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Abstract

Recent work about synthetic indoor datasets from per-

spective views has shown significant improvements of ob-

ject detection results with Convolutional Neural Networks

(CNNs). In this paper, we introduce THEODORE: a

novel, large-scale indoor dataset containing 100,000 high-

resolution diversified fisheye images with 16 classes. To this

end, we create 3D virtual environments of living rooms,

different human characters and interior textures. Beside

capturing fisheye images from virtual environments we cre-

ate annotations for semantic segmentation, instance masks

and bounding boxes for object detection. We compare our

synthetic dataset to state of the art real-world datasets for

omnidirectional images. Based on MS COCO weights, we

show that our dataset is well suited for fine-tuning CNNs

for object detection and semantic segmentation. Through a

high generalization of our models by means of image syn-

thesis and domain randomization we reach a AP up to 0.90

for class person on our own annotated fisheye evaluation

suite (FES). Additionally, the evaluation of six classes was

done through object detection and semantic segmentation

on FES. The segmentation task on FES leads to 0.36 mIoU

on all classes and to a mAP of 0.61 for the object detection.

1. Introduction

Synthetic images and labels from modeled 3D indoor

scenes has been an increasing research field in computer

vision in the last few years. In contrast to manually labeled

indoor front-view perspective images for action recognition

[28, 37, 39] that are widely explored, image data from top-

view indoor scenes of omnidirectional images are rarely

available. Invariance against the perspective of objects,

e.g. missing images from top-view scenes makes common
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datasets not adaptable to computer vision tasks on omnidi-

rectional cameras. The most widely used projection of fish-

eye images is the equirectangular camera model, where all

image points are mapped to the inside of a lower half sphere

through elevation and azimuth. This projection formulates

the distortion of omnidirectional images and leads to a high

variation of the shape of objects depending on their location

in the image.

In this paper we introduce THEODORE - a synTHEtic

tOp-view inDoOR scEnes dataset that contains diversified

rendered fisheye images of indoor environments with

instance segmentation masks and bounding boxes. The

indoor world was created with the game engine Unity3D

and rendered images were captured with a camera that

follows the omnidirectional projection. To bridge the gap

between real-world and synthetic images we perform do-

main randomization with different rooms, persons, objects

and camera positions. With THEODORE we release a

dataset that improves the accuracy of state-of-the-art CNNs

on omnidirectional images in indoor environments. A few

application fields are navigation of autonomous systems

through visual odometry, personal security in public trans-

portation services or in virtual reality. We expect a strong

growth of the research field on omnidirectional images in

computer vision.

Our contribution is twofold:

• Generating THEODORE: a dataset with diversified

omnidirectional images and labels for indoor scenes

• Improvement of accuracy of state-of-the-art CNNs for

object detection in omnidirectional images

The paper is structured as follows. Following this in-

troduction in chapter 2 we treat related works to syn-

thetic image data and one- and two-stage object detec-

tion. In chapter 3 we describe the data generation pro-

cess and its properties. In chapter 4 we describe the be-

haviour of state of the art single- and two-stage object de-
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tectors in terms of THEODORE. The evaluation on publicly

available databases for omnidirectional images is shown

in Chapter 5. We summarize our results and give fu-

ture research directions in Chapter 6. Our dataset can be

found at https://www.tu-chemnitz.de/etit/

dst/forschung/comp_vision/theodore.

2. Related Work

Synthetic data for omnidirectional images isn’t well ex-

plored and data for training CNNs are sparsely available. In

this section the most relevant indoor datasets and CNN ar-

chitectures for object detection are introduced.

