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Abstract

We present an alternative to the paradigm of density re-

gression widely being employed for tackling crowd count-

ing. In the prevalent regression approach, a model is

trained for mapping images to its crowd density rather than

counting by detecting every person. This framework is mo-

tivated from the difficulty to discriminate humans in highly

dense crowds where unfavorable perspective, occlusion and

clutter are prevalent. Though regression methods estimate

overall crowd counts pretty well, localization of individual

persons suffers and varies considerably across the entire

density spectrum. Moreover, individual detection of peo-

ple aids more explainable practical systems than predict-

ing blind crowd count or density map. Hence, we move

away from density regression and reformulate the task as

localized dot prediction in dense crowds. Our dot detection

model, DD-CNN, is trained for pixel-wise binary classifi-

cation to detect people instead of regressing local crowd

density. In order to handle severe scale variation and de-

tect people of all scales with accurate dots, we use a novel

multi-scale architecture which does not require any ground

truth scale information. This training regime, which incor-

porates top-down feedback, helps our model to localize peo-

ple in sparse as well as dense crowds. Our model delivers

superior counting performance on major crowd datasets.

We also evaluate on some additional metrics and evidence

superior localization of the dot detection formulation.

1. Introduction

Crowd counting from images, especially dense crowds,

has acquired a lot of academic as well as practical inter-

est. While the pragmatic interest is driven by the need to

quickly analyze large gatherings for security and planning

reasons, the academic involvement is due to the great chal-

lenge posed by the problem. The major difficulty is at-

tributed to the extreme variation in appearance of people

ranging from large faces to heads occupying a few pixels in

∗equal contribution

Figure 1. Dot Detection Vs Density Regression. The top row

shows crowds with dot predictions from the proposed DD-CNN,

while bottom row has corresponding density maps. The dot detec-

tion has better localization of individuals across density ranges.

dense regions. Add to these the pervasive occlusions, pose

variations and background clutter. Consequently, counting

by detecting humans is perceived difficult [9], especially to

scale satisfactorily across the whole density spectrum seen

in typical crowd scenes. As a relatively easy solution, dense

crowd counting is normally posed as a density regression

problem. Here the idea is to annotate the location of every

head, which are then converted to crowd density by con-

volving with a Gaussian kernel of a fixed spread. The kernel

is chosen such that the integration of the map directly gives

out crowd count. Since modern crowd counting approaches

[4, 11, 16, 20, 28] employ Convolutional Neural Networks

(CNN), density maps ease the training process as the task

of predicting exact point of head annotation is reduced to

regressing local density.

Recent works have made huge progress in devising new

architectures and algorithms to improve performance of

density regression based approaches. The major metric for

performance evaluation of counting models only considers

overall count estimation and does not account localization

of prediction on to individual humans. Though these meth-

ods deliver good count accuracy for a given crowd scene,
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the localization seems poor for further downstream applica-

tions. This is because the density map describes the people

count in local regions and hence the focus is not to accu-

rately locate each person. Moreover, the notion of density

makes more sense when people are relatively closer as in

highly dense crowds. The density surface in sparser crowds

have frequent discontinuities and the values over human

heads are mostly near zero. This is evident in Figure 1,

where the density peaks on large faces are spread out, indi-

cating practically almost no detection in sparse region. Also

note that one could not consistently find local peaks in these

regions to localize persons. This is largely true irrespective

of Gaussian kernel parameters used for ground truth den-

sity map creation. Furthermore, the local peaks might not

accurately correspond to the location of persons (except in

certain density ranges) as it is trained for regressing den-

sity in a local region rather than to pinpoint people. Hence,

any simple method to post-process density maps for better

localization might not scale equally across the entire den-

sity range (See Section 5.2). In contrast, ideally one would

expect spot-on predictions on people at all scales. Such a

system facilitates applications other than computing mere

counts. From accurate dot detections, faces and features

can be extracted for other purposes, which is cumbersome

with density maps. Above all, individual detection of peo-

ple facilitates a more explainable and practical AI system.

