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Abstract

We propose to predict histograms of object sizes in

crowded scenes directly without any explicit object instance

segmentation. What makes this task challenging is the high

density of objects (of the same category), which makes in-

stance identification hard. Instead of explicitly segmenting

object instances, we show that directly learning histograms

of object sizes improves accuracy while using drastically

less parameters. This is very useful for application scenar-

ios where explicit, pixel-accurate instance segmentation is

not needed, but there lies interest in the overall distribu-

tion of instance sizes. Our core applications are in biol-

ogy, where we estimate the size distribution of soldier fly

larvae, and medicine, where we estimate the size distribu-

tion of cancer cells as an intermediate step to calculate the

tumor cellularity score. Given an image with hundreds of

small object instances, we output the total count and the

size histogram. We also provide a new data set for this task,

the FlyLarvae data set, which consists of 11,000 larvae in-

stances labeled pixel-wise. Our method results in an overall

improvement in the count and size distribution prediction as

compared to state-of-the-art instance segmentation method

Mask R-CNN [11].

1. Introduction

Pixel-wise segmentation of objects (e.g., [26, 10, 24, 29])

and instance segmentation (e.g., [2, 11]) are core research

topics in computer vision. Recent methods use Deep Neural

Networks to estimate segmentation masks. Since the num-

ber of instances is not known a-priori, researchers either

resort to object proposals first for detection [21] and later

for segmentation [11], or enumerate instances with a Re-

current Neural Network [23]. Both solutions require train-

ing of large models and complex training pipelines. In many

applications, especially in the medical field, one is not inter-

ested in segmenting every instance of an object, but rather

finding the distribution of object sizes in the image. De-

tecting object sizes in images is useful for a broad range of

applications as it can be associated with physical properties

like mass, area, etc. We target challenging tasks for which

all objects have extremely similar appearance, and in which

instance segmentation is challenging. Our first application

is the prediction of size distributions of fly larvae colonies

for organic waste decomposition [5, 9]. Our second applica-

tion aims at estimating tumor growth directly from medical

images.

Typically, such tasks would be approached via explicit,

pixel-accurate instance segmentation with a method like

Mask R-CNN [11]. These methods can be used to predict

the size of each individual object using the estimated mask.

However, performance (for size estimation) decreases in

case of overlapping objects and partial occlusions because

only visible pixels can be classified and thus enter into the

size estimation task. Furthermore, it is well known that

instance segmentation methods cannot cope with large ob-

ject overlap, mainly due to the Non-Maximum Suppression

step, missing many objects in the process. For those tasks,

the size of instance segmentation models is disproportionate

with respect to the complexity of the problem. In this paper,

we advocate to learn and predict a statistical summary of ob-

ject sizes and counts directly in the form of histograms. We

show that our approach significantly reduces the parameter

overhead needed for explicit, pixel-accurate instance seg-

mentation, while being more accurate. Our contribution is

three-fold:

• We propose a novel deep learning architecture (His-

toNet), which counts and predicts the size distribution

of objects directly from an input image, showing su-

perior results with respect to state-of-the-art instance

based segmentation methods while having 85% less

parameters.
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• We present a new data set1 of pixel-wise instance la-

beled fly larvae and the challenge of predicting size

histograms for these small similarly-looking objects.

• We further evaluate performance of HistoNet on a pub-

lic cancer cell data set and demonstrate that it achieves

good results for this different image modality and ap-

plication domain.

2. Related Work

Counting and density estimation. Counting objects in im-

ages has been a focal point in computer vision research for

several years. Various approaches of the pre-deep learn-

ing era designed bottom-up image processing workflows

to count objects segmented with edge detectors [25]. A

downside of these approaches is their large number of

hyper-parameters that has to be set for each new data set.

