ and $1/o_h$, respectively, where o_w and o_h are the offset values learned by the detector.

This rescaling step ensures that the extracted patches cover the relevant region well enough, and compensates for the fact that the detectors are trained to exactly predict ground-truth coordinates, rather than fully enclose them, hence sometimes underestimate the extent of the relevant region. The resulting rescaled rectangular regions are extracted from the input image and passed on as inputs to the next stage. The final output of ODGI is the combination of object boxes predicted in the last stage, ϕ_S, as well as the kept-back outputs from previous stages: B_{s}.

The above patch extraction procedure can be tuned via four hyperparameters: τ_{low}, τ_{high}, γ_{nms}, γ_{s}. At training time, we allow as many boxes to pass as the memory budget allows. For our experiments, this was $\gamma_{s} = 10$. We also do not use any of the aforementioned filtering during training, nor thresholding ($\gamma_{low} = 0$, $\gamma_{high} = 1$) nor NMS.
Moreover, these hyperparameters can be easily changed on the fly, without retraining. This allows the model to easily adapt to changes of the input data characteristics, or to make better use of an increased or reduced computational budget for instance.

Number of stages. Appending an additional refinement stage benefits the speed-vs-accuracy trade-off fit when the following two criteria are met: *First,* a low number of non empty cells; This correlates to the number of extracted crops, thus to the number of feed-forward passes of subsequent stages. *Second,* a small average group size: Smaller extracted regions lead to increased resolution once rescaled for the datasets used in our experiments.

For the model to predict groups of objects, we should in principle consider all the unions of subsets of bounding boxes as potential targets. However, we defined our intermediate detectors to predict only one bounding box per cell by design, which allows us to avoid this combinatorial problem. Formally, let B_{ij} be the predictor associated to cell (i,j). We define its target ground-truth coordinates \bar{B}_{ij} and group flag \bar{g}_{ij} as:

$$\bar{B}_{ij} = \bigcup_{n | A^j(n) = 1} b_n \quad (3)$$

$$\bar{g}_{ij} = \left\lceil \#\{n | A^j(n) = 1\} > 1 \right\rceil, \quad (4)$$

with \cup denoting the minimum enclosing bounding box of a set. We define L_{groups} as a binary classification objective:

$$L_{\text{groups}} = - \sum_{i,j} A^j \left(\bar{g}^j \log(\bar{g}^j) \right. $$

$$\left. + (1 - \bar{g}^j) \log(1 - \bar{g}^j) \right), \quad (5)$$

where $A^j = \left\lceil \sum_n A^j(n) > 0 \right\rceil$ denotes whether cell (i,j) is empty or not. In summary, we build ground-truth \bar{B}^j and \bar{g}^j as follows: For each cell (i,j), we build the set G^j which contain ground-truth boxes b_n of ground-truth boxes it intersects with. If the set is non empty and only a single object box, b, falls into this cell, we set $\bar{B}^j = b$ and $\bar{g}^j = 0$. Otherwise, $|G^j| > 1$ and we define \bar{B}^j as the union of bounding boxes in G^j and set $\bar{g}^j = 1$. In particular, this procedure automatically adapts to the resolution I, J in a data-driven way, and can be implemented as a pre-processing step, thus does not produce any overhead at training time.

3.2. Training the model. We train each ODGI stage independently, using a combination of three loss terms that we optimize with standard backpropagation (note that in the last stage of the pipeline, only the second term is active, as no groups are predicted):

$$L_{\text{ODGI}} = L_{\text{groups}} + L_{\text{coords}} + L_{\text{offsets}} \quad (1)$$

L_{coords} is a standard mean squares regression loss on the predicted coordinates and confidence scores, as described for instance in [22, 17]. The additional two terms are part of our contribution: The group loss, L_{groups}, drives the model to classify outputs as individuals or groups, and the offsets loss, L_{offsets}, encourages better coverage of the extracted regions. The rest of this section is dedicated to formally defining each loss term as well as explaining how we obtain ground-truth coordinates for group bounding boxes.