Synthetic Data Synthetic data of persons in perspective

views was widely studied [47] for tasks like object detec-

tion, segmentation or human pose estimation [21, 22]. For

the analysis of multi-object tracking Gaidon et al. created

the Virtual KITTI dataset [16], including different environ-

ment conditions, camera position and instance-level seg-

mentation ground truth. A couple of 3D model repositories

for indoor scenes [18, 25] in perspective views with focus

on depth, physical based rendering and volumetric ground

truth, namely the SUNCG dataset [41] and the Matterport

dataset [6], were released. Based on these datasets the work

of [42] generates a RGB-D panorama dataset for different

camera configurations, but without different camera mod-

els and top-view images. While multisensory models for

goal-directed navigation in complex indoor environments

from ego-perspective MINOS [38] was published, exten-

sive research in terms of semantic descriptions, acoustics

and multi agent support from 3D visual renderings led to

HoME [5]. With the goal to create houshold activities in vir-

tual homes the work of [33] delivers instance and semantic

label annotation, depth, pose and optical flow. The novelty

of this approach is the formulation of the automatic gen-

eration of program episodes from text and creatable avatar

videos. Our approach differs from this work in terms of

camera geometry, domain randomization and viewing an-

gle. House3D [48] provides 3D scenes of visually realistic

houses that are equipped with a diverse set of fully labeled

3D objects and textures based on the SUNCG dataset in-

cluding RGB images, depth, segmentation masks and top-

down 2D map views. In terms of selecting the viewing an-

gle of indoor scenes automatically, the work of [17] uses

per class statistics to find the best viewing angle for seman-

tic segmentation.

Existing datasets of omnidirectional image data ([7, 11,

12, 13, 15]) have low in-class variance, missing ground

truth labels or contain less variations of scenes [26].

Object Detection One-stage object detectors [29, 35] that

treat object detection as a simple regression task learn class

probabilities and bounding box coordinates. Two-stage de-

tectors such as [36] and [10] generate regions of interest

(ROIs) by a Region Proposal Network in the first and for-

ward these ROIs to the object classification and bounding

box regression pipeline.

Object detection in distorted fisheye images is not widely

explored. The authors of [9] and [8] adapt the network ar-

chitecture of CNNs to spherical representations of the regu-

lar convolution operations. However, [9] wraps the sampled

locations of convolutional filters to the sphere and effec-

tively reverses the distortions of the omnidirectional camera

model. [8] avoids translational weight sharing and creates

building blocks that satisfy a generalized Fourier theorem,

to detect patterns independently from their location on the

sphere.

Current frameworks with AI agents ([23, 48]) concen-

trate on embodied question answering or navigation (Point-

Goal, ObjectGoal and RoomGoal). Images and correspond-

ing labels (segmentation masks, surface normals, object

IDs, depth) can be created, but are missing for omnidi-

rectional camera model. In contrast to our work, viewing

angle of AI agent frameworks is front-view from an ego-

perspective.

Taylor et al. presents with a virtual worlds environ-

ment the possibility to create foreground masks, bounding

boxes and target centroids in top-view omnidirectional im-

ages [44].

3. THEODORE Dataset

In this section all relevant steps for the generation of our

synthetic dataset THEODORE are presented. We show the

properties of the dataset in terms of distribution and varia-

tions of viewing angle.

3.1. Data Generation

Game Engine An advantage of the usage of a game en-

gine, compared to rendering software like Blender, is the

opportunity to generate data in a less time-consuming man-

ner. In this work we are generating synthetic data using the

game engine Unity3D. To configure the walking path of the

characters in the virtual environment, Unity3D provides a

NavMesh component that allows avoiding obstacles by ap-

proximating the walkable areas.

The generated virtual environments consist of indoor

scenes, where typical objects like tables, sofas and chairs

are placed at fixed positions. Human 3D characters are

generated using the Skinned Multi-Person Linear Model

(SMPL) [30]. SMPL is a model of the human body with

focus of realism based on thousands of 3D body scans. Hu-

man characters are able to move randomly in the area de-

termined to be valid by NavMesh. Each character moves

from a random start position to a randomly selected object

position as destination.

We need to capture the whole scene from an omnidirec-

tional camera placed on the ceiling of the room. However,

Unity3D only provides a camera model for perspective and
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Figure 1: Pipeline showing the image generation for THEODORE. Starting with four cameras pointing in top, left, right and

bottom direction with a field of view of 90 degrees per camera, a fisheye distorted image is generated. In addition to the

rendered RGB image, instance and segmentation masks are created, distorted and saved as training data. In post-processing,

bounding boxes are extracted and converted into common dataset formats such as TFRecord.

Figure 2: Overview of random characters and room floor plans used in THEODORE. Additionally, some sample images with

the applied domain randomization are depicted. For each room three random textured scenes with random camera positions

are selected.

orthographic projection. This limitation can be overcome

by combining four perspective cameras in order to generate

an omnidirectional image as described in the following.