Counting-by-regression methods [3, 15, 19], on the other

hand, avoid directly solving the hard object detection prob-

lem but instead directly learn a mapping from the input im-

age to the number of objects. An elegant method to estimate

total object counts in images is density estimation. Lem-

pitsky et al. [18] densely computed Scale-Invariant Feature

Transform (SIFT) features for the input images and pre-

dicted density maps via regression. Fiaschi et al. [6] im-

proved density mapping by using a regression forest. Re-

cent works turn to Deep Learning [22] for joint semantic

segmentation and density estimation, to identify and count

particular tree species of sub-pixel size at very large scale

from satellite images. Xie et. al [27] proposed a fully

convolutional regression network to output a cell density

map across the image to predict the total count. Simi-

larly, [28] used a structured regression convolutional neural

network approach to detect cells. A very powerful architec-

ture custom-tailored for object counting, CountCeption was

introduced by Cohen et. al [4]. It processes the image in a

fully convolutional manner and predicts redundant counting

instead of density mapping in order to average over errors.

Its main insight is that predicting the existence or absence

of an object within a receptive field is an easier task than

predicting density maps. The latter is harder because in ad-

dition to predicting an object’s existence, it has to estimate

how far the object is from the center of the receptive field.

Due to its very redundant convolutions per image location,

this architecture gives good results while being efficient to

train. For many applications, object counting is not enough,

as the size distribution of the objects in the scene is key to

determine, e.g., malignant cell evolution. We propose an ar-

chitecture that not only counts objects but also predicts their

size distribution without explicit instance segmentation.

Instance segmentation. An alternative way to predict total

object count is to perform explicit object detection or in-

1 https://github.com/kishansharma3012/HistoNet

Symbol Description

I Input Image

Pmap Predicted Count Map

Tmap Target Count Map

Phist Predicted Histogram

Thist Target Histogram

p(H) Probability Distribution of Histogram H

Lcount Pixel Wise Count Map Loss

LwL weighted L1 Histogram Loss

W Weights assigned for LwL

LKL KL-Div Histogram Loss

Table 1. Notation Summary

stance segmentation, known as counting-by-detection. The

last few years have seen considerable progress in object de-

tectors [7, 21], as well as instance segmentation methods

based on Deep Neural Networks [11]. An advantage of

these approaches is that they also provide object size as a

by-product. This can be approximated by the area of the

bounding box enclosing the objects or better estimated if

one extracts instance masks for all objects. To the best of

our knowledge, this strategy is the most accurate and ro-

bust today to predict object count and size, thus we use

it as the baseline for this work. A clear downside of the

size and counting-by-detection strategy is that we solve a

much harder problem, that of instance segmentation, in or-

der to predict total counts and object size distributions. This

means using large models and complex training schemes

to obtain pixel-accurate instance delineation, even though

this information is not needed as output. Additionally, over-

lapping instances and occluded objects often lead to errors.

Here, we propose to directly learn to predict size distribu-

tions without explicit instance segmentation or object detec-

tion, with higher accuracy and a leaner architecture having

85% less parameters compared to Mask R-CNN [11].

3. HistoNet

Our method directly predicts global data statistics given an

image, namely, total object count in cluttered scenes and

object size distribution via histogram prediction. More for-

mally, given an input image I , our aim is to predict a redun-

dant count map Pmap and size histogram Phist. Towards this

end, we present a data-driven model, HistoNet. Its architec-

ture is shown in Fig. 1, while a notation summary for the

following equations is given in Table 1.

Network Architecture. As shown in Fig. 1, HistoNet

consists of two branches, one for predicting the object count

and the other for histogram prediction, which estimates the

size distribution of object instances. HistoNet takes an im-

age I of size 256 × 256 as input and predicts a redun-
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Figure 1. HistoNet Deep Supervision Architecture

dant count map Pmap of size 288 × 288 in a fully convolu-

tional manner (lower branch). Note that neither upsampling

nor deconvolutions are computed for predicting a map at a

larger size than the input image. As in [4], HistoNet zero-

pads the input image in its first layer and we build a size dis-

tribution predictor network on top of it. Two green boxes in

Fig. 1 at the same level in the lower branch of the network

represent the application of two kernels on the same input

and concatenation of their outputs to handle variations in

object size. For size histogram prediction, the upper branch

uses ResNet-50 [12] modules on top of the first layer of

the lower branch. Instead of a standard fully connected

layer, we add two convolutional layers with kernels of size

3× 3× 256 and 1× 1× 16. These convolutional layers are

followed by two fully connected layers interspersed with

dropout layers. Our final output is a histogram of object

sizes Phist.