Hence, in this work, we try to break the ‘traditional’

paradigm of training for density regression and replace it

with accurate dot detection framework. We define the prob-

lem statement as to predict localized dots over the head of

any person irrespective of the scale, pose or other variations.

Additionally, this has to be done without any bounding box

annotations, but only with point annotations available with

crowd datasets. There are many challenges in achieving

such a goal; the major one being the extreme scale and den-

sity variation in crowd scenes. In normal detection scenar-

ios, this is trivially done using a multi-scale architecture,

where images are fed to the model at different scales and

trained. However, such a naive approach is not possible in

our case since there is no ground truth scale information

(through bounding boxes) available with the crowd dataset,

instead only point annotation are present. Furthermore, the

multi-scale architecture has to deal with large variation in

appearance of people across scale. A lower scale person

simply is not a rescaled version of a large face, but looks

drastically different. In sparse crowd, facial features may

be visible, but in highly dense crowd people are only seen

as blobs. These pose challenges for dense dot detection.

We devise a Dot Detection CNN model, named DD-

CNN for the proposed challenging problem. The basic idea

is to train the CNN model for pixel-wise binary classifica-

tion task of detecting people. Cross entropy loss is used in-

stead of l2 regression employed in density estimation. DD-

CNN is optimized in a multi-scale architecture which does

not require ground truth scale information, but uses only

point supervision. In summary, this work contributes:

• A new training paradigm of dot detection for crowd

counting, dropping the prevalent density regression.

• A unique multi-scale fusion architecture that facilitates

highly localized detection of people in dense crowds.

• A novel training regime that only requires point super-

vision and delivers impressive performance.

2. Previous Work

Many early works in crowd counting rely on detection

based frameworks. For instance, works like [22, 25, 26],

use motion and appearance features to detect individual per-

sons. The recurrent network of [21], sequentially count and

detect people. Though there are numerous works on face

detection like [8, 13, 15, 29], they are not well suited for

crowd counting, which is characterized by people at any

pose with high chance of faces being occluded. Moreover,

these methods fail in highly dense crowds. The features

needed for discrimination in a dense crowd is completely

different from a sparse gathering. Above all, most of the

face detection approaches require bounding box annota-

tion, which is not available with counting datasets. Con-

sequently, density regression based methods took the stage

with significantly better performance. Idrees et al. [9]

regress crowd count using a combination of head detection

and features from interest points along with frequency anal-

ysis. Soon regression models are adapted to deep learning

framework with the work of [27], where a CNN is trained

to predict crowd density map with an additional task of es-

timating direct count. Though there are models which di-

rectly regress crowd count [24], they fail to learn enough

good features due to lack of spatial information (available in

density map) and delivers inferior performance than train-

ing for density map prediction. Handling diversity in the

crowd images is one of the key to improve performance as

evident from body of works leveraging multiple CNNs. The

cascade of regressors by [23], tries to correct density pre-

diction made by the previous network. Onoro et al. [16]

use multiple networks, each trained with images of dif-

ferent scales and the outputs are fused. These multi-scale

techniques are outperformed by multi-column architectures.

The idea is to employ multiple CNN columns with different

receptive fields tuned for different scales [5, 28]. The per-

formance of multi-column approaches are further improved

by specializing the CNN columns aggressively through a

differential training procedure [2, 4]. Continuing the trend,

having auxiliary information indicating the scale or den-

sity of the crowd at a local as well as global level (through

dedicated classifiers) leads to better prediction as shown

2865



3x3 DeConv with stride 23x3 Conv with stride 1

3C | 512

3C | 256

C
 | 

25
6

TOP-DOWN 
FEEDBACK

D⅛

D¼

C
 | 

12
8

C
 | 

64
C

 | 
32

C
 | 

1

T 
| 2

56
C

 | 
25

6

C
 | 

51
2

C
 | 

25
6

C
 | 

12
8

C
 | 

64
C

 | 
32

C
 | 

25
6

C
 | 

1

P

2C | 128

2C | 64

3C | 256

P

P

P
Threshold

2x2 PoolingVGG-16 Block P

CROWD FEATURE EXTRACTION MULTI-SCALE FEEDBACK ADAPTIVE SCALE FUSION DOT PREDICTION

Input

DOT MAP

T

¼ SCALE
BRANCH

⅛ SCALE
BRANCH

Figure 2. The architecture of the proposed dot detection network. DD-CNN has a multi-scale architecture with dot predictions at different

resolutions, which are combined through Adaptive Scale Fusion. The networks are trained with pixel-wise binary cross-entropy loss.

in [19, 20]. The architecture by [6] combines multi-scale

features and is trained with additional local pattern consis-

tency loss. In contrast to these approaches, Babu Sam et al.