Group loss. Let $b = b_{n=1...N}$ be the original ground-truth individual bounding boxes. We define $A^j(n)$ as an indicator which takes value 1 iff ground-truth box b_n is assigned to output cell (i,j) and 0 otherwise:

$$A^j(n) = \left\lceil |b_n \cap \text{cell}_{ij} > 0 \right\rceil, \quad (2)$$

$$\text{with } [x] = 1 \text{ if } x, \text{ else } 0$$

For the model to predict groups of objects, we should in principle consider all the unions of subsets of b as potential targets. However, we defined our intermediate detectors to predict only one bounding box per cell by design, which allows us to avoid this combinatorial problem. Formally, let B_{ij} be the predictor associated to cell (i,j). We define its target ground-truth coordinates \bar{B}_{ij} and group flag \bar{g}_{ij} as:

$$\bar{B}_{ij} = \bigcup_{n | A^j(n) = 1} b_n \quad (3)$$

$$\bar{g}_{ij} = \left\lceil \#\{n | A^j(n) = 1\} > 1 \right\rceil, \quad (4)$$

with \cup denoting the minimum enclosing bounding box of a set. We define L_{groups} as a binary classification objective:

$$L_{\text{groups}} = - \sum_{i,j} A^j \left(\bar{g}^j \log(\bar{g}^j) \right.$$

$$\left. + (1 - \bar{g}^j) \log(1 - \bar{g}^j) \right), \quad (5)$$

where $A^j = \left\lceil \sum_n A^j(n) > 0 \right\rceil$ denotes whether cell (i,j) is empty or not. In summary, we build ground-truth \bar{B}^j and \bar{g}^j as follows: For each cell (i,j), we build the set G^j which contain ground-truth boxes b_n of ground-truth boxes it intersects with. If the set is non empty and only a single object box, b, falls into this cell, we set $\bar{B}^j = b$ and $\bar{g}^j = 0$. Otherwise, $|G^j| > 1$ and we define \bar{B}^j as the union of bounding boxes in G^j and set $\bar{g}^j = 1$. In particular, this procedure automatically adapts to the resolution I, J in a data-driven way, and can be implemented as a pre-processing step, thus does not produce any overhead at training time.

Coordinates loss. Following the definition of target bounding boxes \bar{B}_{ij} in (3), we define the coordinates loss as a standard regression objective on the box coordinates and confidences, similarly to existing detectors [8, 7, 17, 4, 22].

$$L_{\text{coords}} = \sum_{i,j} A^j \left(\|\bar{B}_{ij} - \bar{B}^j\|^2 + \omega_{\text{conf}} \|c_{ij}^j - \bar{c}_{ij}^j\|^2 \right.$$

$$\left. + \omega_{\text{obj}} \sum_{i,j} (1 - A^j) \left(c_{ij}^j \right)^2 \right) \quad (6)$$

$$\bar{c}_{ij}^j = \mathbb{I}_{\cap \cup}(\bar{B}_{ij}, \bar{B}^j) = |\bar{B}_{ij} \cap \bar{B}^j| / |\bar{B}_{ij} \cup \bar{B}^j| \quad (7)$$

The first two terms are ordinary least squares regression objectives between the predicted coordinates and confidence.
scores and their respective assigned ground-truth. The ground-truth for the confidence score is defined as the intersection over union (IoU) between the corresponding prediction and its assigned target. Finally, the last term in the sum is a weighted penalty term to push confidence scores for empty cells towards zero. In practice, we use the same weights as in [22], i.e. \(\omega_{\text{conf}} = 5 \) and \(\omega_{\text{no-obj}} = 1 \).

