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Abstract

In this paper, we address the problem of learning to per-
form sequential OCR on photos of street name signs in a
language for which no labeled data exists. Our approach
leverages easily-generated synthetic data and existing la-
beled data in other languages to achieve reasonable per-
formance on these unlabeled images, through a combina-
tion of a novel domain adaptation technique based on gra-
dient reversal and a multi-task learning scheme. In or-
der to accomplish this, we introduce and release two new
datasets - Hebrew Street Name Signs (HSNS) and Synthetic
Hebrew Street Name Signs (SynHSNS) - while also mak-
ing use of the existing French Street Name Signs (FSNS)
dataset. We demonstrate that by using a synthetic dataset
of Hebrew characters and a labeled dataset of French street
name signs in natural images, it is possible to achieve a sig-
nificant improvement on real Hebrew street name sign tran-
scription, where the synthetic Hebrew data and real French
data each overlap with different features of the images we
wish to transcribe.

1. Introduction

There are eight alphabet groups in use today - Arabic,
Aramaic, Armenian, Brahmi, Cyrillic, Georgian, Greek and
Latin - each used by many languages in hundreds of di-
alects. For most of these languages it is hard to find skilled
operators to label a large dataset at a reasonable price. With-
out a better way to train a system in novel languages, it
would not be practical to build, for instance, text recogni-
tion systems for real word images, such as Google Street
View, which can support non-Latin languages.

Most existing sequential OCR systems are trained us-
ing sequential models on a mix of synthetic and real data

*This work was done while the first author was with Google Research
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Figure 1. We seek to transcribe real images in some language (e.g.
Hebrew) without access to any labeled training data by using a
combination of synthetic data in the same language and labeled
real data in a completely different language (e.g. French). The syn-
thetic Hebrew data overlaps with the real Hebrew data in content,
but not in style, while the real French data overlaps in style but not
in content. Thus, the sources are complementary; they each over-
lap the target significantly, despite having very little overlap with
each other.

[18, 43]. For printed documents or books, the difference be-
tween synthetic and real data may be insignificant, and there
are many ways to build an OCR model that is able to gener-
alize. But for problems of text recognition on images in the
wild, such as street name signs, the gap between synthetic
text renderings and real images is far too large. Thus most
existing OCR approaches are not able to generalize and re-
quire extensive labeling. The algorithm we present here is
a solution to that problem, requiring no new manually la-
belling. Instead, we use a combination of trivial synthetic
data and an existing dataset in an unrelated language.

Our experiments show that including another language
during training actually alleviates the need for more realistic
synthetic data. The neural network learns the ”content” of
the first language from the synthetic data, while learning to
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deal with the realistic “’style” of real images from the second
language. We illustrate the effectiveness of this approach
using Hebrew for our target language and French for our
existing dataset, given the public availability of the French
Street Name Signs (FSNS) dataset [30]. The synthetic data
we generate is intentionally kept relatively minimalistic, to
emphasize that the system is not using the synthetic data
to learn anything stylistic, and because we believe our al-
gorithm becomes more practical the less sophisticated the
synthetic data.

Interestingly, significant learning happens despite the
fact that Hebrew, an Aramaic language, shares no glyphs or
characters with French, a Latin language. There is therefore
nothing within our algorithm that is inherently language-
specific: the French data should hypothetically be sufficient
to train a system on almost any other language, all without
the need for any manual labeling.

Finally, in order to ensure that our numbers are repro-
ducible, we introduce and release the Hebrew Street Name
Signs (HSNS) and Synthetic Hebrew Street Name Signs
(SynHSNS) datasets, on which we perform all of our ex-
periments.

2. Related work
2.1. Domain Adaptation

Within the field of computer vision, a large number of
unsupervised and semi-supervised domain adaptation tech-
niques have been invented and explored, especially in the
context of image classification [29, 26, 25, 24, 23, 14],
but also in other areas such as semantic segmentation
[47, 277, 16], object pose recognition [2] and object detec-
tion [4, 17]. In all cases, the goal of these techniques is to
match the distributions of some source domain to that of a
target domain.

