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Abstract

In this paper, we address the problem of learning to per-

form sequential OCR on photos of street name signs in a

language for which no labeled data exists. Our approach

leverages easily-generated synthetic data and existing la-

beled data in other languages to achieve reasonable per-

formance on these unlabeled images, through a combina-

tion of a novel domain adaptation technique based on gra-

dient reversal and a multi-task learning scheme. In or-

der to accomplish this, we introduce and release two new

datasets - Hebrew Street Name Signs (HSNS) and Synthetic

Hebrew Street Name Signs (SynHSNS) - while also mak-

ing use of the existing French Street Name Signs (FSNS)

dataset. We demonstrate that by using a synthetic dataset

of Hebrew characters and a labeled dataset of French street

name signs in natural images, it is possible to achieve a sig-

nificant improvement on real Hebrew street name sign tran-

scription, where the synthetic Hebrew data and real French

data each overlap with different features of the images we

wish to transcribe.

1. Introduction

There are eight alphabet groups in use today - Arabic,

Aramaic, Armenian, Brahmi, Cyrillic, Georgian, Greek and

Latin - each used by many languages in hundreds of di-

alects. For most of these languages it is hard to find skilled

operators to label a large dataset at a reasonable price. With-

out a better way to train a system in novel languages, it

would not be practical to build, for instance, text recogni-

tion systems for real word images, such as Google Street

View, which can support non-Latin languages.

Most existing sequential OCR systems are trained us-

ing sequential models on a mix of synthetic and real data

∗This work was done while the first author was with Google Research
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Figure 1. We seek to transcribe real images in some language (e.g.

Hebrew) without access to any labeled training data by using a

combination of synthetic data in the same language and labeled

real data in a completely different language (e.g. French). The syn-

thetic Hebrew data overlaps with the real Hebrew data in content,

but not in style, while the real French data overlaps in style but not

in content. Thus, the sources are complementary; they each over-

lap the target significantly, despite having very little overlap with

each other.

[18, 43]. For printed documents or books, the difference be-

tween synthetic and real data may be insignificant, and there

are many ways to build an OCR model that is able to gener-

alize. But for problems of text recognition on images in the

wild, such as street name signs, the gap between synthetic

text renderings and real images is far too large. Thus most

existing OCR approaches are not able to generalize and re-

quire extensive labeling. The algorithm we present here is

a solution to that problem, requiring no new manually la-

belling. Instead, we use a combination of trivial synthetic

data and an existing dataset in an unrelated language.

Our experiments show that including another language

during training actually alleviates the need for more realistic

synthetic data. The neural network learns the ”content” of

the first language from the synthetic data, while learning to
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deal with the realistic ”style” of real images from the second

language. We illustrate the effectiveness of this approach

using Hebrew for our target language and French for our

existing dataset, given the public availability of the French

Street Name Signs (FSNS) dataset [30]. The synthetic data

we generate is intentionally kept relatively minimalistic, to

emphasize that the system is not using the synthetic data

to learn anything stylistic, and because we believe our al-

gorithm becomes more practical the less sophisticated the

synthetic data.

Interestingly, significant learning happens despite the

fact that Hebrew, an Aramaic language, shares no glyphs or

characters with French, a Latin language. There is therefore

nothing within our algorithm that is inherently language-

specific: the French data should hypothetically be sufficient

to train a system on almost any other language, all without

the need for any manual labeling.

Finally, in order to ensure that our numbers are repro-

ducible, we introduce and release the Hebrew Street Name

Signs (HSNS) and Synthetic Hebrew Street Name Signs

(SynHSNS) datasets, on which we perform all of our ex-

periments.

2. Related work

2.1. Domain Adaptation

Within the field of computer vision, a large number of

unsupervised and semi-supervised domain adaptation tech-

niques have been invented and explored, especially in the

context of image classification [29, 26, 25, 24, 23, 14],

but also in other areas such as semantic segmentation

[47, 27, 16], object pose recognition [2] and object detec-

tion [4, 17]. In all cases, the goal of these techniques is to

match the distributions of some source domain to that of a

target domain.