[1] develop a top-down feedback mechanism that can iter-

atively improve density prediction made by a CNN regres-

sor. On similar lines, iterative density estimation is done at

increasing resolution using features and prediction of previ-

ous networks [17]. Liu et al. [14] try to address the issue of

annotation difficulty by leveraging unlabeled data with an

additional task of count ranking in a multitask framework.

The Grid Winner-Take-All autoencoder in [3] trains almost

99% of the model parameters without using any crowd an-

notation. Furthermore, VGG based networks with dilated

convolution layers are shown to be better by [11]. Decide-

Net [12] model combines density regressor with a Faster

R-CNN and tries to improve density prediction by adap-

tively switching between the two. But the performance is

evident only on sparse crowd and is not evaluated in dense

datasets. Note that this is not a detection work, but improves

regression with a detector and requires some bounding box

annotation for training the detectors as well. Idrees et al.

[10] use DenseNet with composition loss and train to pre-

dict densities at different resolution. They threshold the pre-

dicted density maps to get dot detections, which leads to a

drop in counting performance (Sect 5.2). Contrary to all

these approaches, we completely eliminate regression loss

and train the model for per-pixel binary classification.

3. Our Approach

In Section 1, we have motivated the paradigm shift from

density regression to dot detection. The basic objective is

to predict highly localized points on heads of people. At a

high-level view, this is a dense classification task, where

at each pixel the model has to predict the presence of a

person irrespective of the scale, pose or other variations.

Figure 2 illustrates our proposed solution, the dot detection

framework DD-CNN. DD-CNN is composed of four func-

tional modules; the first Crowd Feature Extraction network

converts the input crowd scene to rich features at multiple

resolutions. Then this feature set is processed by Multi-

Scale Feedback module, which correlates multi-scale infor-

mation to generate predictions at multiple resolutions. Sub-

sequently, the novel Adaptive Scale Fusion module com-

bines the multi-scale predictions into single map, where

each value indicates the confidence of person detection. A

threshold is applied on this map to generate the final accu-

rate dot predictions. The following sections describes in de-

tail each functional modules as well as the training regime.

3.1. Crowd Feature Extraction

Good features form backbone of any vision systems. It

has been recently shown that VGG-16 [18] based networks

work well for crowd feature extraction and achieve state-

of-the-art performance [11]. Following the trend, we em-

ploy the first four 3×3 convolutional blocks from VGG-16,

which are initialized with ImageNet trained weights. The

input to the network is a three channel image of fixed size

224 × 224. Due to max-pooling, the resolution of feature

maps halves every block. After the second max-pooling,

the network branches into two, with the third block being

replicated in both. The third block is copied so that the two

branches specialize by sharing low-level features without

any conflict. The two branches give out feature map sets at

different resolutions. One set has size one-fourth that of the

input image and is meant to resolve relatively dense crowd
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features. The other one-eighth resolution feature maps are

for discriminating sparse crowd and large faces as they have

higher receptive field. These multi-scale feature sets are

used by the subsequent modules to make dot prediction.

3.2. Multi-Scale Module

The feature extraction blocks are followed by two

columns of CNN for processing the multi-scale feature

maps. As shown in Figure 2, each feature set is passed

through a block of 3 × 3 convolution layers to finally

make per-pixel binary classification for presence of a per-

son. These layers have ReLU non-linearity, except for the

last, which has Sigmoid to predict pixel-wise confidence.