Loss function. To train our multi-task prediction net-

work, we impose losses on count prediction as well as on

histogram distribution prediction. The count loss is L1 as in

[4]:

Lcount = ‖Pmap(I)− Tmap(I)‖1 (1)

where Pmap is the predicted count map, Tmap is target

count map and ‖.‖
1

is L1 norm.

We formulate a KL-Divergence loss and a weighted L1

loss for size histogram prediction. The KL-Divergence loss

measures the degree of dissimilarity between the predicted

and ground truth distributions.

LKL =
∑

p(Thist)log

(

p(Thist)

p(Phist)

)

(2)

Where p(Thist) and p(Phist) are the probability distribu-

tions of target and predicted size histogram. To capture the

scale of the histogram, we found L1-loss to perform best.

Moreover, a weighted L1-loss, where weights W are as-

signed according to the normalized center values of the re-

spective bins, further improves results. Our intuition is that

larger objects should incur higher penalty than smaller ones

if missed. For calculating weights, we (i) compute the bin

centers, (ii) sum over the bin center vector, and (iii) divide

with the total sum such that the overall sum across all bins

is one

LwL =
∑

W |Phist − Thist| (3)

where Phist is predicted histogram and Thist is target his-

togram. Our object size-weighted L1-loss in combination

with the KL-Divergence loss are eventually mutually rein-

forcing to capture shape and scale of the histogram. We

jointly train our network on this multi-task loss and mini-

mize for count map and histogram prediction:

Ltotal = Lcount + 0.5LKL + 0.5LwL (4)

We empirically found that giving equal weight to KL-loss

and weighted L1-loss gives best results.

3.1. Deep supervision

Directly learning fine-grained 8 or 16 bin histograms can be

tricky for the network. In order to help the network focus

the learning on the hard cases near the bin boundaries, we

propose to gradually increase histogram resolution towards

the deeper layers. That is, we first learn a 2-bin and 4-bin

histogram and later allow the network to increase the res-

olution to 8 and 16 bins without incurring any additional

labelling cost. Towards this end, we use Deeply Super-

vised Nets (DSN) [17], shown to be helpful in calibrating

the model at intermediate stages by enforcing direct and

early supervision for both the hidden layers and the output

layer. We show the Deep Supervision modules on the upper

branch as trapezoids in Fig. 1. These have an effect on the
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Figure 2. Example of our FlyLarvae data set: (a) input image, (b) pixel-accurate object masks, (c) count map (d) 8-bin histogram, (e) 16-bin

histogram

Figure 3. Example of the simulated ellipse data set: (a) input image (b) count map, (c) 8-bin histogram, (d) 16-bin histogram

Figure 4. Example of breast cancer cell data set (a) Cellularity

Score 0.0 (b) Cellularity Score 0.5 (c) Cellularity Score 1.0

early hidden layers and serve as an additional constraint to

gradually force the network to split size bins into smaller

intervals. Our deep supervision signal at early and middle

stage of the histogram branch enforces first a split of sizes

into two bins and the following one into four bins. There-

fore, in addition to count map and size histogram, we pre-

dict 2-bin, 4-bin histograms Phist2 and Phist4, respectively.

To implement deep supervision, we add a stack of two con-

volutions and two fully connected layers to predict the 2-bin

histogram early in the histogram branch. The same stack is

added at a later layer for the 4-bin histogram. Our full model

architecture with deep supervision at intermediate stages of

the histogram branch is shown in Fig. 1.

