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Abstract

Satellite images hold great promise for continuous en-

vironmental monitoring and earth observation. Occlusions

cast by clouds, however, can severely limit coverage, mak-

ing ground information extraction more difficult. Exist-

ing pipelines typically perform cloud removal with sim-

ple temporal composites and hand-crafted filters. In con-

trast, we cast the problem of cloud removal as a condi-

tional image synthesis challenge, and we propose a train-

able spatiotemporal generator network (STGAN) to re-

move clouds. We train our model on a new large-scale

spatiotemporal dataset that we construct, containing 97640

image pairs covering all continents. We demonstrate ex-

perimentally that the proposed STGAN model outperforms

standard models and can generate realistic cloud-free im-

ages with high PSNR and SSIM values across a variety of

atmospheric conditions, leading to improved performance

in downstream tasks such as land cover classification.

1. Introduction

Satellite images are increasingly utilized in a variety of

applications, including monitoring environments [31], map-

ping economic development [14] and crop types [18], clas-

sifying land cover [17], and measuring leaf index [4]. How-

ever, satellite images are often occluded by clouds – roughly

two thirds of the world is covered by clouds at any point in

time [16]. Thick clouds can hide the contents of an image,

and even thin translucent clouds can dramatically impact

the utility of satellite images by distorting the ground be-

low. Thus, removing cloud occlusions from satellite images

to generate cloud-free images is a critical first step in most

satellite analytic pipelines (see Fig. 1). ∗

Traditional approaches to removing cloud occlusions

employ hand-crafted filters such as mean and median fil-

ters to generate a background image using large volume of

images over a specific area [11, 30, 25]. For instance, [25]

∗Both authors contributed equally.

uses Sentinel-2 images taken every 6-7 days across a time

period of three months. However, these image composite

approaches require a large volume of mostly cloud-free im-

ages taken over a unchanging landscape, greatly limiting

their usability and applications. They are also untenable

in situations where the landscape gradually changes over

a long period of time, as the older images do not accu-

rately reflect the current landscape. These methods also

fail to synthesize realistic ground in situations where re-

gions are persistently occluded. Another approach lever-

ages existing cloud-detection algorithms [6, 19, 12] to de-

tect cloudy regions and fill in or reconstruct those areas.

However, this in-painting method fails to utilize sources of

partial information–areas in shadow are partly visible, and

the clouds themselves have some degree of transparency.

Compared to previous methods, generative modeling has

proven to be a more effective method for recovering miss-

ing information based on a learned distribution. Generative

models have recently achieved state-of-the-art results in the

task of image-to-image translation [7, 13, 35, 33, 34, 24, 20]

and can be effectively applied to translate cloudy images to

cloud-free images. They can be trained with many fewer

images than image composite methods (ex. [11, 30, 25]),

and the machine learning approach leverages learned as

opposed to hand-crafted featurizers. However, image-to-

image translation requires a paired dataset where each entry

is a cloudy image and its cloud-free counterpart. Due to a

lack of suitable cloudy-cloudy free paired datasets, previ-

ous attempts at applying generative models to the removal

of cloud occlusions, such as in [5] and [29], have relied on

synthetically-generated image pairs where simulated clouds

are artificially added to cloud-free images. Synthetic im-

ages tend to lend themselves to unrealistic representations

as the simulated clouds are algorithm-based, and models

trained on synthetically generated pairs fail to generalize

to real images [5]. Furthermore, current work using gen-

erative models does not utilize the spatiotemporal informa-

tion offered by satellite imagery, relying on just a single

cloudy image instead of multiple cloudy images with dif-

ferent cloud coverages. As a result, generated images often
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Figure 1: Full Cloud Removal Pipeline. Left: The first model uses our novel, real, paired dataset to generate cloud-free

images (one-to-one mapping). Right: The final proposed model uses a novel spatiotemporal generator network to generate

cloud-free images from the given sequence of cloudy images (many-to-one mapping).

lack detail and specificity in previously-occluded regions

and are unsuitable for downstream use.