Since the one-eighth scale feature set is computed with a

larger receptive field, it could have global context informa-

tion regarding crowd regions in the image. The one-fourth

counterpart, though has a higher resolution, its predictions

are based on limited global context and could result in false

detection on crowd like patterns. Hence, we leverage the

context information from one-eighth scale set through a top-

down feedback connection. Basically, a transpose convolu-

tion layer is used to upsample the one-eighth feature maps

followed by a normal 3× 3 convolution to extract feedback

feature maps. The feedback maps are then concatenated

with the one-fourth scale column features. This helps the

scale column block to receive high-level context informa-

tion and achieve better prediction at higher resolution.

Apart from handling drastic variation in scale of appear-

ance of people, such a multi-scale architecture is also moti-

vated from the need to predict at the exact location in the

output map. Note that there is inherent inconsistency in

ground truth annotation of heads. The location of annota-

tions vary widely in sparse crowds, where the point could be

any where on the face or head. This issue is relatively less

for dense regions owing to small heads, but requires pre-

diction at smaller resolution for sparse crowds like the one-

eighth. At this size, there is a high chance that the predicted

and ground truth location closely match. But predicting at

1/8th resolution causes one pixel in the output to represent

multiple people in a dense region. This calls for progres-

sive prediction at increasing resolutions for better perfor-

mance at all densities. However, we empirically find that

two scales are sufficient to capture this variability for exist-

ing benchmark datasets. Now the challenge is to combine

the multi-resolution predictions, which can have overlap-

ping predictions with no scale information being available.

3.3. Multi-Scale Pretraining

The training of DD-CNN is done in two stages; the first

is the Multi-Scale Pretraining and the second is Adaptive

Scale Training (Section 3.5). Here we discuss the pretrain-

ing of the multi-scale network. The multi-scale module out-

puts per-pixel confidences at two different resolutions and

we train each scale with per-pixel binary cross entropy loss.

The loss is defined as,

L(X,Y, λ) =
1

N

∑

x,y

λY ′[x,y]logX[x,y]+
(1−Y ′[x,y])log(1−X[x,y])

(1)

where X is network prediction for a given input image and

Y is the point ground truth map. Y ′[x, y] = min(Y [x, y], 1)
simply represents the binarized version of Y , where value 1

at pixel (x, y) indicates the presence of a person and 0 for

background. Note that the summation runs over the spatial

dimensions of the output, making the objective per-pixel.

Since there are significantly less points with persons than

without in training images, class imbalance might arise. So

while training, we weigh the person class more by a factor

λ (typically 2 or 4) and is observed to improve the perfor-

mance.

Let D 1

4

and D 1

8

be respectively the one-fourth and one-

eighth scale prediction maps. We train the individual scale

columns with ground truth binary maps of same resolution.

These maps are created from the head annotations avail-

able with crowd datasets. If DGT
1

4

and DGT
1

8

represents the

ground truth maps, they are generated as,

DGT
1

s

[x, y] =
∑

x′,y′

1
(x,y)=(⌊ x′

s
⌋,⌊ y′

s
⌋)

(2)

where (x′, y′) are the annotated locations of people and s

is either 4 or 8 for the two scales. Note that 1 is indica-

tor function and ⌊.⌋ denotes floor operation. The expression

evaluates to the number of people being annotated at any

location (x, y) in the downsampled resolution. For pretrain-

ing, we optimize parameters of one-eighth scale branch by

minimizing the loss L(D 1

8

,DGT
1

8

, λ 1

8

). Standard mini-batch

gradient descent with momentum is employed (learning rate

is fixed to 1e-3). Once the training is saturated, the weights

updated for one-eighth branch are frozen and then remain-

ing one-fourth network blocks are optimized. This is done

by backpropagating one-fourth loss L(D 1

4

,DGT
1

4

, λ 1

4

). Note

that this scale is trained with the top-down feedback fea-

tures and outputs dot map with a higher resolution. Thus,

we have dot predictions at two different resolutions for the

same crowd scene and can have inconsistent or inconclusive

detections which needs to be faithfully combined.