In some cases, this is achieved by attempting to explicitly
match the moments of the two distributions. For example,
Maximum Mean Discrepancy (MMD) [13] is a loss that ex-
plicitly minimizes the norm of the difference between two
distributions’ means, and has been used to good effect in
[37, 20, 3]. Alternatively, work such as [31] and [32] have
made significant progress by explicitly aligning the second
moments of the source and target domains.

In addition to explicit moment-matching techniques, an-
other technique known as Gradient Reversal (GR) [8, 9] has
emerged as a powerful paradigm for deep domain adapta-
tion, serving a fundamental role in many deep domain adap-
tation systems [3, 4, 16]. GR has even been used effectively
for problems completely outside the scope of computer vi-
sion, such as machine translation [18]. In the GR setting,
a deep network is given an additional discriminator branch
that uses deep features to classify samples as originating
from either the source or the target domain. The network

concurrently trains a feature extractor to fool the discrimi-
nator by flipping the sign of the gradient of the discriminator
loss with respect to the feature extractor.

An alternative but closely-related deep domain adapta-
tion paradigm uses adversarial learning to minimize domain
shift [36, 15, 2, 26, 27]. These techniques are closely re-
lated to Generative Adversarial Networks (GANSs) [12] and
also use a discriminator to push both feature distributions
together.

Domain adaptation has also been used in computer vi-
sion for various text-related tasks. For example, domain
adaptation techniques have been used to identify fonts in
images [42, 41]. Domain adaptation has also been ap-
plied to problems involving natural language processing
[6, 11, 5], a field related to OCR in its use of language mod-
elling and sequential processing.

There has also been research that adapts style specifi-
cally, either for language problems [44, 45] or vision prob-
lems [35, 21], though none have been applied to the exact
problem of sequential OCR in the wild. Finally, a variety of
techniques have been used to train systems from incomplete
data. For instance,[7] augment existing data to improve per-
formance, while [48] use data from other languages for the
purpose of machine translation.

2.2. Optical Character Recognition

Optical Character Recognition (OCR) is the task of iden-
tifying a string of characters in an image. Modern deep-
learning-based approaches to OCR generally approach this
using a system that first extracts features using a convolu-
tional neural network (CNN) [18] and then extracts the text
in a subsequent decoder layer [30, 43]. In particular [43]
uses the first several layers of the InceptionV3 architecture
[34] to extract features which are then fed through an LSTM
with a special form of attention to produce a transcription.

Domain adaptation has also been exploited in the field of
sequential OCR. When the target domain consists of a large
corpus such as books, the style and linguistic consistency
can be leveraged to fine tune a Gaussian based model under
maximum likelihood or MAP criteria using Expectation-
Maximization [28, 39]. This is also analogous to speaker
adaptation using a speaker-independent HMM model [10].
In more recent works [46, 40], style and content separa-
tion have been effective in adapting digit recognition from
MNIST to SVHN.

Finally, we note that while many of the image classifica-
tion tasks discussed above demonstrate their effectiveness
on the MNIST [19] and SVHN [22] datasets, it is important
to emphasize that while this task certainly falls into the cat-
egory of OCR, it is much simpler than the general task of
sequential OCR. MNIST and SVHN both present a single
digit at a time for classification, whereas we are concerned
with images in which a variable-length series of charac-
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ters must be identified and classified in the correct order.
It is therefore nontrivial to directly apply the domain adap-
tation techniques discussed above to the task of sequential
OCR. For example, the system on which we perform do-
main adaptation contains additional Recurrent Neural Net-
work (RNN) and attention components that are not present
in any of the non-sequential OCR architectures discussed
above.