Fisheye Projection Real omnidirectional images can be ob-

tained by using fisheye lenses which results in a barrel dis-

tortion. Inside Unity3D fisheye images can be generated
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using the approach described by Bourke et al. [3, 4].

This method is based on a modified cube map rendering

(see Figure 1) using 4 of the cube faces to form a fisheye

distorted image. Each face is the result of a rendered image

captured by a camera with a field of view of 90 ◦. As shown

in Figure 2, the final result is created by warping and com-

bining these images on four meshes, whose texture coordi-

nates model a fisheye projection. Afterwards the generated

and distorted fisheye image is captured with an orthographic

camera and rendered to the display.

For THEODORE we are using a resolution of 1024 ×

1024 pixels which allows us, in combination with a native

plugin, to reach an output of 15 FPS on an Intel i7-7700 and

a Nvidia GTX 1080. The native plugin allows us to manage

the transfer of the textures from GPU to the CPU memory

in a faster way than the conventional methods available in

Unity3D.

Image Synthesis In addition to a rendered image we are

generating segmentation- and instance masks. This is done

by cloning the virtual omnidirectional camera setup and re-

placing the assigned shaders of each object with a unique

color shader. In the case of segmentation, the colors are as-

signed according to the object classes. For instance masks

the color is selected based on the unique object ID. With

these modifications, the approach presented in [1] fits the

previously described fisheye projection. In this case the

shader replacement is performed for all four perspective

cameras before generating the final segmentation and in-

stance masks.

Domain Randomization An approach for bridging the gap

between synthetic and real images is domain randomiza-

tion [45, 46] that we also apply in our implementation. Ev-

ery room changes after 25 seconds, which we call a level

change. With each level change a new room is selected and

object textures are randomly replaced. Furthermore, hu-

man characters are generated with random parameters (like

height or weight) and textures, using the texture set from

[47]. However, the replacement occurs inside a predefined

texture set (e.g. wood, concrete, cotton, etc.), to prevent

inappropriate texture assignments. Additionally the cam-

era position is changed over time in order to create differ-

ent points of view. The trajectory of the camera follows a

Lissajous curve. Light sources are defined as point lights

with a fixed range and intensity. The number of enabled

light sources in each room is selected to ensure a well illu-

minated scene. To create different lighting situations with

each level change some randomly selected light sources are

disabled, however with the restriction that at least one light

source remains active.

Post Processing The final image, the segmentation and in-

stance masks are combined in order to extract the necessary

bounding boxes for the CNN training. By segmenting per

color on the instance mask, a binary mask for each object
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Figure 3: In Figure 3a we show the number of annotations

per class. In Figure 3b the distribution of centroid location

of a person over all images is illustrated. See text for details.

is generated. Then these masks are applied on the segmen-

tation mask to identify each object with its corresponding

label and the bounding box coordinates xmin, xmax, ymin

and ymax are calculated. Finally the fisheye images together

with the extracted bounding boxes and their corresponding

labels are used to perform a conversion into common dataset

formats (e.g. TFRecords [20] or PASCAL VOC2012 [14]).

3.2. Dataset Analysis

The creation pipeline of our synthetic omnidirectional

data is visualized in Figure 1. Apart from the final image we

extract the segmentation and label mask from the rendering

process. Based on these masks we are able to select specific

objects to calculate the bounding box. For THEODORE
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we have exported 100k images and bounding boxes for the

classes person, chair, table, armchair, wheeled walker, tv

generated. The dataset contains different rooms with ran-

domly selected textures, as described in section 3. For this

approach we downloaded and categorized 120 textures1, so

that each textured 3D object can theoretically choose one of

them. We recorded the scene with 8 frames per second. In

combination with a level change parameter of 25 seconds

and the texture randomization, the dataset contains about

500 various textured indoor scenes.

An example for three randomized men and women with

varying body shape and height, wearing different clothes

and additional attributes of our simulation is depicted in

Figure 2. The amount of instances per class is visualized

in Figure 3(a) and the statistical distribution from the cen-

ter point of persons bounding box in Figure 3(b). Through

camera movement and random selection of destinations for

a person we ensure well distributed positions over all fish-

eye images.