3.4. Adaptive Scale Fusion and Dot Detection

A multi-scale architecture in the dot detection framework

offers some unique challenges. The important one is the

absence of scale information of the crowd. For a given

person in a crowd image, there is no information regard-

ing the size of the person in order to train with the correct

scale. Hence we propose a novel Adaptive Scale Fusion

(ASF) strategy, which does not require bounding box an-

notation, but delivers accurate dot prediction across drastic
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scale and density variations. ASF essentially combines the

predictions from multi-scale module and forms one output

at the higher one-fourth resolution. For any given point in

one-eighth prediction map (D 1

8

), corresponding region in

the next higher resolution scale is taken (2 × 2 region in

one-fourth scale D 1

4

) and the scale in which the maximum

response occurs is the winning candidate. This is conceptu-

ally similar to scale pyramids, but adapted for resolving dot

detections from multi-resolution predictions. To be more

precise, let p(x) = ⌊x
2 ⌋ evaluates to the coordinate in D 1

8

for a pixel at location x of D 1

4

. Now for every pixel in ASF

output T , we compute an indicator variable I[x, y] to iden-

tify the scale and correct detections are filtered out. The

ASF operation is expressed mathematically as,

I[x, y] =











1 if D 1

8

[p(x), p(y)] ≥ max
(p(x′),p(y′))
=(p(x),p(y))

D 1

4

[x′, y′]

0 otherwise,

(3)

T [x, y] =











D 1

4

[x, y] if I[x, y] = 0

D 1

8

[p(x), p(y)] if (x2 ,
y
2 ) = (p(x), p(y))

0 otherwise,

(4)

where T has one-fourth resolution. Note that the max oper-

ation is applied over all (x′, y′) pairs that maps to the same

coordinates in D 1

8

as that of point (x, y).
In a nutshell, ASF merges the dot maps from multiple

scales; a point in one scale is selected if it is maximum in

its scale neighbourhood. This framework helps to select

the scale which is giving higher prediction confidence. A

threshold is applied on the output of ASF to generate the

final highly localized binary dot map.

3.5. Adaptive Scale Training

After the Multi-Scale Pretraining of individual scale

branches, we perform joint training to fine-tune the columns

on two specialties. Ideally, we would like the D 1

8

network

to specialize on sparse crowds (or people appearing large)

and D 1

4

in dense crowds corresponding to their receptive

fields. Such a division is enforced with the ASF architecture

through a special training procedure. Note that straightfor-

ward training of ASF is not trivial due to absence of any

scale information. For example, a person may have detec-

tions in all the scales. One cannot simply take the scale

with maximum confidence, because D 1

8

scale predictions

are seen to dominate in confidence value as it aggregates

more information regarding a point than scale D 1

4

. Hence,

we device Scale Adaptive Training which fine-tunes the two

scale columns such that each responds more to its own spe-

cialties and the ASF can then be done faithfully at test time.

To aid better training with ASF architecture, we lever-

age on the observation that some scale information can be

obtained from ground truth point annotation. For example,

at one-eighth resolution prediction, people in dense crowds

would merge as one point (happens if there are multiple

people in a region of 8 × 8). This provides a clear signal

that these people could not be resolved at one-eighth scale

and has to be in the other scale. So for the Adaptive Scale

training, we incorporate this Overlap Criteria (OLC) on top

of ASF to selectively fine-tune scale columns and achieve

better specialization. For every point in D 1

8

map, a check

for overlap of ground truth points is performed. If there is

an overlap in D 1

8

, it means that the point under considera-

tion has to be trained in D 1

4

. This is done by setting the loss

for the location to be zero in one-eighth D 1

8

and allowing

D 1

4

network branch to be updated. Such an adaptive train-

ing causes the two scale networks to specialize on crowds of

different types. However, OLC does not indicate anything

about the scale of the majority non-overlapping points. For

these points, the ASF module selects a scale, which is the

scale corresponding to the point having the highest confi-

dence. This acts like promoting the “winner” and updating

the selected scale network. The exact loss formulation is:

M 1

4

[x, y] =

{

1 if DGT
1

8

[p(x), p(y)] > 1

1− I[x, y] otherwise
(5)