3. Method

We seek to design a system that can transcribe real
images in a language for which no real labeled data ex-
ists. To do this, we approach the problem from two dif-
ferent sides simultaneously, by using two different datasets
to address the “style” and “content” of the images in the
dataset. Specifically, we use unsupervised domain adapta-
tion to transfer knowledge about content (the language it-
self) learned from synthetic data while at the same time us-
ing a simple multi-task learning scheme to make the system
robust to the style of real images.

We differentiate between three sets of images available
to us at training time. The first set of source images
Xe = {2§,25,... ,x%c} is the “content” dataset, rep-
resenting synthetic images of text in some language while
Yo = {yf,y....,¥{, } represents the associated labels.

Here, each yisc is a sequence of integers in some alphabet
Ac. For concreteness we will refer to Ao as the Hebrew
alphabet, since that is what we will use in our experiments,
but our method could hypothetically work for any language.
We will generally refer to (Xs,., Ys,, ) as S¢ or as the “con-
tent source.” Similarly, the second set of source images Xg
and labels Y g represent the style dataset; images and labels
for real images of text in some other language using a differ-
ent alphabet which we denote Ag. Again, for concreteness,
we’ll refer Ag as French, but any language, even one using
different glyphs, is applicable to our method. We refer to
(Xs,Ys) as Sg, or ’style source.” We will be using X for
domain adaptation and Xg for multi-task training.

The third domain, the target domain 7', contains only
images Xy = {z{,z3,... 2%, }. The images in Xy are
photographs of text in the same language as those in X,
i.e. text that uses A¢ as its alphabet. A key feature in this
setup is the assumption that the domain shift between 7" and
each of S¢ and Sg is not prohibitively large. That said, S¢
and Sg have very little in common with each other, since
they do not overlap in either style or content.

3.1. Base Architecture

We perform our experiments by extending the architec-
ture introduced in [43]. At a high level, this architecture
consists of three components: a CNN feature extractor Gy,
a Recurrent Neural Network (RNN) G,. that recurrently out-
puts characters by processing the extracted visual features,

G,
S1 Gy ' o
—— ™ nely
N . £ =g
— — —)’);\i;l

Figure 2. The baseline architecture, as described by Wojna er al.
[43]. A feature extractor Gy is used to extract features, in this case
from the content source Sc. These features are then fed into an
RNN decoder G-, which includes a spatial attention component.

and a spatial attention mechanism that guides the RNN
component to look at salient features, which for the pur-
poses of our discussion we fold into the RNN network G,..

Following [43], we use the first several layers of the In-
ception V3 CNN architecture [34] for our visual feature ex-
tractor G ¢; everything up to the "Mixed5D” module. This
mapping is fully convolutional, and we denote its output
features as f = Gy(x,6f), where 6 represents the vec-
tor of parameters for Gy. We denote the output of the
RNN and spatial attention portions of the network in [43]
asy = G.(£,0,) = (41,...,0Un). We illustrate this archi-
tecture in Figure 2.

More precisely, to compute G,. at a specific step ¢, we
first compute a spatial attention mask o, over visual features
f, after which we compute a context vector

Ue =Y apijfije (1)
()

which is fed into the RNN as

Ty = Weer—1 + Wy ui—1 @)
(Ota St) = RNNStep(i‘ta St—l)
where s; and o; denote the internal state and output of
the RNN at time ¢, and ¢;—; is a one-hot encoding of the
previous letter, either from the ground truth during training
or as predicted during inference.
Finally, we calculate the distribution over letters as

6¢ = softmax(W,0; + Wi, uz) 3)
and assign
J¢ = argmax 6.(c). 4)
3.2. Style Adaptation