To overcome the limitations of synthetic data and the in-

ability of previous works to utilize temporal data, we cu-

rate and assemble two new paired datasets from publicly-

available Sentinel-2 satellite images [10]. The Sentinel-2

satellites visits the same locations periodically, with an av-

erage revisit time of approximately 6-7 days. This often

allows us to find a cloud-free image in a given location as

well as corresponding cloudy images from previous proxi-

mal satellite passes. Using this procedure, we construct two

datasets. The first dataset contains nearly 100,000 paired

images and is by far the largest paired cloud-removal dataset

available for public use. The second dataset is a tempo-

ral dataset, pairing clear images with several corresponding

cloudy images from different points in time to leverage the

temporal nature of satellite data. Both datasets offer both

RGB and infrared (IR) channels, and the temporal dataset

is, to the best of our knowledge, the first of its kind.

The added information from the temporal dataset allows

us to learn models that generate more detailed and accu-

rate images, particularly in occluded areas. In order to uti-

lize the gathered spatiotemporal information and better ap-

proximate the true cloud-free image, we design and propose

several novel branched generative architectures based on U-

Net [26] and ResNet [8]. These architectures handle tempo-

ral information by extracting features from multiple images

at the same location at once, then use all of the extracted

features to generate a single cloud-free input. Using these

new spatiotemporal generator networks (STGAN), we are

able to effectively synthesize partial information from sev-

eral sources into a single, detail-rich cloud-free image.

Therefore, to overcome the limitations of previous ap-

proaches, we propose two key contributions:

1. Two new paired datasets (single-image and spatiotem-

poral) using real-world Sentinel-2 satellite images.

With both RGB and IR data, these datasets are the

largest available to date.

2. Novel spatiotemporal generator networks (STGAN)

(Fig. 1) to better capture correlations across multi-

ple images over an area. These models leverage our

unique temporal dataset and multi-channel informa-

tion offered by satellite images to effectively generate

a cloud-free image.

2. Related Work

Generative models for domain translation Deep gen-

erative models have been extensively applied to the domain

translation problem. There are two approaches: unpaired

image translation where there are two general categories of

images and paired image translation where each image in a

category directly corresponds to another image in the other

category. Prominently, CycleGAN [34], which consists

of two generator-discriminator pairs: one for each image

translation direction, has been used for unpaired domain-

translation applications [29]. When using paired images,

the Pix2Pix model, [13], a conditional-GAN (cGAN) with

a U-Net [26] generator, has been shown to achieve state-of-

the-art results across a variety of domains [13].

Conditional generative models for cloud removal

There has been limited work on using generative models

to remove cloud occlusions. Singh et. al. [29] attempt

at unpaired image translation using a variation on the Cy-

cleGAN [34] to target the removal of extremely thin, filmy

clouds. However, this study lacks quantitative evaluation, is

limited to a very narrow scope of clouds, and is unable to

tackle thicker, more opaque occlusions.

Approaches relying on paired image translations have

largely relied on creating synthetic image pairs. Enomoto

et. al. [5] use Perlin noise [22] to generate synthetic cloudy

images. Using both the synthetic data and the original

images’ near infrared (NIR) channel, they train a Multi-

spectral conditional Generative Adversarial Network (MC-

GAN) to generate cloud-free images. However, when cre-
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ating the synthetic images, they do not modify the NIR im-

ages resulting in a mismatch in channel data [6]. Conse-

quentially, there is a significant difference between the MC-

GAN’s performance on the training images in [5] and the

performance on real-world cloudy images, severely limit-

ing generalizablity. Sandhan et. al. [27] specifically target

the removal of extremely filmy high-altitude clouds, using

a generative model trained on synthetic data. While suc-

cessful on thin and translucent clouds, their model fails to

generalize to more heavily occluded images. Shibata et al.

[28] train a model to remove cloud occlusions from sea

temperature satellite imagery using pairs where the ”cloud-

free” image is partially covered in clouds, and a second

synthetically-generated ”cloudy” image takes the first im-

age and adds additional occlusions. In this case, the GAN’s

objective is to only remove the additional synthetic clouds.

However, this methodology is only used for reconstructing

low-resolution single-channel temperature data, is drasti-

cally different from the color signals in traditional satellite

imagery, and it fails to leverage partial information avail-

able in filmy regions of clouds. Here we note that there

does exists a public paired dataset for cloud occlusion re-

moval created by Lin et al. [21], but it consists of only 500

paired cloudy and cloud-free images that are geographically

and topographically homogeneous.

Overall, the approaches have two main issues: they fail

to generalize to real-world images and they disregard valu-

able temporal information available in satellite image data.