M 1

8

[x, y] = 1−M 1

4

[p(x), p(y)] (6)

LM = L(D 1

4

⊙M 1

4

,DGT
1

4

⊙M 1

4

, λ 1

4

)

+L(D 1

8

⊙M 1

8

,DGT
1

8

⊙M 1

8

, λ 1

8

),
(7)

where LM is joint loss for Adaptive Scale training and M 1

s

represent the mask variables to indicate selected points for

backpropagation. We train DD-CNN by minimizing LM

in same way as in pretraining. The branches of DD-CNN

progressively get specialized possibly for different crowd

densities. This results in the columns to respond more for

its own specialties and facilitate ASF at test time. Note that

OLC is crucial for the optimization as it acts as tie breaker.

At test time, only ASF is performed (as in Figure 2) and

the points are selected based on the confidence. This adap-

tive architecture helps in predicting highly localized dots

on people ranging in sparse to dense crowds. Finally, the

threshold value (typically ∼0.5) for dot detection is selected

so as to minimize the MAE (Sect 4.1) over a validation set.

4. Experiments

4.1. Evaluation Scheme and Metrics

Primarily two metrics are employed to evaluate any

crowd counting system. The most important measure is the

MAE or Mean Absolute Error and is defined as MAE =
1
N

∑N

n=1 |Cn − CGT
n |, where Cn is the count predicted for

input n while its actual count is CGT
n . This metric is a di-

rect indicative of count accuracy of the model. To mea-
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Figure 3. Predictions made by DD-CNN on images of Shanghaitech dataset [28]. The results emphasize the ability of our dot detection

approach to localize people in crowds (zoom in the dot maps to see the difference).

sure the variance and hence robustness of the count esti-

mate, Mean Squared Error or MSE is used. It is given

by MSE =
√

1
N

∑N

n=1(Cn − CGT
n )2. However, there are

some severe drawbacks with these metrics. The major lim-

itation is that the metrics do not consider localization of

the predictions. The MAE only measure the accuracy of

overall count prediction and hence we evaluate our model

on some localization metrics in Section 5.3. Note that ex-

cept for UCF-QNRF dataset, for all other experiments the

weighting hyper-parameters are set as λ 1

4

= 2 and λ 1

8

= 1.

4.2. UCF-QNRF Dataset

UCF-QNRF is introduced by [10] and by far the largest

dense crowd counting dataset. There are 1201 images for

training and 334 for the test set. The density of crowd varies

between 49 to as high as 12,865. For this dataset, the class

Method MAE MSE

Idrees et al. [9] 315 508

MCNN [28] 277 426

CMTL [19] 252 514

SCNN [4] 228 445

Idrees et al. [10] 132 191

DD-CNN (Ours) 120.6 161.5

Table 1. Performance of DD-CNN along with other methods on

UCF-QNRF dataset [9]. Our model has better count estimation

than all other methods.

weighting factors are set as λ 1

4

= 4 and λ 1

8

= 2. Table 1

benchmarks DD-CNN with other regression models. DD-

CNN obtains an MAE of 120.6, which is 12.6 lower than

that of [10]. This shows that our approach is quite adaptable

to highly diverse crowd scenario with relatively low MAE.

4.3. UCF CC 50 Dataset

UCF CC 50 dataset [9] is a dataset of 50 images of

highly diverse and dense crowds. The dataset poses a se-

vere challenge to crowd counting models due to the small

size and the drastic density variation, which ranges from 94

to 4543 people per image. A five fold cross-validation test-

ing is performed on the dataset for evaluation. From Table

2, it is seen that DD-CNN delivers an impressive MAE of

215.4 and even beats the SA-Net [6] regression model by

a margin of 43. Despite being a small dataset with drastic

diversity, the state-of-the-art counting performance of our

model, well evidence the effectiveness of dot detection.

4.4. Shanghaitech Dataset

The Shanghaitech dataset is introduced by [28] and con-

sists of two sets, Part A and Part B. Part A is quite diverse

with large variations in crowd density ranging from 33 to

3139 people per image. But Part B has relatively sparser

crowds with maximum density of 578 and is less diverse.