Offsets loss. In intermediate stages, ODGI predicts offset values for each box, \(o_w \) and \(o_h \), that are used to rescale the region of interest when it is passed as input to the next stage, as described in Section 3.1. The corresponding predictors are trained using the following offsets loss:

\[
\mathcal{L}_{\text{offsets}} = \sum_{i,j} A_{ij} \left[(o_w - \bar{o}_w(B^{ij}, \bar{B}^{ij}))^2 + (o_h - \bar{o}_h(B^{ij}, \bar{B}^{ij}))^2 \right]. \tag{8}
\]

The target values, \(\bar{o}_w(B^{ij}, \bar{B}^{ij}) \) and \(\bar{o}_h(B^{ij}, \bar{B}^{ij}) \), for vertical and horizontal offsets, are determined as follows: First, let \(\alpha \) denote the center \(y \)-coordinate and \(h \) the height. Ideally, the vertical offset should cause the rescaled version of \(\bar{B}^{ij} \) to encompass both the original \(B^{ij} \) and its assigned ground-truth box \(B^{ij} \) with a certain margin \(\delta \), which we set to half the average object size (\(\delta = 0.0025 \)). Formally:

\[
h_{\text{scaled}}(B, \bar{B}) = \max(\left| (\alpha(\bar{B}) + h(\bar{B})/2 + \delta - \alpha(B)) \right|, \\
\left| (\alpha(\bar{B}) - h(\bar{B})/2 - \delta - \alpha(B)) \right|) \]

\[
\bar{o}_h(B^{ij}, \bar{B}^{ij}) = \max(1, h(B^{ij})/h_{\text{scaled}}(B^{ij}, \bar{B}^{ij})) \tag{9}
\]

For the horizontal offset, we do the analogous construction using the \(B^{ij} \)'s center \(x \)-coordinate and its width instead.

Evaluation metrics. We quantitatively evaluate the ODGI pipeline as a standard object detector. Following the common protocol from PASCAL VOC 2010 and later challenges [5], we sort the list of predicted boxes in decreasing order of confidence score and compute the average precision (AP) respectively to the ground-truth, at the IoU cut-offs of 0.5 (standard) and 0.75 (more precise). In line with our target scenario of single-class object detection, we ignore class information in experiments and focus on raw detection. Class labels could easily be added, either on the level of individual box detections, or as a post-processing classification operation, which we leave for future work.

Multi-stage training. By design, the inputs of stage \(s \) are obtained from the outputs of stage \(s - 1 \). However it is cumbersome to wait for each stage to be fully trained before starting to train the next one. In practice we notice that even after only a few epochs, the top-scoring predictions of intermediate detectors often detect image regions that can be useful for the subsequent stages, thus we propose the following training procedure: After \(n_e = 3 \) epochs of training the first stage, we start training the second, querying new inputs from a queue fed by the outputs of the first stage. This allows us to jointly and efficiently train the two stages, and this delayed training scheme works well in practice.

4. Experiments

We report experiments on two aerial views datasets: VEDAI [21] contains 1268 aerial views of countryside and city roads for vehicle detection. Images are 1024x1024 pixels and contain on average 2.96 objects of interest. We perform 10-fold cross validation, as in [21]. For each run, we use 8 folds for training, one for validation and one for testing. All reported metrics are averaged over the 10 runs. Our second benchmark, SDD [26], contains drone videos taken at different locations with bounding box annotations of road users. To reduce redundancy, we extract still images every 40 frames, which we then pad and resize to 1024x1024 pixels to compensate for different aspect ratios. For each location, we perform a random train/val/test split with ratios 70%/5%/25%, resulting in total in 9163, 651 and 3281 images respectively. On average, the training set contains 12.07 annotated objects per image. SDD is overall much more challenging than VEDAI: at full resolution, objects are small and hard to detect, even to the human eye.