3. Problem Definition

Let X = R
w×h×C denote the set of multispectral satel-

lite images of size (w, h) = 256×256 with C = 4 channels

(bands).

Let {Xt
ℓ , Z

t
ℓ}t,ℓ denote a collection of random variables

Xt
ℓ , Z

t
ℓ ∈ X , where (Xt

ℓ , Z
t
ℓ) represent a pair of clear and

cloudy views of location ℓ at time t = 0, 1, · · · . There is a

joint underlying probability distribution p({Xt
ℓ , Z

t
ℓ}t,ℓ) de-

scribing on-the-ground changes over time and the relation-

ship between cloud-free and cloudy satellite images. We

make the following assumptions:

• We assume Xt
ℓ changes slowly over time, i.e., Xt

ℓ is

close to Xt−1
ℓ for all t and for all locations ℓ.

• We assume P (Xt
ℓ |Z

t
ℓ) = P (Xt

ℓ |Z
t
ℓ)∀t, ∀ℓ, i.e., the ef-

fect of cloud cover is the same over time and at differ-

ent locations.

Our goal is to learn a model of the conditional distri-

bution P (Xt
ℓ |Z

t
ℓ , · · · , Z

t−T
ℓ ). In particular, when given a

single cloudy image (T = 0), we model the conditional dis-

tribution P (Xt
ℓ |Z

t
ℓ).

The major challenge associated with removing cloud oc-

clusions is that, for every location, at time ℓ, t we only get

to observe Xt
ℓ or Zt

ℓ , but never both. This makes learning

P (Xt
ℓ |Z

t
ℓ) difficult.

4. Building Datasets

To enable models to generate cloud-free images, we

introduce two novel datasets. The first, Ysingle =
(Xt

ℓ , Z
t−1
ℓ ), contains single-image cloudy-cloud free pairs,

and can be used to learn models in domains where only

a single cloudy image is available. The second, a tempo-

ral dataset, Ytemporal = (Xt
ℓ , Z

t−1
ℓ , · · · , Zt−T

ℓ ), contains 3
cloudy images corresponding to each cloud-free image.

Figure 2: Distributions of the latitude and longitude of

Sentinel-2 images in our datasets.

4.1. Data Collection

We use publicly-available Sentinel-2 images from 32270

distinct tiles, where each tile is a 10980×10980-pixel image

with a resolution of 10m/pixel. The captured images offer

multi-spectral image data from across 13 different bands,

with a new image captured over the same location every 6
days on average. We use only data from the RGB and IR

bands and train all models both including and excluding the

IR channel to allow use in settings where IR data is unavail-

able.

4.2. Image Crop Classification

To generate our dataset, we extract 100 256×256 pixels

crops from each of the 10980×10980-pixel tiles for a to-

tal of 3,227,000 possible image locations in the dataset. We

then label each image crop as clear or cloudy by first thresh-

olding based on percentage of cloud cover, which we obtain

from the cloud collection algorithm presented in [12], and

then applying heuristics as described in the appendix. We

retain image crops with percentage cloud cover under 1% as

clear and crops with percentage cloud cover between 10%

and 30% as cloudy. We exclude images with higher than

30% cloud cover, as many of the images had insufficient

visible ground upon manual inspection. We restrict images

of ocean to no more than 10% of the dataset, discarding ad-

ditional images. The distribution of the locations of image
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crops in the resulting dataset is displayed in Fig. 2. Further

details on image classification are included in the supple-

mental appendix.

4.3. Image Crop Pairing

In order to find a clear image at every location, we find

the most recent clear crop at a given location, Xt
ℓ , using

the clear/cloudy image crop labels from Sect. 4.2. For each

clear crop, Xt
ℓ , we find all associated cloudy crops, po-

tentially Zt−1
ℓ , · · · , Zt−2

ℓ , · · · , taken from the same loca-

tion in the prior 35 days. We build Ysingle with only the

most recent cloudy image as input. In Ysingle, there are

97640 image pairs, drawn from 17800 distinct tiles world-

wide. Each pair is of the form (Xt
ℓ , Z

t−1
ℓ ). Under our as-

sumptions, Xt−1
ℓ is an accurate approximation of Xt

ℓ , so

the pair (Xt
ℓ , Z

t−1
ℓ ) approximates the pair (Xt−1

ℓ , Zt−1
ℓ ).

This dataset helps us model the conditional distribution

P (Xt
ℓ |Z

t
ℓ).