In some cases, this is achieved by attempting to explicitly

match the moments of the two distributions. For example,

Maximum Mean Discrepancy (MMD) [13] is a loss that ex-

plicitly minimizes the norm of the difference between two

distributions’ means, and has been used to good effect in

[37, 20, 3]. Alternatively, work such as [31] and [32] have

made significant progress by explicitly aligning the second

moments of the source and target domains.

In addition to explicit moment-matching techniques, an-

other technique known as Gradient Reversal (GR) [8, 9] has

emerged as a powerful paradigm for deep domain adapta-

tion, serving a fundamental role in many deep domain adap-

tation systems [3, 4, 16]. GR has even been used effectively

for problems completely outside the scope of computer vi-

sion, such as machine translation [18]. In the GR setting,

a deep network is given an additional discriminator branch

that uses deep features to classify samples as originating

from either the source or the target domain. The network

concurrently trains a feature extractor to fool the discrimi-

nator by flipping the sign of the gradient of the discriminator

loss with respect to the feature extractor.

An alternative but closely-related deep domain adapta-

tion paradigm uses adversarial learning to minimize domain

shift [36, 15, 2, 26, 27]. These techniques are closely re-

lated to Generative Adversarial Networks (GANs) [12] and

also use a discriminator to push both feature distributions

together.

Domain adaptation has also been used in computer vi-

sion for various text-related tasks. For example, domain

adaptation techniques have been used to identify fonts in

images [42, 41]. Domain adaptation has also been ap-

plied to problems involving natural language processing

[6, 11, 5], a field related to OCR in its use of language mod-

elling and sequential processing.

There has also been research that adapts style specifi-

cally, either for language problems [44, 45] or vision prob-

lems [35, 21], though none have been applied to the exact

problem of sequential OCR in the wild. Finally, a variety of

techniques have been used to train systems from incomplete

data. For instance,[7] augment existing data to improve per-

formance, while [48] use data from other languages for the

purpose of machine translation.

2.2. Optical Character Recognition

Optical Character Recognition (OCR) is the task of iden-

tifying a string of characters in an image. Modern deep-

learning-based approaches to OCR generally approach this

using a system that first extracts features using a convolu-

tional neural network (CNN) [18] and then extracts the text

in a subsequent decoder layer [30, 43]. In particular [43]

uses the first several layers of the InceptionV3 architecture

[34] to extract features which are then fed through an LSTM

with a special form of attention to produce a transcription.

Domain adaptation has also been exploited in the field of

sequential OCR. When the target domain consists of a large

corpus such as books, the style and linguistic consistency

can be leveraged to fine tune a Gaussian based model under

maximum likelihood or MAP criteria using Expectation-

Maximization [28, 39]. This is also analogous to speaker

adaptation using a speaker-independent HMM model [10].

In more recent works [46, 40], style and content separa-

tion have been effective in adapting digit recognition from

MNIST to SVHN.

Finally, we note that while many of the image classifica-

tion tasks discussed above demonstrate their effectiveness

on the MNIST [19] and SVHN [22] datasets, it is important

to emphasize that while this task certainly falls into the cat-

egory of OCR, it is much simpler than the general task of

sequential OCR. MNIST and SVHN both present a single

digit at a time for classification, whereas we are concerned

with images in which a variable-length series of charac-
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ters must be identified and classified in the correct order.

It is therefore nontrivial to directly apply the domain adap-

tation techniques discussed above to the task of sequential

OCR. For example, the system on which we perform do-

main adaptation contains additional Recurrent Neural Net-

work (RNN) and attention components that are not present

in any of the non-sequential OCR architectures discussed

above.