4. Approach

In this section we describe the functionality of three

meta-architectures of CNNs for object detection and two

semantic segmentation networks and show the corre-

sponding training setup. We train the architectures with

our synthetic data using an open source framework for

object detection [20] and a own implementation for the

segmentation task. For object detection task we choose

one- and two-stage object detectors and for segmentation

we use pixel-wise classifiers as following described:

Faster R-CNN The Faster R-CNN architecture uses

two stages for the detection. The first stage, the region

proposal network (RPN), is used to predict and extract

box proposals. For this stage a feature extractor is used

to extract the features of an image at various intermediate

maps. In the second stage proposed boxes are cropped

from an intermediate feature map and fed to the remainder

of the feature extractor to refine and predict classes of the

box proposals. As feature extractor we use ResNet50 [19].

R-FCN R-FCN is similar to R-CNN. The difference is in

the cropping approach. An R-FCN only crops the result of

the last layer while a Faster R-CNN crops the features from

layers where the region proposal is predicted. This reduces

the pro-region computation because cropping happens only

at the end of the network and results in a faster run time.

Here, ResNet101 [19] is used as feature extractor.

Single Shot Detector The Single Shot Detector (SSD)

uses a single feed-forward convolutional network to predict

box anchors and classes directly without using a second

stage per-proposal classification. The final detections are

1https://www.cc0textures.com

the results of a non-maximum suppression step applied to

the prior predictions. For our approach we use the feature

pyramid network (FPN) [27] implementation of ResNet50.

SegNet SegNet [2] is a CNN architecture for semantic

pixel-wise segmentation. It consists of an encoder network

which topology is identical to VGG-16 network [40].

However, fully connected layers were removed to improve

the size of the network and the training process. The

decoder network of SegNet restores the gradually reduced

spatial dimension from the encoder network. To realise

this, SegNet uses pooling indices of the corresponding

encoder for a non-linear upsampling.

PSPNet Pyramid Scene Parsing Network (PSPNet) [49]

is a scene parsing framework that uses a pyramid pooling

module to aggregate different regional contexts. This

modules is appended to an pre-trained ResNet network, in

our case a ResNet101. In addition, ResNet was modified to

use dilated convolutions to enlarge the field of view.

Training All selected object detection networks are pre-

trained on MS COCO [28]. As configuration for each

architecture we use the proposed settings from the frame-

work [20]. Adjustments are made on the training settings.

For all experiments, a value of 0.9 for the momentum

optimizer [34] is selected. We apply cosine decay [31] as

learning rate strategy for the SSD meta architecture. As

parameters we select a learning rate and warmup learning

rate of 3e−5 over 20, 000 steps. The training for the

R-FCN and Faster R-CNN is manually stopped if the

performance on the validation set begins to saturate. As

learning rate strategy we reduce the learning rate by a

factor of 10 every 20, 000 steps. The input dimensions for

all networks change to a 3-channel RGB image with a fixed

resolution of 640 × 640 pixels and batch size is set to 16.

For a better generalization of the fine-tuned model data

augmentation methods are applied ([24, 43, 45]). We select

random brightness, random contrast, random crop, random

Gaussian noise and horizontal flip for all meta-architectures

during the training. For the semantic segmentation ap-

proach we use pre-trained ImageNet weights for PSPNet

to fine-tune the architectures. SegNet is trained from

scratch without the usage of pre-trained weights. As in our

object detection setup we use the momentum optimizer

with an momentum of 0.9 and a learning rate of 0.001.

Furthermore, the training uses a batch size of 4 and is done

for 150 epochs. The data augmentation methods random

noise, horizontal flip and brightness are applied during

training.

5. Evaluation

With fine-tuning of CNNs with THEODORE we eval-

uate on labeled real world images by meta-architectures

for object detection and segmentation as described in sec-

tion 4. We choose publicly available real world datasets
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Figure 4: Example of detection results on HDA, Bomni and FES dataset using SSD meta-architecture for person class. The

first column contains the ground truth bounding boxes. In the second column the prediction results for the pre-trained CNN

with MS COCO weights is shown. The last column indicates the detection boxes which we reach while fine-tuning on

THEODORE. Statistics of the dataset and the evaluation through object detection is provided in the supplementary material.

such as High-Definition Analytics (HDA) [32] and Boğaziçi

University Multi-Omnidirectional (Bomni) [12] for object

detection and an own annotated dataset Fisheye Evalua-

tion Suite (FES) for semantic segmentation (see subsec-

tion 5.2) to validate the meta-architectures fine-tuned on

THEODORE.