Next, we build Ytemporal using clear images that are

paired with several cloudy images. In Ytemporal, we pair

each clear image with the 3 most recent cloudy images.

Discarding clear images that do not have at least three cor-

responding cloudy images, there are 3101 images, drawn

from 945 distinct tiles worldwide. Again, the grouped im-

ages are of the form (Xt
ℓ , Z

t−1
ℓ , · · · , Zt−T

ℓ ) and help ap-

proximate P (Xt−1
ℓ |Zt−1

ℓ , · · · , Zt−T
ℓ ).

Figure 3: Samples from our single image paired dataset.

The first row displays the RGB channels of the cloudy im-

age, Zt
ℓ , the second row displays the IR channel, and the

third row displays clear RGB images, Xt
ℓ .

5. Methods

5.1. Cloud Removal using a Single Image

We approximate P (Xt
ℓ |Z

t
ℓ) using a Pix2Pix model [13],

which has achieved state-of-the-art results for paired image

to image translation tasks. Pix2Pix is an instance of a con-

ditional GAN (cGAN) where the generator has a variant on

an encoder-decoder structure, with a series of convolutional

layers compressing, then expanding the input image. The

Pix2Pix generator is unusual since the generator has a num-

ber of skip connections, as in the U-Net [26] architecture.

This allows the network to bypass further encoder/decoder

layers if the model determines that additional compression

and decompression is not necessary. Further details on our

implementation of the Pix2Pix model are available in the

supplemental appendix.

We train the Pix2Pix model on the paired dataset Ysingle,

both including and excluding IR information, and evaluate

on real-world cloudy and cloud-free images. The model

trained with IR information can be directly compared to the

MCGAN approached discussed earlier [5], as both models

use RGB and IR channels as input.

5.2. Cloud Removal using Spatiotemporal Informa­
tion

We train our spatiotemporal model on

Ytemporal, described in 4.3 to learn the distribution

P (Xt
ℓ |Z

t
ℓ , · · · , Z

t−T
ℓ ). As with the single-image model,

we train the spatiotemporal model on versions of the

dataset both including and excluding an IR channel.

To fully utilize and incorporate the spatiotemporal in-

formation, we propose two novel generator architectures,

paired with the PatchGan discriminator from [13]:

1. A branched ResNet model that first passes the three in-

puts through separate encoder-decoder pipelines, then

concatenates the three sets of image features in a pair-

wise manner to produce three new inputs, which in

turn are each passed through separate encoder-decoder

pipelines and are then concatenated, before being

passed through one final encoder-decoder pipeline.

This model is shown in Fig. 4a.

2. A U-Net where each image is passed into a separate

encoder pipeline, then concatenated and fed into a sin-

gle composite decoder, as shown in Fig. 4b.

Branched ResNet For this architecture, we define each

of the individual encoder-decoder pipelines as follows: two

convolutional layers with stride 2 to downsample the fea-

ture map, followed by nine residual convolutional layers,

followed by two convolutional layers with stride 1/2 to up-

sample the feature map. The inspiration for the architecture

of the encoder-decoder comes from [15], and was previ-

ously shown to perform well in CycleGAN [34]. The in-

tuition between using multiple encoder-decoder pipelines is

that the first stage of pipelines extracts the network’s best

guess of the true cloud-free image from individual cloudy

images, then the second stage of pipelines combines the
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Figure 4: The proposed spatiotemporal generator networks. Left: The Branched ResNet generator uses encoder-decoder

residual networks to learn feature maps from individual images, then repeatedly combines these feature maps and passes

them through subsequent encoder-decoders to extract features from multiple images. Right: The Branched U-Net modifies

a traditional U-Net architecture to allow each of the input images to encode separately, and then they are decoded together.

guesses (i.e. convolutional volumes) pairwise for each of

the branches, and the final encoder-decoder pipeline com-

bines all the guesses into one final output generation. The

network maximizes information gained from using multiple

images by providing pairwise overlap between the convolu-

tional volumes in a branch-like manner.

Branched U-Net For this architecture, similar to [13],

we build upon the general U-Net framework with 8 down-

sampling and 8 upsampling blocks, with skip connections

added between each block i and block n− i, where n = 16
is the total number of blocks. Each block, as in [13], is com-

prised of a convolutional layer (downsampling or upsam-

pling depending on the stride), followed by batch normal-

ization and a ReLU unit. Three input images are encoded

in separate pipelines, where each block is connected to the

corresponding block in the decoder by a skip connection.