To learn the “’style” of real imagery, we utilize a sim-
ple multi-task learning procedure, training a single network
which learns the tasks of transcribing synthetic Hebrew and
real French simultaneously. The end result is a system that
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is significantly better at transcribing real Hebrew images
by implicitly exploiting the style overlap between the real
French and Hebrew data. Specifically, we train a single G ¢
to extract features from both synthetic Hebrew street signs
2% € X¢ and real French street signs 2° € Xg, as in Fig-
ure 3 (left). The output features f are then fed through two
different Attention/RNN components, G and G*, to pro-
duce two sets of outputs y< = GC(£,09) = (5,...,59)
and §° = G5(£,05) = (95,...,95), respectively, where
0¢ and 07 are the parameters for G¢ and G5. We then
train both sets of data separately according to their respec-
tive cross-entropy classification losses:

LoXe,Ye) =
o
L
“Ee yormxexe) | D D Lij—ye) log i
_i:l JjEAC (5)
Ls(Xs5,Ys) =
Ns
.S
~E(us y5)mixs Xs) | D D Lyjmys) 1083
| =1 jeAs

In practice, we actually extend these losses to be autore-
gressive, as described in [33], where we pass in the ground
truth labels as history when we perform training.

In order to learn to label the French images in Xg, the
system must learn to ignore the realistic style of the French
images and focus on the content. The realistic style of the
French images overlaps heavily with the style of the images
in X7, and, as a result, we hypothesize that the system also
learns to ignore the realistic style of the target images, even
as it learns the content from the synthetic images in X¢.

3.3. Content Adaptation

While the system described in Section 3.2 still learns the
content of the Hebrew language from the synthetic data, it
does nothing to specifically enforce the similarities between
the source domain S and target domain 7’; in fact, it does
not use 7" at all during training. To address this, we use the
techniques of unsupervised domain adaptation to explicitly
adapt the synthetic Hebrew data to the real.

3.3.1 Gradient Reversal

We seek to improve our performance in the target domain
in part by directly training our system to be robust to the
domain shift between the synthetic and real Hebrew data.
More specifically, we wish to reduce the divergence be-
tween the features of the source and target distributions. To
this end Ben-David et al. [1] show that the H-divergence
between a source domain S = (Xg,¢, Ysre) and and a tar-
get domain 7" can be computed as

dy(S,T) =2 (1 — min [és(h) + éT(h)}> (6)
heH

where # is the set of binary classifiers that assign 1 to
samples in the source domain and 0 to samples in the target,
and ég(h) and ér(h) are the empirical classification errors
on the source and target domains. It therefore follows that
we can minimize the distance cZH(S, T) between domains
by maximizing the error of all classifiers that distinguish
between the domains.

Ganin et al. [9] achieve this goal with a technique known
as gradient reversal (GR). Here, training is framed as a sad-
dle point problem, where the system is broken into three
parts. Features f are extracted using a feature extractor
f = Gy(x,0f), and then fed into a task-specific classifi-
cation branch G ( f, 6,) and a domain-discriminator branch
Ga(f,04). Gq attempts to classify the domain of any given
sample as either source or target using the loss

Lg=— (Z log G4(z) + Z log(1 — Gd(x))> . (7

z€Xg xeXp

In essence G is a classifier belonging to the hypothesis
class H described above.

Thus, given some loss function £, (e.g. cross-entropy)
defined for S, we can then define an energy function

E(@f, oyv od) = ‘Cy (Xsrm Ysrc) - Aﬁd(X7 D) (8)

where d; is a domain label that is equal to 1 if x; €
Xsre or 0 otherwise, D = (dy,...,d,), and X is a hyper-
parameter to control the trade-off between the two losses.
d»(S,T) is then minimized at the saddle point

(éfv éy) = arg gnlen E(efa Gya éd)

A S ©)
0q = argrréaxE(Gf7 0y,04).

Gradient reversal presents a simple way to optimize this
saddle point problem using stochastic gradient descent. To
do this, a special Gradient Reversal Layer (GRL) is added
between Gy and G4. On the forward pass of training, the
GRL acts as an identity map, but on the reverse pass the
GRL multiplies its gradient by —1. This effectively replaces
% with —%, which as [9] show is sufficient to achieve
a saddle point of (8).