For training the deeply supervised version of HistoNet

we define side output losses along side our main objective

function. We add KL-divergence and weighted L1 loss for

2-bin and 4-bin histogram predictions:

Ltotal = Lcount + 0.5(LKL + LwL)

+0.2(LKL2 + LwL2)

+0.3(LKL4 + LwL4)

(5)

4. Experiments

We evaluate performance of our method on three different

data sets. HistoNet performance is compared to state-of-

the-art on our new FlyLarvae data set, which contains a high

density of similarly looking objects. In addition, we present

experiments on a synthetic ellipse data set where we can ad-

just density and object size distributions arbitrarily, in order

to show the robustness of our method and its ability to pre-

dict diverse histogram shapes. Finally, we run experiments

with a medical image data set to verify applicability to a

very different image modality and for the specific purpose

of estimating the tumor cellularity score.

We use the Adam optimizer [14] for training our models

and a batch size of four images. Our network weights are

initialized using Xavier initialization [8], and we apply

classic data augmentation such as image vertical and

horizontal rotation, noise addition, contrast variation and

train our networks for 100 epochs.

Fly Larvae data set. We create a new dataset of sol-

dier fly larvae, which are bred in massive quantities for

sustainable, environmentally friendly organic waste de-

composition [5, 9]. Fly larvae images were collected using

a Sony Cyber shot DSC -WX350 camera with image size
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Figure 5. Fly Larvae 8-Bin Histogram Prediction (a) Input Image (b) Target 8-Bin Histogram (c) Mask R-CNN Prediction (d) HistoNet

Prediction (e) HistoNet DSN prediction

Figure 6. Fly Larvae 16 Bin Histogram prediction (a) Input Image (b) Target 16-Bin Histogram (c) Mask R-CNN Prediction (d) HistoNet

Prediction (e) HistoNet DSN prediction

Figure 7. Size distribution histogram (a) Fly larvae 16-bin (b) Syn-

thetic ellipse 16-bin

1380× 925. The camera is installed on a professional repro

tripod to guarantee a fixed distance from camera to object

for all image acquisitions. Very large numbers of larvae

mingled with a lot of larvae feed lead to high object overlap

and occlusions. All larvae instances are labeled pixel-wise

and we will make th FlyLarvae dataset publicly available

upon publication of this paper. For experiments, we sample

patches of size 256 × 256 pixels from the original images.

A summary of the FlyLarvae data set is given in Tab. 2

while an example image and the corresponding instance,

pixel-wise label is shown in Fig. 2.

Synthetic Ellipse Dataset. As evident from Fig. 7, the size

distribution of our larvae data set follows a Gaussian distri-

bution. In order to check whether our method really predicts

different size distributions (or simply learns the Gaussian

by heart), we created a synthetic data set of thin ellipses

with strongly varying size distributions. We also greatly

vary shape, size, and orientation of ellipses as well as the

FlyLarvae Synthetic Ellipse

No. Objects 10844 135318

Size 120.2 ± 28.1 94.5 ± 63.2

Count 80.4 ± 40.7 44.8 ± 20.8

Table 2. Summary of our new FlyLarvae data set and the synthetic

ellipse data set.

amount of overlap and occlusion. A summary of this syn-

thetic ellipse data set is shown in Tab. 2 and an example

image with its corresponding targets in Fig. 3.

Breast Cancer Cell Dataset. In order to validate applica-

bility of HistoNet to a different image modality and image

content, we are using the breast cancer cell data set [1] that

was originally recorded for the BreastPathQ Challenge. It

consists of 2579 image patches, and each patch is assigned

a tumor cellularity score by one expert pathologist. The

malignant cellularity score depends on malignant cell count

and size, a task which can be tackled with the proposed Hi-

stoNet. The BreastPathQ Challenge dataset also contains a

portion of images with annotated lymphocytes, malignant

epithelial and normal epithelial cell nuclei. We add pixel-

accurate labels to many of these images to prepare it for

validating HistoNet. Three example images of this data set

are shown in Fig 4.