After the final encoding block, the three feature maps are

concatenated and passed to a single decoder pipeline. After

each decoder block, the output is concatenated with outputs

from each of three encoder blocks through skip connections

from each of the encoder pipelines. The intuition behind

this architecture involves encoding images separately to ex-

tract key features from each of them, while decoding the

images together in order to generate a single cohesive out-

put image. The model architectures are further described in

the supplementary appendix.

The objective function of the spatiotemporal models con-

sists of a conditional GAN loss, and L1 loss which is param-

eterized by the hyperparameter λ:

LcGAN (G,D) = E(Zℓ,X
t

ℓ
)[logD(Zℓ, X

t
ℓ)]

+ EZℓ
[log(1−D(Zℓ, G(Zℓ)))]

LL1(G) = E(Zℓ,X
t

ℓ
)[||X

t
ℓ −G(Zℓ)||1]

G∗ = argmin
Ds

max
G

LcGAN (G,D) + λLL1(G)

where G, and D represent the spatiotemporal generator and

discriminator networks, and Zℓ = Zt−1
ℓ , · · · , Zt−T

ℓ . The

input to the discriminator, D, is a clear image, Xt
ℓ , or a

fake clear image, X̂t
ℓ , generated by G passed along with the

original cloudy images, Zt
ℓ , · · · , Z

t−T
ℓ .

6. Experiments and Results

We train both Pix2Pix and MCGAN models on our sin-

gle image dataset (Ysingle) and train our novel STGAN ar-

chitectures on our spatiotemporal dataset (Ytemporal). In

order to effectively evaluate the model performance on re-

moval of cloud occlusions, we compare against traditional

approaches (mean filter, median filter, composite filter) and

report image similarity metrics and downstream task perfor-

mance. Ultimately, we are able to achieve state-of-the-art

results for cloud occlusion removal using both of our newly

constructed datasets and STGAN architectures.

6.1. Metrics

Two standard metrics used in measuring image similar-

ity and degradation are peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM) [32]. PSNR, largely

based on mean-squared error (MSE), is a metric that is

based on the average difference between corresponding pix-

els in two images. It is defined as follows:

PSNR(x , y) = 10 · log10

(

MAX 2
I

MSE (x , y)

)

(1)

Here, x and y are two images, m and n are the height

and width of the images respectively, MSE is the mean-

squared error between the two images, and MAX 2
I is the

maximum possible value of any pixel in the image. PSNR

values range from 0 to 48 in images where the maximum

pixel value is 255, with larger values representing more sim-

ilar images. SSIM is a metric that, unlike PSNR, aims to

track similarity in visible structures in the image and cap-

tures more of the relationship between large-scale features
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of the image than PSNR, which is pixel-based. SSIM val-

ues range from 0 to 1, with larger values representing more

similar images.

6.2. Experimental Details

We train the Pix2Pix model [13] on Ysingle with both RB

and RGB+IR data. Additionally, we use the previous state-

of-the-art model for removing all types of cloud occlusions,

MCGAN, as a baseline. We train the MCGAN [5] model

from scratch on our paired dataset (Ysingle) and use it as a

point of comparison for our own proposed models.

Similarly, we train the proposed STGAN models on

Ytemporal for both RGB and RGB+IR data. For the

branched models from Fig. 4, we train models both shar-

ing weights across different branches and with independent

weights across branches. We compare against two baselines

which aggregate the three cloudy images in varying ways:

a mean filter where the generated image is the mean of the

three temporal cloudy images and a median filter where the

generated image is the median of all cloudy images.

The dataset splits, training details and hyperparameters

can be referenced in the supplementary appendix.

6.3. Results on Single Image Models

Qualitative Results Fig. 5 shows the original Sentinel-2

cloudy images, the ground-truth cloud-free images, images

generated by the MCGAN baseline [5], and cloud-free im-

ages generated using the Pix2Pix model. We can see that

the Pix2Pix model is able to generate the parts of the image

where clouds and their shadows are not present and keep

those areas intact while making reasonable, if sometimes

blurry, inferences about the ground beneath the occlusions.

On the other hand, the MCGAN, behaves unrealistically in

some cases, even failing to preserve some visible areas.