3.3.2 Adapting The Decoder

A naive way to apply the techniques of gradient reversal to
the architecture described in Section 3.1 would be to treat

1600



Sc \
i i s i it i ‘_i 1
LB PR
' G [ I
oy ———— | A ¥
‘ ’7L \7‘ > — —>’)71‘5;1115 :
\M’w‘\ --------------------------------------- !
LN y P
B : — — —>y12: :
i 34,
. L] 1 1
S, 1
_‘_ _________________ ; 1
GSs I
o

Figure 3. (Left) The configuration of the network for multi-task training. The same feature extractor Gy is used to extract features from
both the content domain S and the style domain Ss. These features are then fed into separate RNN decoders G< and G2. (Right)
We perform domain adaptation on the RNN decoder G by aggregating the intermediate RNN values s; and using gradient reversal on a
domain classifier that selects between Sc and the target domain 7. We do not perform any adaptation with respect to S beyond what the

network learns through multi-task training.

GY the same we treated G, in Section 3.3.1: as a simple
classifier that acts on the features extracted by G'y. Infor-
mally, the intuition is that we would be adapting the visual
features to become robust to the change in style between
real and synthetic.

However, we explored multiple architectures using this
approach, and we experimentally found that the main ben-
efit of domain adaptation is in its ability to improve under-
standing of the content, and less so in its ability to build ro-
bustness to the style. Under this hypothesis, it makes more
sense to perform domain adaptation in the RNN portion of
the network, where the language structure is processed.

Thus, we introduce a method that directly adapts the
RNN components of the system, which we illustrate in Fig-
ure 3. Specifically, we leave most of GG, unchanged, but for
each RNN step ¢ we introduce a new value

v= GRL(mtax St) (10)

where s; is the internal state of the RNN, as introduced in
Equation 2.We experimentally found that it was essential to
aggregate the RNN output using maximization, as averag-
ing or using a softmax attention-based aggregation did not
result in a system that performed better than the baseline.

We then use a domain-discriminator G4 on the output,
which we calculate as

w = Werelu(Wdlv + bdl) + bd2 (11
d = softmax (W, w)

where Wy, , Wa,, Wa,, bq,, and by, are all parameters
learned by the network.

We can then define L4 as it was defined in Equation 7,
and our final content energy function becomes

E(0,0,,0a) = Lc(Xe, Yo) — AMa(X, D). (12)

This modification is essential for success once data from
S is added to the system, since it performs adaptation on a
portion of the network that is not directly enhanced by the
additional data.

When combined with multi-task learning, our final en-
ergy function becomes

E(0f707€70r070d): (13)
£S(XS,YS) =+ ﬁc(Xc,Yc) — /\,Cd(X, D)

During each step of training, we optimize all three com-
ponents of this loss in a single batch. The complete archi-
tecture with all components and unsupervised domain adap-
tation applied to the decoder is illustrated in Figure 3. When
training, we use A = 0.5, a value which we determined ex-
perimentally.

4. Experiments

The setup we suggest is both unique and highly specific,
so in order to properly evaluate it we introduce two new
datasets containing real and synthetic images of Hebrew
street name signs. Used in conjunction with the existing
FSNS street name dataset, we illustrate the effectiveness of
both our domain adaptation technique and a simple multi-
task learning approach. We then demonstrate that using
both techniques together performs better than using only a
single technique, and provide a detailed empirical analysis
of our results.
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Trained on: SynHSNS  FSNS  HSNS | SynHSNS Acc. FSNS Acc. | HSNS Acc.
FSNS Baseline v N/A 64.34% N/A
Baseline v 94.68% N/A 18.49%
Fine-Tuning v v 89.81% 64.34% 29.56%
Multi-Task Training (MT) v v 94.68% 64.26% 36.54%
Domain Adaptation (DA) v v 93.57% N/A 38.64%
DA + MT v v v 91.47% 63.39% 50.16%