4.1. Evaluation Measures

To evaluate object instance counts and size histogram pre-

diction performance, we use several quantitative measures
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Figure 8. Fly Larvae 8 Bin Histogram prediction (a) Input Image (b) Target 8-Bin Histogram (c) Mask R-CNN Prediction (d) HistoNet

Prediction (e) HistoNet DSN prediction (f) Target 2-Bin HistoNet DSN (g) Prediction 2-Bin HistoNet DSN (h) Target 4-Bin HistoNet DSN

(i) Prediction 4-Bin HistoNet DSN

Figure 9. Synthetic Ellipse 8-Bin Histogram Prediction (a) Input Image (b) Target 8-Bin Histogram (c) Mask R-CNN Prediction (d)

HistoNet Prediction (e) HistoNet-DSN Prediction

described in the following. For counting, we use the

Mean Absolute Count Error (MAE), which takes the ab-

solute difference between predicted and target count. To

quantify histogram prediction performance, we compute the

Kullback-–Leibler divergence [16] (kld), the Bhattacharyya

distance [13] (bhatt), the χ2-distance [20], intersection

(isec):

isec =

∑

min(Phist, Thist)

max(
∑

Phist,
∑

Thist)
(6)

and histogram correlation (corr):

corr =

∑

(Phist − Phist)(Thist − Thist)
√

∑

(Phist − Phist)2
∑

(Thist − Thist)2
(7)

where Phist and Thist represent the mean of Phist and Phist

histograms, respectively.

4.2. Quantitative Results on biological data

We evaluate HistoNet for predicting 8-bin histograms

and more fine-grained 16-bin histograms of object sizes.

We benchmark HistoNet against Mask R-CNN [11] as a

Parameter number (×106)

Mask R-CNN [11] 237.1

HistoNet 30.2

HistoNet DSN 36.5

Table 3. Total parameter number per model.

baseline. Recall that Mask R-CNN predicts pixel-accurate

instance labels instead of directly outputting an object size

distribution. We thus explicitly do instance segmentation

and compute sizes by summing over instance pixels.

We compare performance of explicit instance segmenta-

tion [11], our HistoNet and HistoNet DSN architectures on

FlyLarvae (Tab. 4) and the synthetic ellipse data set (Tab. 5).

FlyLarvae Dataset. For the FlyLarvae data set, our

approach reduces the χ2-distance for histogram prediction

by more than 50% compared to the Mask R-CNN baseline.

In addition, significantly improved Kullback–Leibler diver-

gence (kld) and weighted L1 difference between histograms

(wtL1) indicate that our method captures scale and shape of

the histograms much better than Mask R-CNN. As shown
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Figure 10. Synthetic Ellipse 16 Bin Histogram prediction (a) Input Image (b) Target 8-Bin Histogram (c) Mask R-CNN Prediction (d)

HistoNet Prediction (e) HistoNet-DSN Prediction

Method MAE ↓ kld ↓ wtL1 ↓ isec ↑ χ2 ↓ corr ↑ bhatt ↓
Average model 8 28.97 0.10 4.42 0.66 13.24 0.90 0.17

Mask R-CNN 8 7.84 0.64 4.31 0.72 16.37 0.77 0.25

HistoNet 8 2.38 0.25 2.72 0.81 6.57 0.91 0.16

HistoNet-DSN 8 2.06 0.23 2.51 0.83 5.74 0.93 0.15

Average model 16 28.97 0.17 2.46 0.64 17.12 0.84 0.22

Mask R-CNN 16 7.84 0.95 2.62 0.69 22.73 0.69 0.32

HistoNet 16 2.28 0.26 1.74 0.76 10.03 0.86 0.21

HistoNet-DSN 16 1.99 0.25 1.70 0.77 9.8 0.86 0.21
Table 4. FlyLarvae data set

in Fig. 5, 6 our approach predicts histograms which are

close to the ground truth size histograms. Mask R-CNN

over and under-predicts the masks of objects, and thus their

size. Fig. 8 shows the histogram prediction provided by the

deep supervision in the form of 2-bin and 4-bin histogram

demonstrating that HistoNet DSN further improves over

HistoNet method.