3. Method

We seek to design a system that can transcribe real

images in a language for which no real labeled data ex-

ists. To do this, we approach the problem from two dif-

ferent sides simultaneously, by using two different datasets

to address the ”style” and ”content” of the images in the

dataset. Specifically, we use unsupervised domain adapta-

tion to transfer knowledge about content (the language it-

self) learned from synthetic data while at the same time us-

ing a simple multi-task learning scheme to make the system

robust to the style of real images.

We differentiate between three sets of images available

to us at training time. The first set of source images

XC = {xC
1 , x

C
2 , . . . , x

C
NC

} is the ”content” dataset, rep-

resenting synthetic images of text in some language while

YC = {yC1 , yC2 , . . . , yC
NC

} represents the associated labels.

Here, each ySC

i is a sequence of integers in some alphabet

AC . For concreteness we will refer to AC as the Hebrew

alphabet, since that is what we will use in our experiments,

but our method could hypothetically work for any language.

We will generally refer to (XSC
,YSC

) as SC or as the ”con-

tent source.” Similarly, the second set of source images XS

and labels YS represent the style dataset; images and labels

for real images of text in some other language using a differ-

ent alphabet which we denote AS . Again, for concreteness,

we’ll refer AS as French, but any language, even one using

different glyphs, is applicable to our method. We refer to

(XS ,YS) as SS , or ”style source.” We will be using XC for

domain adaptation and XS for multi-task training.

The third domain, the target domain T , contains only

images XT = {xT
1 , x

T
2 , . . . , x

T
NT

}. The images in XT are

photographs of text in the same language as those in XC ,

i.e. text that uses AC as its alphabet. A key feature in this

setup is the assumption that the domain shift between T and

each of SC and SS is not prohibitively large. That said, SC

and SS have very little in common with each other, since

they do not overlap in either style or content.

3.1. Base Architecture

We perform our experiments by extending the architec-

ture introduced in [43]. At a high level, this architecture

consists of three components: a CNN feature extractor Gf ,

a Recurrent Neural Network (RNN) Gr that recurrently out-

puts characters by processing the extracted visual features,

Figure 2. The baseline architecture, as described by Wojna et al.

[43]. A feature extractor Gf is used to extract features, in this case

from the content source SC . These features are then fed into an

RNN decoder Gr , which includes a spatial attention component.

and a spatial attention mechanism that guides the RNN

component to look at salient features, which for the pur-

poses of our discussion we fold into the RNN network Gr.

Following [43], we use the first several layers of the In-

ception V3 CNN architecture [34] for our visual feature ex-

tractor Gf ; everything up to the ”Mixed5D” module. This

mapping is fully convolutional, and we denote its output

features as f = Gf (x, θf ), where θf represents the vec-

tor of parameters for Gf . We denote the output of the

RNN and spatial attention portions of the network in [43]

as ŷ = Gr(f, θr) = (ŷ1, . . . , ŷn). We illustrate this archi-

tecture in Figure 2.

More precisely, to compute Gr at a specific step t, we

first compute a spatial attention mask αt over visual features

f , after which we compute a context vector

ut,c =
∑

i,j

αt,i,jfi,j,c (1)

which is fed into the RNN as

x̂t = Wcct−1 +Wu1
ut−1

(ot, st) = RNNStep(x̂t, st−1)
(2)

where st and ot denote the internal state and output of

the RNN at time t, and ct−1 is a one-hot encoding of the

previous letter, either from the ground truth during training

or as predicted during inference.