Table 1. Full-sequence accuracy on the test data of each dataset for the various systems we discuss in this paper. Check marks indicate
which datasets were available during training for each experiment. The most important accuracy results are those of HSNS, the target
dataset for our system. We also report performance on the SynHSNS and FSNS datasets, though we note that optimizing performance on
these datasets is not the goal of our system. Still, results indicate our system does not completely destroy performance on these secondary
tasks, a fact which may be useful in building a more general system.
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Figure 4. Sample images from the HSNS, SynHSNS, and FSNS
datasets, displayed on the top, middle, and bottom rows respec-
tively.

Following [43], the metric which we report for all of the
following techniques is full sequence accuracy, wherein a
sample is considered correctly classified only if every char-
acter is predicted correctly.

Unfortunately, in the absence of an alternate yet reliable
means of performing hyperparameter optimization, we fol-
low [3] and perform out experiments directly on a small set
of validation data. We understand that this is not optimal,
as the argument can be made that any labeled data avail-
able at training time should be used during training, and
we therefore hope that in the future the research community
will present an alternative means for validation in the unsu-
pervised domain adaptation scenario. For now, we leave the
development of such a metric to future work.

4.1. Datasets
4.1.1 Hebrew Street Name Signs

For our target dataset, we collected approximately 92,000
cropped images of Hebrew street name signs from Israel.
We divided these into three different splits of 89,936 test im-

ages, 899 validation images and 903 test images, of which
only the validation and test images have labels. When
splitting the dataset we maintained a geographic distance
of at least 100 meters between the location of any train-
ing/validation and test images, to ensure that the system
does not have exposure to any test signs while training or
performing validation. All of these images are 150 x 150
resolution.

Many Hebrew street signs include certain prefixes that
translate to words such as “street,” “road,” “avenue,’ efc.
More often than not, these words are written in a much
smaller font than the rest of the sign, making them illegi-
ble at 150 x 150 resolution. Since many Israeli map ser-
vices don’t include these prefixes, we also decided to ex-
clude them from the transcriptions.

We will be releasing this data as the Hebrew Street Sign
Names (HSNS) dataset. Samples from this dataset are
shown in Figure 4. Although the images are collected in
full RGB color and will be released as such, in all of the
tests that follow we convert each image into greyscale so as
to maintain consistency with our synthetic images, which
we describe below.

4.1.2 Synthetic Hebrew Street Name Signs

We elected to use a relatively simple scheme for generat-
ing synthetic data. This decision is motivated both by the
difficulty of generating more sophisticated natural-looking
synthetic data, and by the observation that the synthetic data
need only contain the same content as the target data to be
useful, as we can use other methods to address the style.
Our synthetic images therefore consist of only straight-
forward text rendering, a box placed behind the text, a per-
spective transform, and some slight blur. When rendering
the text, we randomly select from one of nineteen different
Hebrew fonts. In some cases, we randomly add English text
or numbers below or above the Hebrew, which we don’t in-
clude in the ground truth transcriptions. The size and place-
ment of the text, the parameters of perspective transform,
and the amount of blur are all selected randomly. The actual
text itself is selected from a list of real Israeli street names.
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To better match the text distribution of HSNS, we also ran-
domly add small font prefixes which translate to the Hebrew
words for “street”, “road”, “avenue”, etc. We found that
these prefixes were essential for performance, since they are
often included in real images but are often too small to read,
and including them in the synthetic data signals to the sys-
tem that they do not need to be transcribed. We generate all

images at 150 x 150 resolution.

In order to simplify the text generation process further,
all synthetic images are generated in greyscale. This greatly
simplifies the generation process by making it much eas-
ier to produce images in a realistic color range. The ex-
act colors for each image are selected randomly, though we
do enforce a minimum amount of contrast between the text
and the box behind it. We used a solid color for the back-
ground, because preliminary tests using more complicated
backgrounds (e.g. Gaussian noise) did not yield any differ-
ences in performance.