As metric for evaluation the average precision (AP) [14]

per class and mean average precision (mAP) is reported for

all classes. Detections will be judged to be true positive, if

the intersection over union (IoU) between the detected and

ground truth bounding box is at least 0.5. Our evaluation re-

sults shows exemplary bounding box detections in the first

row of Figure 5. For the evaluation on semantic segmenta-

tion we choose the mean intersection over union (mIoU) for

the classes armchair, chair, person, table, tv and wheeled

walker. Exemplary results for semantic segmentation can

be found in the second row of Figure 5.

5.1. Number of images

In order to evaluate the amount of images that are rele-

vant for THEODORE, we measured the mAP for the SSD

meta-architecture validated on FES and summarize the re-

sults in Figure 6. From the generated images we choose

12k, 25k, 50k and 100k images and train the SSD for

20, 000 steps each. With the parameters described in sec-

tion 3 the 100k images contain 500 differently textured

scenes in the training set.

In general, we carried out two approaches to reduce the

number of images. First, we sub-sample the 100k images

to keep the number of differently textured scenes constant.

Second, the number of images is halved and consequently

the number of textured scenes. We observe that a increas-
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Figure 5: FES evaluation samples of object detection and segmentation architectures trained on THEODORE. The first row

shows detection results from SSD, the second row the segmentation results of SegNet. SSD is trained on MS COCO and

fine-tuned on THEODORE, while SegNet is trained from scratch on THEODORE.
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sponding mAP@0.5 trained on the SSD meta-architecture.

Sampled: constant number of textures with variable num-

ber of images; halved: halved number of images and halved

number of textures

ing number of images not necessarily leads to better re-

sults. The sub-sampled approach with 25k images results

to the highest mAP. This experiment shows that the number

of scene variations have a higher impact on mAP than the

absolute number of images for training. For further experi-

ments we use a subset of THEODORE with 25k images and

500 scenes.

5.2. Object Detection

In this section we describe the evaluation of

THEODORE on three real-world datasets, the HDA

dataset, Bomni and FES. The HDA and Bomni dataset only

contains labels for the person class, so the evaluation was

done on person class, as long as there are no other classes

in the datasets publicly available. The evaluation on our

own dataset (FES) was done on six classes.

Validation on HDA The HDA dataset [32] contains images

captured with multiple cameras. The dataset was created for

the research on high-definition surveillance. For our evalu-

ation we use the 1388 labeled images from Cam 02. These

images, with a resolution of 640× 480 pixel were captured

at 5 Hz from the top-view position with a full 140 ◦ field of

view. The images of the HDA dataset are barrel distorted,

which makes them more comparable to omnidirectional im-

ages.

Validation on Bomni Bomni Video Tracking Database

contains video frames with a resolution of 640 × 480 pixel

from an omnidirectional camera in a single room. The

dataset was created in the context of human tracking and

action recognition. For our evaluation we use all frames

from top-view cameras of scenario #1 and crop them to a

resolution of 480 × 480 pixel to remove most of the black

borders.

Validation on FES To the best of our knowledge FES is

the first dataset with real world fisheye top-view images.

The dataset contains of 301 images and six class labels

(person, armchair, chair, table, tv and wheeled walker)

which were annotated manually. All images have a reso-

lution of 1680× 1680 pixel with overlapping persons. The

images of the dataset, segmentation masks and bounding

boxes are available at https://www.tu-chemnitz.
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de/etit/dst/forschung/comp_vision/fes.

Table 1: Quantitative evaluation of THEODORE for person

class based on AP@0.5

Person AP@0.5 MS COCO MS COCO + THEODORE

HDA Bomni DST HDA Bomni DST

SSD 0.586 0.052 0.484 0.802 0.579 0.904

R-FCN 0.303 0.069 0.525 0.694 0.675 0.849

Faster R-CNN 0.627 0.067 0.630 0.704 0.740 0.873

For the evaluation of THEODORE we report the AP

for person class for the HDA, Bomni and FES datasets in

Table 1. As baseline, we choose MS COCO in the left

three columns, while the right three colums indicate the APs

with fine-tuning on THEODORE. We achieve in all three

meta-architectures for person class a significant improve-

ment with THEODORE with respect to the baseline.