We train our DD-CNN on the dataset and Part A results are

reported in Table 2. Note that all other models in the ta-

ble are based on density regression and is not exactly fair

to compare DD-CNN with just MAE. DD-CNN achieves a
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Figure 4. Dot predictions made by individual scale columns of DD-CNN on Shanghaitech dataset [28]. The outputs clearly shows that the

multi-scale training improves significantly the dot prediction quality. (Zoom in to see the difference)

UCF CC 50 ST Part A

Model MAE MSE MAE MSE

Zhang et al. [27] 467.0 498.5 181.8 277.7

MCNN [28] 377.6 509.1 110.2 173.2

SCNN [4] 318.1 439.2 90.4 135.0

CP-CNN [20] 295.8 320.9 73.6 106.4

IG-CNN [2] 291.4 349.4 72.5 118.2

Liu et al. [14] 279.6 388.9 72.0 106.6

IC-CNN [17] 260.9 365.5 68.5 116.2

CSR-Net [11] 266.1 397.5 68.2 115.0

SA-Net [6] 258.4 334.9 67.0 104.5

DD-CNN 215.4 295.6 71.9 111.2

Table 2. Comparison of DD-CNN performance on UCF CC 50

[9] and Shanghaitech Part A dataset [28]. DD-CNN delivers very

competitive count accuracy relative to other regression models.

detection MAE of 71.9 in Part A, which is very close to the

count error of best regression methods, with the difference

being just 4.9. This again indicates that our approach has

competitive performance along with all the merits of being

a detection model. Figure 3 displays some dot predictions

results of DD-CNN.

5. Analysis and Ablations

5.1. Effect of Multi-Scale Architecture

As described in Section 3.2, the proposed DD-CNN em-

ploys a multi-scale architecture with dot predictions at two

different resolutions. This is motivated so as to address the

drastic scale variation across sparse to dense crowds. We

require localized dot prediction for both large faces/heads

as well as for people in dense regions. A single network

prediction would be biased to frequently appearing crowd

type and would give lower confidence for large faces and

fail to cross detection threshold. This problem of almost

no response for people appearing large is severe with den-

sity regression (see Figure 3). To empirically establish the

usefulness of the proposed DD-CNN architecture, we ablate

our model in Table 3. We train a regression model, CSRNet-

A [11] (CSR-A-reg) which is similar to the network used for

one-eighth branch of DD-CNN. The count errors for indi-

vidual scale columns are also listed in Table 3 and outputs

are shown in Figure 4. As expected, the individual scale

MAEs are higher than the combined multi-scale count error.

We also see that MAE drops significantly without the Over-

lap Criteria (OLC) for training. Further, we run DD-CNN

without the top-down feedback (TDF) connection. The per-

formance with feedback is higher than without, indicating a

possible propagation of high-level context to the next scale.

5.2. Dot vs Density Maps

We emphasize that the dot map framework is fundamen-

tally different from density map in terms of the approach,

philosophy and benefits. Here we show that the dot maps

cannot be easily obtained by post-processing density maps.

The CSR-A-reg model trained for regression in Section 5.1,

is evaluated and density predictions are converted to dot

ST Part A UCF-QNRF

Method MAE MSE MAE MSE

CSR-A-reg 73.65 120.06 173.45 203.27

CSR-A-reg-dot 84.61 142.03 198.34 248.43

CSR-A-thr 309.8 513.4 384.42 566.98

CSR-A-thr-dot 167.09 218.22 164.38 204.97

DD-CNN D 1

8

only 75.67 109.36 165.78 254.71

DD-CNN D 1

4

only 125.19 190.77 234.7 511.9

DD-CNN (no TDF) 81.34 136.21 341.3 422.4

DD-CNN (no OLC) 104.95 151.26 346.81 406.59

DD-CNN 71.9 111.2 120.6 161.5

Table 3. Results for DD-CNN model ablative experiments. The

results evidence the effectiveness of the design choices.
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maps by thresholding. The threshold value is selected over

a validation set to minimize the detection MAE. However,

we find it difficult to threshold density maps without loss

of counting performance. Lower the sigma (σ) of Gaussian

used for density map generation, lower is the MAE drop.