Finally, we calculate the distribution over letters as

ôt = softmax(Woot +Wu2
ut) (3)

and assign

ŷt = argmax
c

ôt(c). (4)

3.2. Style Adaptation

To learn the ”style” of real imagery, we utilize a sim-

ple multi-task learning procedure, training a single network

which learns the tasks of transcribing synthetic Hebrew and

real French simultaneously. The end result is a system that
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is significantly better at transcribing real Hebrew images

by implicitly exploiting the style overlap between the real

French and Hebrew data. Specifically, we train a single Gf

to extract features from both synthetic Hebrew street signs

xC ∈ XC and real French street signs xS ∈ XS , as in Fig-

ure 3 (left). The output features f are then fed through two

different Attention/RNN components, GC
r and GS

r , to pro-

duce two sets of outputs ŷ
C = GC

r (f, θ
C
r ) = (ŷC1 , . . . , ŷ

C
n )

and ŷ
S = GS

r (f, θ
S
r ) = (ŷS1 , . . . , ŷ

S
m), respectively, where

θCr and θSr are the parameters for GC
r and GS

r . We then

train both sets of data separately according to their respec-

tive cross-entropy classification losses:

LC(XC ,YC) =

−E(xC ,yC)∼(XC ,YC)





NC
∑

i=1

∑

j∈AC

✶[j=yC
i
] log ŷ

C
i





LS(XS ,YS) =

−E(xS ,yS)∼(XS ,YS)





NS
∑

i=1

∑

j∈AS

✶[j=yS
i
] log ŷ

S
i





(5)

In practice, we actually extend these losses to be autore-

gressive, as described in [33], where we pass in the ground

truth labels as history when we perform training.

In order to learn to label the French images in XS , the

system must learn to ignore the realistic style of the French

images and focus on the content. The realistic style of the

French images overlaps heavily with the style of the images

in XT , and, as a result, we hypothesize that the system also

learns to ignore the realistic style of the target images, even

as it learns the content from the synthetic images in XC .

3.3. Content Adaptation

While the system described in Section 3.2 still learns the

content of the Hebrew language from the synthetic data, it

does nothing to specifically enforce the similarities between

the source domain SC and target domain T ; in fact, it does

not use T at all during training. To address this, we use the

techniques of unsupervised domain adaptation to explicitly

adapt the synthetic Hebrew data to the real.

3.3.1 Gradient Reversal

We seek to improve our performance in the target domain

in part by directly training our system to be robust to the

domain shift between the synthetic and real Hebrew data.

More specifically, we wish to reduce the divergence be-

tween the features of the source and target distributions. To

this end Ben-David et al. [1] show that the H-divergence

between a source domain S = (Xsrc,Ysrc) and and a tar-

get domain T can be computed as

d̂H(S, T ) = 2

(

1−min
h∈H

[ǫ̂S(h) + ǫ̂T (h)]

)

(6)

where H is the set of binary classifiers that assign 1 to

samples in the source domain and 0 to samples in the target,

and ǫ̂S(h) and ǫ̂T (h) are the empirical classification errors

on the source and target domains. It therefore follows that

we can minimize the distance d̂H(S, T ) between domains

by maximizing the error of all classifiers that distinguish

between the domains.

Ganin et al. [9] achieve this goal with a technique known

as gradient reversal (GR). Here, training is framed as a sad-

dle point problem, where the system is broken into three

parts. Features f are extracted using a feature extractor

f = Gf (x, θf ), and then fed into a task-specific classifi-

cation branch Gy(f, θy) and a domain-discriminator branch

Gd(f, θd). Gd attempts to classify the domain of any given

sample as either source or target using the loss

Ld = −

(

∑

x∈XS

logGd(x) +
∑

x∈XT

log(1−Gd(x))

)

. (7)

In essence Gd is a classifier belonging to the hypothesis

class H described above.

Thus, given some loss function Ly (e.g. cross-entropy)

defined for S, we can then define an energy function

E(θf , θy, θd) = Ly(Xsrc,Ysrc)− λLd(X,D) (8)

where di is a domain label that is equal to 1 if xi ∈
Xsrc or 0 otherwise, D = (d1, . . . , dn), and λ is a hyper-

parameter to control the trade-off between the two losses.

d̂H(S, T ) is then minimized at the saddle point

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd).
(9)

Gradient reversal presents a simple way to optimize this

saddle point problem using stochastic gradient descent. To

do this, a special Gradient Reversal Layer (GRL) is added

between Gf and Gd. On the forward pass of training, the

GRL acts as an identity map, but on the reverse pass the

GRL multiplies its gradient by −1. This effectively replaces
∂Ld

∂θf
with −∂Ld

∂θf
, which as [9] show is sufficient to achieve

a saddle point of (8).