We consider three common backbone networks for ODGI and baselines: tiny, a simple 7-layer fully convolutional network based on the tiny-YOLO architecture, yolo, a VGG-like network similar to the one used in YOLOv2 [22] and finally MobileNet [29], which is for instance used in SSD Lite [17]. More specifically, on the VEDAI dataset, we train a standard tiny-yolov2 detector as baseline and compare it to ODGI-teeny-tiny (ODGI-tt), which refers to two-stage ODGI with tiny backbones. For SDD, objects are much harder to detect, thus we use a stronger YOLO V2 model as baseline. We compare this to ODGI-teeny-tiny as above as well a stronger variant, ODGI-yolo-tiny (ODGI-yt), in which \(\phi_1 \) is based on the yolo backbones and \(\phi_2 \) on tiny. Finally we also experiment with the lightweight MobileNet architecture as baseline and backbones, with depth multipliers 1 and 0.35. The corresponding ODGI models are denoted as ODGI-100-35 and ODGI-35-35. All models are trained and evaluated at various resolutions to investigate different grouping scenarios. In all cases, the detector grid size scales linearly with the image resolution, because of the fully convolutional network structures, ranging from a 32 \(\times \) 32 grid for 1024px inputs to 2 \(\times \) 2 for 64px.

We implement all models in Tensorflow and train with the Adam optimizer [11] and learning rate 1e-3. To facilitate reproducibility, we make our code publicly available \(^1\).

\(^1\) Github repository, https://github.com/ameroyer/ODGI
Figure 3. Plots of MAP@0.5 versus runtime (CPU) for the VEDAI and SDD datasets on three different backbone architectures. The metrics are reported as percentages relative to the baseline run at full resolution. Each marker corresponds to a different input resolution, which the marker size is proportional to. The black line represents the baseline model, while each colored line corresponds to a specific number of extracted crops, γ1. For readability, we only report results for a subset of γ1 values, and provide full plots in the supplemental material.

4.1. Main results

To benchmark detection accuracy, we evaluate the average precision (MAP) for the proposed ODGI and baselines. As is often done, we also apply non-maximum suppression to the final predictions, with IoU threshold of 0.5 and no limit on the number of outputs, to remove near duplicates for all methods. Besides retrieval performance, we assess the computational and memory resource requirements of the different methods: We record the number of boxes predicted by each model, and measure the average runtime of our implementation for one forward pass on a single image. As reference hardware, we use a server with 2.2 GHz Intel Xeon processor (short: CPU) in single-threaded mode. Additional timing experiments on weaker and stronger hardware, as well as a description of how we pick ODGI’s test-time hyperparameters can be found in Section 4.2.

We report experiment results in Figure 3 (see Table 1 for exact numbers). We find that the proposed method improves over standard single-shot detectors in two ways: First, when comparing models with similar accuracies, ODGI generally requires fewer evaluated boxes and shorter runtimes, and often lower input image resolution. In fact, only a few relevant regions are passed to the second stage, at a smaller input resolution, hence they incur a small computational cost, yet the ability to selectively refine the boxes can substantially improve detection. Second, for any given input resolution, ODGI’s refinement cascade generally improves detection retrieval, in particular at lower resolutions, e.g. 256px: In fact, ODGI’s first stage can be kept efficient and operate at low resolution, because the regions it extracts do not have to be very precise. Nonetheless, the regions selected in the first stage form an easy-to-solve detection task for the second stage (see for instance Figure 4 (d)), which leads to more precise detections after refinement. This also motivates our choice of mixing backbones, e.g. using ODGI-yolo-tiny, as detection in stage 2 is usually much easier.