Though CSR-A-reg is trained with sigma as small as 1.0 (at

prediction resolution), the MAE after thresholding is above

300, labeled as CSR-A-thr entry in Table 3. We even go to

the extreme of dot map regression (σ = 0), for which the

normal MAE is reasonable (CSR-A-reg-dot). But again, the

thresholded MAE is very high (CSR-A-thr-dot). Some out-

puts of this model are shown in Figure 5, which clearly in-

dicates hardly any detection in sparse regions and spurious

or multiple predictions in remaining areas. Since no scale

information regarding the detected person (like bounding

boxes) is available, simple non-maximal suppression tech-

niques do not work well across density ranges. Hence it is

clear that these thresholding methods suffer from poor de-

tections and results in much higher MAE than DD-CNN.

5.3. Localization of Detections

In this section, we analyse the localization of dot detec-

tion framework through some additional metrics. The MAE

metric popularly being used in crowd counting, does not

take into account prediction localization. It simply checks

whether the overall crowd count of the scene matches with

the ground truth. In other words, it is not necessary to de-

tect people to get good MAE scores, but spurious responses

could be counted as well. Hence, we propose a new metric

named Mean Offset Error (MOE). MOE is defined as the

distance in pixels between the predicted and ground truth

dot averaged over test set. This is evaluated at the model

prediction resolution and directly accounts for dot localiza-

tion. A fixed penalty of 12 pixels is added for absent or

spurious dot detections. Next, we follow [10] and consider

a detection correct if the prediction is within a threshold

distance. The threshold is varied to evaluate localization

with average precision (L-AP), recall (L-AR) and Area un-

Figure 5. Detection by thresholding density maps of CSR-A-thr-

dot net; results show almost no detections in sparse regions.

ST Part A UCF-QNRF

Metric CSR-A DD-CNN CSR-A DD-CNN

MOE ↓ 5.13 4.93 4.16 2.91

L-AP ↑ 0.61 0.65 0.72 0.82

L-AR ↑ 0.76 0.81 0.77 0.83

L-AuC ↑ 0.45 0.69 0.68 0.78

GAME(0) ↓ 167.09 71.9 176.43 120.6

GAME(1) ↓ 214.87 86.08 185.76 123.54

GAME(2) ↓ 241.44 91.05 194.36 134.79

GAME(3) ↓ 263.0 105.12 216.26 141.68

Table 4. Evaluation of DD-CNN and baseline regression on the lo-

calization metrics to analyse the dot prediction performance. Our

model seems to achieve better localization of predictions.

der ROC (L-AuC). Furthermore, the Grid Average Mean

absolute Error or GAME [7] metric, which is indicative of

local count prediction accuracy, is also considered. GAME

divides the prediction map into a grid of cells and the cell

crowd counts are averaged.

Table 4 lists the performance of our model relative to

the regression baseline on the metrics specified above. We

use CSR-A-thr-dot model defined in Section 5.2 as baseline

and compute localization metrics on detections from thresh-

olded density maps. Clearly, DD-CNN outperforms the re-

gression model in localization as evident from MOE and L-

AUC scores. The same trend is observed in different levels

of GAME metric as well. These experiments demonstrate

that the proposed dot detection framework delivers superior

localization, while still maintaining high count accuracy.

6. Conclusion

We propose a novel change to the framework of density

regression employed for dense crowd counting. The den-

sity maps typically generated by existing regression mod-

els suffer from poor localization among other limitations.

We address these issues by reformulating the counting

task as a localized dot prediction problem. The proposed

model, DD-CNN, is trained for per-pixel binary classifica-

tion task of predicting a person. DD-CNN employs a multi-

column multi-scale architecture to handle the drastic scale

variations. Extensive evaluations indicate that the model

achieves better or competitive performance compared to the

state-of-the-art methods, despite providing the merits of a

dot detection system. In the future, we hope that the com-

munity would move from the current regression paradigm

to the dot detection framework and hence have more practi-

cal benefits of accurate localization.
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