We generate roughly 430,000 synthetic images for train-
ing, and another 10,000 each for evaluation and testing. For
sample images, see Figure 4. We release this data along
with HSNS as the Synthetic Hebrew Street Name Signs
dataset (SynHSNS).

4.1.3 French Street Name Signs

In addition to the two Hebrew-language datasets above,
we also use the existing French Street name Signs (FSNS)
dataset [30] for our multi-task learning. FSNS contains
roughly 1 million training, 20,000 evaluation, and 16,000
test samples of French street name signs, each containing
between one and four views of the same sign at 150 x 150
resolution. For consistency with HSNS and SynHSNS,
we only use one of these views during training, taking
whichever view is listed first. Similarly, we maintain con-
sistency with SynHSNS by converting each image into
greyscale. Sample images from the original FSNS dataset
can be seen in Figure 4.

4.2. Implementation Details

With the exception of the fine-tuning experiment de-
scribed in Section 4.3.2, all of the training is performed with
a learning rate of 0.0047 using Stochastic Gradient Descent
with a momentum value of 0.75. We train for 800,000 steps
with a batch size of 15 for each domain actually used during
training. When domain adaptive components are present,
we turn them on starting at 20,000 steps and compute the
loss in Equations 12 and 13 with the value A = 0.5. All
input images are 150 x 150 resolution, consistent with the
resolution of the data in all three datasets.

4.3. Domain Adaptation and Joint Training
4.3.1 Baselines

In order to show the efficacy of our system, we need to
demonstrate that our methods perform better than a naive
approach. We therefore define our baseline to be the test
performance of HSNS on a system trained exclusively on
the SynHSNS data. Results of this experiment are reported
in Table | as “Baseline”.

Table 1 also includes for reference the performance of a
system trained exclusively on the version of FSNS used in
all experiments, listed as “FSNS Baseline”. As described
above, our usage of FSNS differs from the standard usage
in that we have only used one of the up to four possible
views for each sign, and we have removed all color from
the image. Therefore, while the number we report here for
FSNS is lower than the number [43] reported for essentially
the same system, it is important to note that the two exper-
iments were not performed on precisely the same data. We
would also like to emphasize that our goal is not to optimize
performance on FSNS, but rather on HSNS, and therefore
these numbers are included only for reference.

4.3.2 Multi-Task Learning Baselines

We report results on the multi-task learning scheme de-
scribed in Section 3.2, where we train on both the SynHSNS
and the FSNS datasets simultaneously. We report this in
Table 1 as “Multi-Task Training (MT)”. As with the base-
lines described above, HSNS data is not seen during train-
ing, yet we still achieve 36.54% accuracy on the HSNS test
set. Thus, simply by learning to parse real French images,
the model achieves an 18 point improvement when pars-
ing real Hebrew images, supporting our hypothesis that the
system is better able to understand the realistic style of the
Hebrew data just from seeing the real French data.

In addition to the joint training scheme described above,
we also evaluate our method on a simple fine-tuning
scheme, listed in Table 1 as “Fine-Tuning”. In this scheme,
we first train the entire system on FSNS alone for 800,000
steps. Then we replace G5 with G2¢ and train the network
for an additional 66,000 steps at a reduced learning rate of
0.002 (additional steps of training did not increase the per-
formance on HSNS). Performance results of both methods
are reported in Table 1. We see that multi-task learning
is superior to fine-tuning, probably because the additional
training phase reduces some of the benefits gained by the
French data in the first phase.

4.3.3 Domain Adaptation

To evaluate the effectiveness of gradient reversal, we again
perform two experiments, both based on the RNN-centric
domain adaptation described in Section 3.3.2.
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Figure 5. Examples of Hebrew letters that are visually hard to dis-
tinguish.