Quantitative Results Table 1 shows that the Pix2Pix

model trained on the single image dataset (Ysingle) achieves

state of the art results when trained on either RGB data or

RGB+IR data. In particular, note that both models outper-

form the baseline and previous state-of-the-art MCGAN:

the Pix2Pix RGB-trained model’s PSNR of 21.130 out-

performed MCGAN’s 20.871, and the Pix2Pix RGB+IR-

trained model’s SSIM of 0.485 vastly outperformed MC-

GAN’s 0.424. Interestingly, the IR data leads to a greater

change in SSIM than PSNR, which indicates better preser-

vation of visual structures (see Fig. 7). In summary, our

single-image model outperforms existing work and, to the

best of our knowledge, achieves state of the art results at

removing cloud occlusions from single-image inputs.

6.4. Results on Spatiotemporal Models

Qualitative Results Fig. 6 shows the three input cloudy

images, ground-truth cloud-free image and our generated

cloud-free images from our best performance model based

Figure 5: Results of models trained on Ysingle to gener-

ate cloud-free images given an input cloudy image. Dense

clouds make it challenging to learn mapping by using a sin-

gle image.

Validation Set Test Set

Models PSNR SSIM PSNR SSIM

Pix2Pix (RGB) 23.130 0.442 22.894 0.437

Pix2Pix (RGB + IR) 21.352 0.485 21.146 0.481

MCGAN (RGB + IR) 20.871 0.424 21.013 0.381

Raw Cloudy Images 8.742 0.396 8.778 0.398

Table 1: The performance of the models, in terms of PSNR

and SSIM scores, on the paired dataset with and without IR

data relative to the cloud-free ground truth.

Validation Set Test Set

Models PSNR SSIM PSNR SSIM

Pix2Pix (RGB) 23.130 0.442 22.894 0.437

Mean Filter 16.962 0.174 16.893 0.173

Median Filter 9.081 0.357 9.674 0.395

STGAN U-Net 25.484 0.534 25.822 0.564

STGAN ResNet 25.519 0.550 26.000 0.573

STGAN U-Net (IR) 25.142 0.651 25.388 0.661

STGAN ResNet (IR) 25.628 0.724 26.186 0.734

Raw Cloudy Images 7.926 0.389 8.289 0.422

Table 2: The performance of the models, in terms of PSNR

and SSIM scores, on the real spatiotemporal dataset relative

to the cloud-free ground truth.

on SSIM. Both are STGAN models based off a branched

ResNet architecture. If a detail is clearly visible in at least

one image, it appears in the images generated by both mod-

els. The models are even able to generate realistic ground
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Figure 6: Results of learned many-to-one mapping to generate cloud-free images given a sequence of cloudy images. Note

that a number of these cases, especially the fifth column, involve dense cloud coverage and are quite difficult to reconstruct.

IR information is available for all cloudy images but is not shown.

features in some areas obscured across all cloudy images.

Compared to the single-image models, the STGAN models

are able to generate much more realistic and crisp cloud-

free images that infer features and terrain more accurately.

The models generate key characteristic features and terrain

that are also present in the ground truth cloud-free images.

In addition, the inclusion of IR data influences the fine de-

tails of generated images. While images generated from the

RGB model tend to synthesize a variety of false artifacts,

the model incorporating IR tends to preserve visible detail

while filling in unknown regions with far fewer artifacts.

Furthermore, we assess the effectiveness of composite

filter where a cloud detection algorithm [12] is run over all

cloudy images and the image is generated by averaging over

all pixels that are cloud-free (i.e. an in-painting approach).

Most of the images generated by the composite filter (shown

in Appendix) contain large swathes of missing pixels (i.e.

where there were no cloud-free pixels in all temporal im-

ages) demonstrating that it has difficulty removing dense

occlusions.

Quantitative Results Table 2 shows that the ResNet-

based STGAN outperforms the U-Net-based STGAN. With

RGB data, the ResNet-based STGAN achieves PSNR and

SSIM values of 26.000 and 0.573 respectively, while the in-

corporation of IR data raises these numbers to a PSNR of

26.186 and an SSIM of 0.734, an improvement of 0.161 in

SSIM over the U-Net. This is consistent with visual ob-

servations that IR data helps the model maintain clarity in

unobstructed reasons. The general coloring of the image

does not differ by much (see similar PSNR scores), but the

details generated by the models are substantially different,

as seen in Fig. 7.