Table 2: Quantitative evaluation of THEODORE for all

classes based on mAP@0.5

Class AP@0.5 Armchair Chair Person Table TV
Wheeled

Walker
mAP

SSD 0.021 0.231 0.904 0.824 0.545 0.623 0.525

R-FCN 0.262 0.039 0.849 0.859 0.000 0.640 0.441

Faster R-CNN 0.148 0.141 0.873 0.980 0.943 0.596 0.613

The mAP of experiments on FES with six classes are

shown in Table 2. With 0.613 the highest mAP is reached

with the Faster R-CNN. The per-class winners are high-

lighted bold in Table 2. The classes person and table have

the highest APs which can explained through a good rep-

resentation in the training data, i.e. various viewing angle

and texture. Improvements needs to be done in the classes

armchair, chair and TV. The low AP values can have differ-

ent reasons. First, the objects in the training data have too

less variations in terms of illumination, texture and viewing

angle. Second, the training data doesn’t fit well to the test

data, which ends up with the creation of a more general-

ized model for these classes. Another effect we observed

through the evaluation is the non-detection of the class TV

with R-FCN. For this we suspect a too high shrinking of the

image as input for the net, so the filter sizes are to big for

the whole image to detect small objects with the R-FCN.

5.3. Semantic Segmentation

Beside object detection we show that THEODORE is

eglible for training segmentation networks. Due to the lack

of publicy available top-view fisheye label masks for evalu-

ation of THEODORE we annotate own data, namely FES.

The report of the class IoU and mIoU on two state of the

art architectures for segmentation, SegNet and PSPNet, is

shown in Table 3.

In Table 3 we evaluate THEODORE by fine-tuned Seg-

Net and PSPNet on the FES. We observe class IoUs of 0.67

Table 3: Quantitative evaluation of THEODORE by fine-

tuning CNN meta-architectures for semantic segmentation.

Class IoU Armchair Chair Person Table TV
Wheeled

Walker
mIoU

SegNet 0.009 0.016 0.674 0.012 0.53 0.33 0.359

PSPNet 0.005 0.023 0.434 0.003 0.195 0.034 0.229

for person and 0.53 for TV. The mIoU lies at 0.36 for the

SegNet and 0.23 for the PSPNet. Both segmentation archi-

tectures are realtively good in the class person, while classes

like chair, armchair and table needs further investigations.

We belief that the texture of the synthetically generated fur-

niture is different from the real-world furniture texture.

6. Conclusion

In this paper we introduce THEODORE - a synTHEtic

tOp-view inDoOR scEnes dataset with omnidirectional im-

ages. This dataset contains 100,000 rendered images of di-

versified indoor environments, segmentation and instance

masks for 16 classes and bounding boxes for the person

class. Additionally, we have shown that the usage of syn-

thetically generated images could compensate the lack of

real omnidirectional images during training of CNNs. We

have addressed the task of object detection and semantic

segmentation for evaluating the performance of state-of-

the-art CNNs trained on THEODORE. The evaluation pro-

cess of our dataset works as follows: the training base-

line is MS COCO, which contains front-views of perspec-

tive images. We fine-tune three meta-architectures for ob-

ject detection, namely SSD, R-FCN and Faster R-CNN

for the person class on THEODORE. In addition we train

two meta-architectures for semantic segmenation, the Seg-

Net and PSPNet for six classes in an indoor environment.

Both object detectors and segmentation approaches were

evaluated on our own annotated fisheye evaluation suite

dataset (FES), that contains segmentation and object detec-

tion ground truth for six classes. With this we have shown

the adaptation of the front-view to the top-view by fine-

tuning CNNs with our generated data. While labels for fixed

objects are not available in public real world databases, we

use six classes for evaluation of THEODORE, which leads

to significant improvement of the AP and mIoU over the

baselines in all tested meta-architectures.

Future research will address the balancing of the classes

of THEODORE. While the FES evaluation dataset only

contains one scenario, we plan to add more real world in-

door scenes. Beyond the segmentation and detection masks

we intend to create omnidirectional depth, skeletons and op-

tical flow ground truth from rendered scenes.
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