3.3.2 Adapting The Decoder

A naive way to apply the techniques of gradient reversal to

the architecture described in Section 3.1 would be to treat
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Figure 3. (Left) The configuration of the network for multi-task training. The same feature extractor Gf is used to extract features from

both the content domain SC and the style domain SS . These features are then fed into separate RNN decoders G
C
r and G

S
r . (Right)

We perform domain adaptation on the RNN decoder GC
r by aggregating the intermediate RNN values st and using gradient reversal on a

domain classifier that selects between SC and the target domain T . We do not perform any adaptation with respect to SS beyond what the

network learns through multi-task training.

GC
r the same we treated Gy in Section 3.3.1: as a simple

classifier that acts on the features extracted by Gf . Infor-

mally, the intuition is that we would be adapting the visual

features to become robust to the change in style between

real and synthetic.

However, we explored multiple architectures using this

approach, and we experimentally found that the main ben-

efit of domain adaptation is in its ability to improve under-

standing of the content, and less so in its ability to build ro-

bustness to the style. Under this hypothesis, it makes more

sense to perform domain adaptation in the RNN portion of

the network, where the language structure is processed.

Thus, we introduce a method that directly adapts the

RNN components of the system, which we illustrate in Fig-

ure 3. Specifically, we leave most of Gr unchanged, but for

each RNN step t we introduce a new value

v = GRL(max
t

st) (10)

where st is the internal state of the RNN, as introduced in

Equation 2.We experimentally found that it was essential to

aggregate the RNN output using maximization, as averag-

ing or using a softmax attention-based aggregation did not

result in a system that performed better than the baseline.

We then use a domain-discriminator Gd on the output,

which we calculate as

w = Wd2
relu(Wd1

v + bd1
) + bd2

d̂ = softmax(Wd3
w)

(11)

where Wd1
,Wd2

,Wd3
, bd1

, and bd2
are all parameters

learned by the network.

We can then define Ld as it was defined in Equation 7,

and our final content energy function becomes

E(θf , θr, θd) = LC(XC ,YC)− λLd(X,D). (12)

This modification is essential for success once data from

SS is added to the system, since it performs adaptation on a

portion of the network that is not directly enhanced by the

additional data.

When combined with multi-task learning, our final en-

ergy function becomes

E(θf , θ
S
r , θ

C
r , θd) =

LS(XS ,YS) + LC(XC ,YC)− λLd(X,D).
(13)

During each step of training, we optimize all three com-

ponents of this loss in a single batch. The complete archi-

tecture with all components and unsupervised domain adap-

tation applied to the decoder is illustrated in Figure 3. When

training, we use λ = 0.5, a value which we determined ex-

perimentally.

4. Experiments

The setup we suggest is both unique and highly specific,

so in order to properly evaluate it we introduce two new

datasets containing real and synthetic images of Hebrew

street name signs. Used in conjunction with the existing

FSNS street name dataset, we illustrate the effectiveness of

both our domain adaptation technique and a simple multi-

task learning approach. We then demonstrate that using

both techniques together performs better than using only a

single technique, and provide a detailed empirical analysis

of our results.
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Trained on: SynHSNS FSNS HSNS SynHSNS Acc. FSNS Acc. HSNS Acc.