The first of these experiments, denoted in Table 1 as “Do-
main Adaptation (DA)”, performs domain adaptation on the
RNN portion of the network G2¢, explicitly optimizing the
loss in Equation 12 using only HSNS and SynHSNS as in-
put, i.e. the architecture shown in Figure 3 (right) with G55
and the FSNS input removed.

Our second experiment, denoted “DA+MT”, uses all
three datasets as input, and is a test of our full system as
illustrated in Figure 3 (right). This experiment stands out as
the only one to make use of all three datasets available to
us.

From these experiments, we see that domain adaptation
alone, just between HSNS and SynHSNS, is enough to yield
a performance increase from 18.49% to 38.64%. What’s
perhaps more interesting is that combining this with multi-
task learning takes the performance to 50.16%. In particu-
lar, the marginal increase from “DA” to “DA+MT” (about
11 points) is not trivial. Similarly, the jump from from
“MT” to “DA+MT” (about 14 points) is also quite substan-
tial.

We believe that this supports our hypothesis that domain
adaptation targets the content while multi-task learning tar-
gets the style, because it suggests that the improvements
provided by each technique are mostly disjoint, i.e. domain
adaptation is helping for a different reason than multi-task
learning. If these techniques weren’t complementary, and
both “DA” and “MT” improved performance by address-
ing the same features of the target, then we might expect
to see a smaller marginal improvement when we used both
of them together, since it would suggest that there is very
much “overlap” between the techniques.

4.3.4 Analysis of Errors

The Hebrew alphabet is a challenging set of characters - it
has multiple characters which are hard to distinguish both
for humans (untrained or non-native Hebrew speakers) and
computers, such as those illustrated in Figure 5. There are
several others, but just these account for 22.7% (1596 out
of 7013) of all printable characters of our validation set. It
is interesting to note that all model configurations confuse
these characters and the rate of confusion does not change
drastically from one configuration to another (for instance,
the “MT” model confuses VAV for YOD 40/894 times, and
“MT+DA” confuses VAV for YOD 41/894 times).

Another interesting observation is the way that the net-
work learns to represent the features for white space, specif-
ically the NULL character (which terminates a sequence)
and the SPACE character. Table 6 shows t-SNE plots [38]

Figure 6. Visualization of individual character predictions in a net-
work with only multi-task learning (left) and with multitask and
DA (right). The numbers refer to clusters of individual characters
in the Hebrew alphabet. Points in red on the top correspond to the
SPACE character, while points in red on the bottom correspond to
the NULL (end of sequence) character.

for the character embedding of the “MT” and “DA+MT” ar-
chitectures. We observe that as the network’s performance
increases, the NULL and SPACE characters develop clus-
ters that are more separate from the other clusters. We see
this confusion when we look at performance numbers as
well: “MT” classifies SPACE as NULL 88/620 times, while
“MT+DA” makes this mistake only 45/620 times. We be-
lieve this observation can be explained by looking at the
area around characters.

We posit that the main difference in visual appearance
between synthetic and natural images is the way regions
without characters look. In a tight crop around any charac-
ter there will not be that much difference between real and
synthetic images, but our model operates on a large context
where the area around the text may be too distracting for
the model to easily ignore. The area without characters is
exactly the area to which NULL and SPACE refer.

5. Conclusion

In this paper, we have explored different approaches
to teaching a system to perform sequential OCR on pho-
tos of street name signs in a language for which there ex-
ists no labeled data. To do this, we introduce two new
datasets: the SynHSNS dataset of synthetic Herbrew street
sign names, and the HSNS dataset of real unlabeled He-
brew street sign names. Ultimately, we demonstrate that
our approach, which leverages existing data in other lan-
guages and easily-generated synthetic data in the same lan-
guage, can be used to greatly improve performance in the
target domain by transferring information about both style
and content.
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