The STGAN models far outperform rudimentary base-

lines, and provide a substantial improvement over the

single-image Pix2Pix models. The STGAN trained on

RGB data achieves a 13.6% improvement in PSNR and a

31.1% improvement in SSIM over the single-image model,

while the STGAN which incorporates the IR band gains a

22.6% improvement in PSNR and a 52.6% improvement in

SSIM. Improvements in SSIM are generally due to better

performance in capturing the visible structures in the im-

age. Therefore, our novel temporal architectures enable the

model to capture much more detail in the output image than

single-image models such as Pix2Pix.

Note that the ResNet-based STGAN on RGB images has

a PSNR of 26.373, beating both the PSNR of 17.45 from
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[27] by 8.92 (despite their model only operating only on

filmy cloud images) and the PSNR of 20.871 from MC-

GAN [5] by 5.50. Thus, to the best of our knowledge, our

spatiotemporal models achieve state-of-the-art results on re-

moving dense cloud occlusions from satellite images with

both RGB and RGB+IR channels.

Figure 7: A closer look at the effects of including IR in-

formation (from Figure 6). The first row is the image gen-

erated from RGB channels, while second row includes the

IR channel. Note that the models using only RGB channels

tend to introduce false artifacts as highlighted above.

6.5. Evaluation on Downstream Tasks

Finally, we evaluate the performance of models trained

on our datasets on a downstream task of land cover classi-

fication. We train a baseline land classification model on

the EuroSat dataset [9], a pre-labeled dataset comprised of

27,000 labeled Sentinel-2 satellite images consisting of 10

classes (sea and lake, river, residential, permanent crop, pas-

ture, industrial, highway, herbaceous vegetation, forest and

annual crop). From our datasets, we hand-labeled images

(corresponding cloudy and cloud-free) with approximately

equal distribution across all 10 categories to create the test

set and generated cloud-free images from the test set us-

ing our proposed approaches, as described in the Appendix.

Finally, we evaluate the accuracy of the trained land classi-

fication model (on the test set) in predicting the correct class

from 1) true cloudy images 2) true cloud-free images and 3)

generated cloud-free images.

As seen in Table 3, the STGAN generated cloud-free

images that perform comparably (93.96%) against the true

cloud-free images (98.66%). Note that the classification

categories are explicit and include labels with subtle visual

Model Accuracy

Cloudy 72.48%

Cloud-free 98.66%

MCGAN 88.59%

Pix2Pix (RGB) 90.60%

Pix2Pix (RGB + IR) 91.27%

STGAN (RGB) 93.96%

STGAN (RGB + IR) 93.96%

Table 3: Effectiveness of generated cloud-free images com-

pared to true cloud-free and cloudy images for the task of

land cover classification

differences such as industrial, highway, and residential land

areas which require detailed images to be classified cor-

rectly. Therefore, models trained using our generated im-

ages generalize to real data. In contrast, the cloudy images

have a significantly worse accuracy of 72.48% than both

the true cloud-free and generated cloud-free images. Thus,

in alignment with our reported metrics, the spatiotempo-

ral models perform better than single-image models, which

outperform the previous state of the art, MCGAN.

With access to cloud-free satellite images, automated

land cover classification can be used towards agriculture,

disaster recovery, climate change, urban development, and

environmental monitoring [23], [1], [2], [3]. Therefore, this

downstream task evaluation demonstrates that the proposed

models, trained on our datasets, can accurately reconstruct

cloud-free images from cloudy images for land cover clas-

sification, which has many critical applications.

7. Conclusion

In this study, we propose a novel framework to generate

cloud-free images from cloudy images using deep genera-

tive models. We construct novel, large-scale, global, paired

spatial and spatiotemporal datasets using publicly available

Sentinel-2 images. These datasets are the largest datasets

of their kind available to date. Additionally, we introduce

novel generative architectures (STGAN) that leverage our

spatiotemporal satellite data to recover realistic cloud-free

images. Our experiments demonstrate that the STGAN sig-

nificantly outperforms the state-of-the-art models on gener-

ating cloud-free images across a variety of challenging ter-

rains, even in the cases of thick and dense cloud occlusions.

Finally, we have demonstrated that the generated cloud-free

images are useful for real-world downstream tasks. We

hope our work makes more satellite data usable for further

research and applications.
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