FSNS Baseline X N/A 64.34% N/A

Baseline X 94.68% N/A 18.49%

Fine-Tuning X X 89.81% 64.34% 29.56%

Multi-Task Training (MT) X X 94.68% 64.26% 36.54%

Domain Adaptation (DA) X X 93.57% N/A 38.64%

DA + MT X X X 91.47% 63.39% 50.16%

Table 1. Full-sequence accuracy on the test data of each dataset for the various systems we discuss in this paper. Check marks indicate

which datasets were available during training for each experiment. The most important accuracy results are those of HSNS, the target

dataset for our system. We also report performance on the SynHSNS and FSNS datasets, though we note that optimizing performance on

these datasets is not the goal of our system. Still, results indicate our system does not completely destroy performance on these secondary

tasks, a fact which may be useful in building a more general system.

Figure 4. Sample images from the HSNS, SynHSNS, and FSNS

datasets, displayed on the top, middle, and bottom rows respec-

tively.

Following [43], the metric which we report for all of the

following techniques is full sequence accuracy, wherein a

sample is considered correctly classified only if every char-

acter is predicted correctly.

Unfortunately, in the absence of an alternate yet reliable

means of performing hyperparameter optimization, we fol-

low [3] and perform out experiments directly on a small set

of validation data. We understand that this is not optimal,

as the argument can be made that any labeled data avail-

able at training time should be used during training, and

we therefore hope that in the future the research community

will present an alternative means for validation in the unsu-

pervised domain adaptation scenario. For now, we leave the

development of such a metric to future work.

4.1. Datasets

4.1.1 Hebrew Street Name Signs

For our target dataset, we collected approximately 92,000

cropped images of Hebrew street name signs from Israel.

We divided these into three different splits of 89,936 test im-

ages, 899 validation images and 903 test images, of which

only the validation and test images have labels. When

splitting the dataset we maintained a geographic distance

of at least 100 meters between the location of any train-

ing/validation and test images, to ensure that the system

does not have exposure to any test signs while training or

performing validation. All of these images are 150 × 150
resolution.

Many Hebrew street signs include certain prefixes that

translate to words such as ”street,” ”road,” ”avenue,” etc.

More often than not, these words are written in a much

smaller font than the rest of the sign, making them illegi-

ble at 150 × 150 resolution. Since many Israeli map ser-

vices don’t include these prefixes, we also decided to ex-

clude them from the transcriptions.

We will be releasing this data as the Hebrew Street Sign

Names (HSNS) dataset. Samples from this dataset are

shown in Figure 4. Although the images are collected in

full RGB color and will be released as such, in all of the

tests that follow we convert each image into greyscale so as

to maintain consistency with our synthetic images, which

we describe below.

4.1.2 Synthetic Hebrew Street Name Signs

We elected to use a relatively simple scheme for generat-

ing synthetic data. This decision is motivated both by the

difficulty of generating more sophisticated natural-looking

synthetic data, and by the observation that the synthetic data

need only contain the same content as the target data to be

useful, as we can use other methods to address the style.

Our synthetic images therefore consist of only straight-

forward text rendering, a box placed behind the text, a per-

spective transform, and some slight blur. When rendering

the text, we randomly select from one of nineteen different

Hebrew fonts. In some cases, we randomly add English text

or numbers below or above the Hebrew, which we don’t in-

clude in the ground truth transcriptions. The size and place-

ment of the text, the parameters of perspective transform,

and the amount of blur are all selected randomly. The actual

text itself is selected from a list of real Israeli street names.
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To better match the text distribution of HSNS, we also ran-

domly add small font prefixes which translate to the Hebrew

words for ”street”, ”road”, ”avenue”, etc. We found that

these prefixes were essential for performance, since they are

often included in real images but are often too small to read,

and including them in the synthetic data signals to the sys-

tem that they do not need to be transcribed. We generate all

images at 150× 150 resolution.

In order to simplify the text generation process further,

all synthetic images are generated in greyscale. This greatly

simplifies the generation process by making it much eas-

ier to produce images in a realistic color range. The ex-

act colors for each image are selected randomly, though we

do enforce a minimum amount of contrast between the text

and the box behind it. We used a solid color for the back-

ground, because preliminary tests using more complicated

backgrounds (e.g. Gaussian noise) did not yield any differ-

ences in performance.