<table>
<thead>
<tr>
<th>VEDAI</th>
<th>MAP@0.5</th>
<th>MAP@0.75</th>
<th>CPU [s]</th>
<th>#boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODGI-tt 512-256</td>
<td>0.646</td>
<td>0.422</td>
<td>0.83</td>
<td>≤ 448</td>
</tr>
<tr>
<td>ODGI-tt 512-64</td>
<td>0.562</td>
<td>0.264</td>
<td>0.58</td>
<td>≤ 268</td>
</tr>
<tr>
<td>ODGI-tt 256-128</td>
<td>0.470</td>
<td>0.197</td>
<td>0.22</td>
<td>≤ 96</td>
</tr>
<tr>
<td>ODGI-tt 256-64</td>
<td>0.386</td>
<td>0.131</td>
<td>0.16</td>
<td>≤ 72</td>
</tr>
<tr>
<td>ODGI-tt 128-64</td>
<td>0.143</td>
<td>0.025</td>
<td>0.08</td>
<td>≤ 24</td>
</tr>
<tr>
<td>tiny-yolo 1024</td>
<td>0.684</td>
<td>0.252</td>
<td>1.9</td>
<td>1024</td>
</tr>
<tr>
<td>tiny-yolo 512</td>
<td>0.383</td>
<td>0.057</td>
<td>0.47</td>
<td>256</td>
</tr>
<tr>
<td>tiny-yolo 256</td>
<td>0.102</td>
<td>0.009</td>
<td>0.13</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDD</th>
<th>MAP@0.5</th>
<th>MAP@0.75</th>
<th>CPU [s]</th>
<th>#boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODGI-yt 512-256</td>
<td>0.463</td>
<td>0.069</td>
<td>2.4</td>
<td>≤ 640</td>
</tr>
<tr>
<td>ODGI-yt 512-64</td>
<td>0.429</td>
<td>0.061</td>
<td>1.2</td>
<td>≤ 640</td>
</tr>
<tr>
<td>ODGI-yt 256-128</td>
<td>0.305</td>
<td>0.035</td>
<td>0.60</td>
<td>≤ 160</td>
</tr>
<tr>
<td>ODGI-yt 256-64</td>
<td>0.307</td>
<td>0.044</td>
<td>0.31</td>
<td>≤ 160</td>
</tr>
<tr>
<td>yolo 1024</td>
<td>0.470</td>
<td>0.087</td>
<td>6.6</td>
<td>1024</td>
</tr>
<tr>
<td>yolo 512</td>
<td>0.309</td>
<td>0.041</td>
<td>1.7</td>
<td>256</td>
</tr>
<tr>
<td>yolo 256</td>
<td>0.160</td>
<td>0.020</td>
<td>0.46</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDD</th>
<th>MAP@0.5</th>
<th>MAP@0.75</th>
<th>CPU [s]</th>
<th>#boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODGI-100-35 512-256</td>
<td>0.434</td>
<td>0.061</td>
<td>0.76</td>
<td>≤ 640</td>
</tr>
<tr>
<td>ODGI-100-35 256-128</td>
<td>0.294</td>
<td>0.036</td>
<td>0.19</td>
<td>≤ 160</td>
</tr>
<tr>
<td>mobile-100 1024</td>
<td>0.415</td>
<td>0.061</td>
<td>1.9</td>
<td>1024</td>
</tr>
<tr>
<td>mobile-100 512</td>
<td>0.266</td>
<td>0.028</td>
<td>0.46</td>
<td>256</td>
</tr>
<tr>
<td>mobile-100 256</td>
<td>0.100</td>
<td>0.009</td>
<td>0.12</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDD</th>
<th>MAP@0.5</th>
<th>MAP@0.75</th>
<th>CPU [s]</th>
<th>#boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODGI-35-35 512-256</td>
<td>0.425</td>
<td>0.055</td>
<td>0.50</td>
<td>≤ 640</td>
</tr>
<tr>
<td>ODGI-35-35 256-128</td>
<td>0.250</td>
<td>0.029</td>
<td>0.13</td>
<td>≤ 160</td>
</tr>
<tr>
<td>mobile-35 1024</td>
<td>0.411</td>
<td>0.054</td>
<td>0.84</td>
<td>1024</td>
</tr>
<tr>
<td>mobile-35 512</td>
<td>0.237</td>
<td>0.026</td>
<td>0.19</td>
<td>256</td>
</tr>
<tr>
<td>mobile-35 256</td>
<td>0.067</td>
<td>0.007</td>
<td>0.050</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 1. MAP and timing results on the VEDAI and SDD datasets for the model described in Section 4. The results for ODGI models are reported with γ1 = 256px chosen as described in Section 4.2.
4.2. Additional Experiments

Runtime. Absolute runtime values always depend on several factors, in particular the software implementation and hardware. In our case, software-related differences are not an issue, as all models rely on the same core backbone implementations. To analyze the effect of hardware, we performed additional experiments on weaker hardware, a Raspberry Pi 3 Model B with 1.2 GHz ARMv7 CPU (Raspi), as well as stronger hardware, an Nvidia GTX 1080Ti graphics card (GPU). Table 2 shows the resulting runtimes of one feed-forward pass for the same models and baselines as in Table 1. We also report the total number of pixels processed by each method, *i.e.* that have to be stored in memory during one feed-forward pass, as well as the number of parameters.

The main observations of the previous section again hold: On the Raspberry Pi, timing ratios are roughly the same as on the Intel CPU, only the absolute scale changes. The differences are smaller on GPU, but ODGI is still faster than the baselines in most cases at similar accuracy levels. Note that for the application scenario we target, the GPU timings are the least representative, as systems operating under resource constraints typically cannot afford the usage of a 250W graphics card (for comparison, the Raspberry Pi has a power consumption of approximately 1.2W).

Hyperparameters. As can be seen in Figure 3, a higher number of computational costs, γ_{test}, improves detection, but comes at a higher computational cost. Nonetheless, ODGI appears to have a better accuracy-speed ratio for most values of γ_{test}. For practical purposes, we suggest to choose γ_{test} based on how many patches are effectively used for detection. We define the *occupancy rate* of a crop as the sum of the intersection ratios of ground-truth boxes that appear in this crop. We then say a crop is *relevant* if it has a non-zero occupancy rate, *i.e.* it contains objects of interest: For instance, at input resolution 512px on VEDAI’s validation set, we obtain an average of 2.33 relevant crops, hence we set $\gamma_{\text{test}} = 3$. The same analysis on SDD yields $\gamma_{\text{test}} = 6$.

<table>
<thead>
<tr>
<th>SDD</th>
<th>ODGI-ty</th>
<th>ODGI-ty</th>
<th>ODGI-ty</th>
<th>ODGI-ty</th>
<th>tiny-yolo</th>
<th>tiny-yolo</th>
<th>tiny-yolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODGI-100-35</td>
<td>512-256</td>
<td>256-128</td>
<td>256-64</td>
<td>256-128</td>
<td>1024</td>
<td>512-256</td>
<td>256</td>
</tr>
<tr>
<td>MAP@0.5</td>
<td>0.46</td>
<td>0.43</td>
<td>0.31</td>
<td>0.34</td>
<td>0.28</td>
<td>0.24</td>
<td>0.16</td>
</tr>
<tr>
<td>Raspi [s]</td>
<td>9.8</td>
<td>7.0</td>
<td>4.6</td>
<td>1.8</td>
<td>6.8</td>
<td>4.3</td>
<td>1.4</td>
</tr>
<tr>
<td>GPU [ms]</td>
<td>25.5</td>
<td>14.7</td>
<td>18.7</td>
<td>12.0</td>
<td>7.4</td>
<td>6.9</td>
<td>13.5</td>
</tr>
<tr>
<td>$#$parameters</td>
<td>62M</td>
<td>22M</td>
<td>62M</td>
<td>22M</td>
<td>51M</td>
<td>51M</td>
<td>51M</td>
</tr>
<tr>
<td>$#$pixels</td>
<td>655k</td>
<td>655k</td>
<td>164k</td>
<td>164k</td>
<td>164k</td>
<td>164k</td>
<td>164k</td>
</tr>
<tr>
<td>ODGI-35-35</td>
<td>22M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODGI-35-35</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobile-100</td>
<td>22M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobile-35</td>
<td>62M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. MAP@0.5 results comparing ODGI with three ablation variants, no groups, fixed offsets and no offsets (see text).