We generate roughly 430,000 synthetic images for train-

ing, and another 10,000 each for evaluation and testing. For

sample images, see Figure 4. We release this data along

with HSNS as the Synthetic Hebrew Street Name Signs

dataset (SynHSNS).

4.1.3 French Street Name Signs

In addition to the two Hebrew-language datasets above,

we also use the existing French Street name Signs (FSNS)

dataset [30] for our multi-task learning. FSNS contains

roughly 1 million training, 20,000 evaluation, and 16,000

test samples of French street name signs, each containing

between one and four views of the same sign at 150 × 150
resolution. For consistency with HSNS and SynHSNS,

we only use one of these views during training, taking

whichever view is listed first. Similarly, we maintain con-

sistency with SynHSNS by converting each image into

greyscale. Sample images from the original FSNS dataset

can be seen in Figure 4.

4.2. Implementation Details

With the exception of the fine-tuning experiment de-

scribed in Section 4.3.2, all of the training is performed with

a learning rate of 0.0047 using Stochastic Gradient Descent

with a momentum value of 0.75. We train for 800,000 steps

with a batch size of 15 for each domain actually used during

training. When domain adaptive components are present,

we turn them on starting at 20,000 steps and compute the

loss in Equations 12 and 13 with the value λ = 0.5. All

input images are 150 × 150 resolution, consistent with the

resolution of the data in all three datasets.

4.3. Domain Adaptation and Joint Training

4.3.1 Baselines

In order to show the efficacy of our system, we need to

demonstrate that our methods perform better than a naive

approach. We therefore define our baseline to be the test

performance of HSNS on a system trained exclusively on

the SynHSNS data. Results of this experiment are reported

in Table 1 as “Baseline”.

Table 1 also includes for reference the performance of a

system trained exclusively on the version of FSNS used in

all experiments, listed as “FSNS Baseline”. As described

above, our usage of FSNS differs from the standard usage

in that we have only used one of the up to four possible

views for each sign, and we have removed all color from

the image. Therefore, while the number we report here for

FSNS is lower than the number [43] reported for essentially

the same system, it is important to note that the two exper-

iments were not performed on precisely the same data. We

would also like to emphasize that our goal is not to optimize

performance on FSNS, but rather on HSNS, and therefore

these numbers are included only for reference.

4.3.2 Multi-Task Learning Baselines

We report results on the multi-task learning scheme de-

scribed in Section 3.2, where we train on both the SynHSNS

and the FSNS datasets simultaneously. We report this in

Table 1 as “Multi-Task Training (MT)”. As with the base-

lines described above, HSNS data is not seen during train-

ing, yet we still achieve 36.54% accuracy on the HSNS test

set. Thus, simply by learning to parse real French images,

the model achieves an 18 point improvement when pars-

ing real Hebrew images, supporting our hypothesis that the

system is better able to understand the realistic style of the

Hebrew data just from seeing the real French data.

In addition to the joint training scheme described above,

we also evaluate our method on a simple fine-tuning

scheme, listed in Table 1 as “Fine-Tuning”. In this scheme,

we first train the entire system on FSNS alone for 800,000

steps. Then we replace GSS
r with GSC

r and train the network

for an additional 66,000 steps at a reduced learning rate of

0.002 (additional steps of training did not increase the per-

formance on HSNS). Performance results of both methods

are reported in Table 1. We see that multi-task learning

is superior to fine-tuning, probably because the additional

training phase reduces some of the benefits gained by the

French data in the first phase.

4.3.3 Domain Adaptation

To evaluate the effectiveness of gradient reversal, we again

perform two experiments, both based on the RNN-centric

domain adaptation described in Section 3.3.2.