Three additional hyperparameters influence ODGI’s behavior: τ_{test}, τ_{high}, and τ_{nms}, all of which appear in the patch extraction pipeline. For a range of $\gamma_{\text{test}} \in [1, 10]$, and for each input resolution, we perform a parameter sweep on the held-out validation set over the ranges $\tau_{\text{test}} \in \{0.0, 0.1, 0.2, 0.3, 0.4\}$, $\tau_{\text{high}} \in \{0.6, 0.7, 0.8, 0.9, 1.0\}$, and $\tau_{\text{nms}} \in \{0.25, 0.5, 0.75\}$. Note that network training is independent from these parameters as discussed in Section 3.1. Therefore the sweep can be done efficiently using pretrained ϕ_1 and ϕ_2, changing only the patch extraction process. We report full results of this validation process in the supplemental material. The main observations are as follows:

(i) τ_{test} is usually in $[0, 0.1]$. This indicates that the low confidence patches are generally true negatives that need not be filtered out. (ii) $\tau_{\text{high}} \in \{0.8, 0.9\}$ for VEDAI and $\tau_{\text{high}} \in \{0.6, 0.7\}$ for SDD. This reflects intrinsic properties of each dataset: VEDAI images contain only few objects which are easily covered by the extracted crops. It is always beneficial to refine these predictions, even when they are individual high confidence, hence a high value of τ_{high}. In contrast, on the more challenging SDD, ODGI more often uses the shortcut for confident individuals in stage 1, in order to focus the refinement stage on groups and lower-confidence individuals which can benefit more. (iii) τ_{nms} is usually equal to 0.25, which encourages non-overlapping patches and reduces the number of redundant predictions.
4.3. Ablation study

In this section we briefly report on ablation experiments that highlight the influence of the proposed contributions. Detailed results are provided in the supplemental material.

Memory requirements. ODGI stages are applied consequently, hence only one network needs to live in memory at a time. However having independent networks for each stage can still be prohibitory when working with very large backbones, hence we also study a variant of ODGI where weights are shared across stages. While this reduces the number of model parameters, we find that it can significantly hurt detection accuracy in our settings. A likely explanation is that the data distribution in stage 1 and stage 2 are drastically different in terms of object resolution and distribution, effectively causing a *domain shift*.

Groups. We compare ODGI with a variant without group information: we drop the loss term L_{groups} in (1) and ignore group flags in the transition between stages. Table 3 (row *no groups*) shows that this variant is never as good as ODGI, even for larger number of crops, confirming that the idea of grouped detections provides a consistent advantage.

Offsets. We perform two ablation experiments to analyze the influence of the region rescaling step introduced in Section 3.2. First, instead of using learned offsets we test the model with offset values fixed to $\frac{2}{3}$, i.e. 50% expansion of the bounding boxes, which corresponds to the value of the target offsets margin δ we chose for standard ODGI. Our experiments in Table 3 show that this variant is inferior to ODGI, confirming that the model benefits from learning offsets tailored to its predictions. Second, we entirely ignore the rescaling step during the patch extraction step (row *no offsets*). This affects the MAP even more negatively: extracted crops are generally localized close to the relevant objects, but do not fully enclose them. Consequently, the second stage retrieves partial objects, but with very high confidence, resulting in strong false positives predictions. In this case, most correct detections emerge from stage 1’s early-exit predictions, hence increasing γ_1, i.e. passing forward more crops, does not improve the MAP in this scenario.

5. Conclusions

We introduce ODGI, a novel cascaded scheme for object detection that identifies *groups of objects* in early stages, and refines them in later stages *as needed*. Consequently, (i) empty image regions are discarded, thus saving computations especially in situations with heterogeneous object density, such as aerial imagery, and (ii) groups are typically larger structures than individuals and easier to detect at lower resolutions. Furthermore, ODGI can be easily added to off-the-shelf backbone networks commonly used for single-shot object detection: In extensive experiments, we show that the proposed method offers substantial computational savings without sacrificing accuracy. The effect is particularly striking on devices with limited computational or energy resources, such as embedded platforms.
References