1603



Figure 5. Examples of Hebrew letters that are visually hard to dis-

tinguish.

The first of these experiments, denoted in Table 1 as “Do-

main Adaptation (DA)”, performs domain adaptation on the

RNN portion of the network GSC
r , explicitly optimizing the

loss in Equation 12 using only HSNS and SynHSNS as in-

put, i.e. the architecture shown in Figure 3 (right) with GSS
r

and the FSNS input removed.

Our second experiment, denoted “DA+MT”, uses all

three datasets as input, and is a test of our full system as

illustrated in Figure 3 (right). This experiment stands out as

the only one to make use of all three datasets available to

us.

From these experiments, we see that domain adaptation

alone, just between HSNS and SynHSNS, is enough to yield

a performance increase from 18.49% to 38.64%. What’s

perhaps more interesting is that combining this with multi-

task learning takes the performance to 50.16%. In particu-

lar, the marginal increase from “DA” to “DA+MT” (about

11 points) is not trivial. Similarly, the jump from from

“MT” to “DA+MT” (about 14 points) is also quite substan-

tial.

We believe that this supports our hypothesis that domain

adaptation targets the content while multi-task learning tar-

gets the style, because it suggests that the improvements

provided by each technique are mostly disjoint, i.e. domain

adaptation is helping for a different reason than multi-task

learning. If these techniques weren’t complementary, and

both “DA” and “MT” improved performance by address-

ing the same features of the target, then we might expect

to see a smaller marginal improvement when we used both

of them together, since it would suggest that there is very

much ”overlap” between the techniques.

4.3.4 Analysis of Errors

The Hebrew alphabet is a challenging set of characters - it

has multiple characters which are hard to distinguish both

for humans (untrained or non-native Hebrew speakers) and

computers, such as those illustrated in Figure 5. There are

several others, but just these account for 22.7% (1596 out

of 7013) of all printable characters of our validation set. It

is interesting to note that all model configurations confuse

these characters and the rate of confusion does not change

drastically from one configuration to another (for instance,

the “MT” model confuses VAV for YOD 40/894 times, and

“MT+DA” confuses VAV for YOD 41/894 times).

Another interesting observation is the way that the net-

work learns to represent the features for white space, specif-

ically the NULL character (which terminates a sequence)

and the SPACE character. Table 6 shows t-SNE plots [38]

Figure 6. Visualization of individual character predictions in a net-

work with only multi-task learning (left) and with multitask and

DA (right). The numbers refer to clusters of individual characters

in the Hebrew alphabet. Points in red on the top correspond to the

SPACE character, while points in red on the bottom correspond to

the NULL (end of sequence) character.

for the character embedding of the “MT” and “DA+MT” ar-

chitectures. We observe that as the network’s performance

increases, the NULL and SPACE characters develop clus-

ters that are more separate from the other clusters. We see

this confusion when we look at performance numbers as

well: “MT” classifies SPACE as NULL 88/620 times, while

“MT+DA” makes this mistake only 45/620 times. We be-

lieve this observation can be explained by looking at the

area around characters.

We posit that the main difference in visual appearance

between synthetic and natural images is the way regions

without characters look. In a tight crop around any charac-

ter there will not be that much difference between real and

synthetic images, but our model operates on a large context

where the area around the text may be too distracting for

the model to easily ignore. The area without characters is

exactly the area to which NULL and SPACE refer.

5. Conclusion

In this paper, we have explored different approaches

to teaching a system to perform sequential OCR on pho-

tos of street name signs in a language for which there ex-

ists no labeled data. To do this, we introduce two new

datasets: the SynHSNS dataset of synthetic Herbrew street

sign names, and the HSNS dataset of real unlabeled He-

brew street sign names. Ultimately, we demonstrate that

our approach, which leverages existing data in other lan-

guages and easily-generated synthetic data in the same lan-

guage, can be used to greatly improve performance in the

target domain by transferring information about both style

and content.
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