Synthetic Ellipse Dataset. Since the FlyLarvae dataset

approximately follows gaussian distribution, one could

assume that a model that predicts the average shape of the

training set would be able to solve the task. In order to show

that this is not the case, we create a synthetic ellipse dataset

which covers a much higher variance of size distributions,

density, and object overlaps. As depicted in the Table 5,

similar trends are observed on synthetic ellipse data set

for χ2-distance and correlation between histograms. Our

method is able to handle high variance in object sizes and

thus showing robustness on synthetic ellipse data set. We

clearly show that even if the histogram is skewed, HistoNet

is able to correctly predict its shape. We generalize to the

number of objects, their size and well as their distribution

of sizes. Note, that our method uses 85% less parameter as

compared to Mask-RCNN as shown in Tab. 3.

Average model. To further test whether our model is just

learning the average distribution shape of the training set,

we compare to a baseline Average Model that does exactly

that: it computes the average object count and size his-

togram of the training data and uses that as predictions for

the test set. Since the FlyLarvae dataset approximately fol-

lows a Gaussian distribution, Average Model is able to cap-

ture the probability distribution of the histogram, as shown

by the low kld in Tab. 4. Nonetheless, Average Model per-

forms very poorly on all other measures, demonstrating that

our HistoNet model can go beyond averaging training data

distribution and count. HistoNet correctly predicts the shape

and scale of the histograms. As expected, Tab. 5 shows that

Average Model fails to capture the underlying distribution

and scale of the synthetic ellipse dataset histogram, which

has a much larger variance in object sizes and a large variety

of object size histograms.

4.3. Quantitative Results on medical data

The Breast Cancer Cell Dataset depicts the cellularity score

of a patch, which directly depends on the area of malignant

cells. For this task, we first train our HistoNet model to pre-

dict the count map and size distribution histogram of malig-

nant cells. Using the countmap and histogram prediction,

we fine-tune our model to predict the cellularity score. The

whole network is end-to-end trainable, but due to lack of

pixel-wise labeled data, we use a multi-part training sched-

ule to train this network.

• Stage 1: Using the additional dataset in BreastPathQ

challenge, for which nuclei information is provided,

we created our target redundant count map. So, we

trained only the lower branch of HistoNet to predict

the redundant count map.

• Stage 2: We manually pixel-wise labeled some images

from the additional dataset, to train the upper branch of

HistoNet, to learn to predict 8-bin size histogram. On

this small dataset, we train the whole HistoNet.
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Method MAE ↓ kld ↓ wtL1 ↓ isec ↑ χ2 ↓ corr ↑ bhatt ↓
Average model 8 15.74 0.58 3.52 0.46 21.2 0.26 0.43

Mask R-CNN 8 4.02 0.50 1.67 0.75 6.01 0.75 0.22

HistoNet 8 1.64 0.17 1.22 0.73 3.81 0.82 0.17

HistoNet-DSN 8 1.2 0.13 1.17 0.78 3.36 0.83 0.16

Average model 16 15.74 0.70 1.89 0.43 24.03 0.27 0.48

Mask R-CNN 16 4.02 1.12 1.13 0.67 10.81 0.64 0.32

HistoNet 16 1.45 0.47 0.87 0.68 7.19 0.71 0.27

HistoNet-DSN 16 1.09 0.24 0.85 0.69 6.70 0.74 0.25
Table 5. Synthetic Ellipse data set

Method Prediction Probability

CountCeption 0.56

HistoNet-[fc 128, fc 128] 0.69

HistoNet-[fc 18, fc 18] 0.76

HistoNet-[fc 32, fc 32] 0.79

HistoNet-[fc 64, fc 64] 0.83

Table 6. Breast Cancer Cell - Cellularity score prediction

• Stage 3: We use the main dataset, which has images

labeled with their cellularity score, to train the remain-

ing part of this architecture. During this training, we

fix the weights learned from stage-2 for HistoNet.

We compare our method with a CountCeption-based

cellularity score prediction model. To evaluate our method

for cellularity score prediction, we follow the challenge

rules, and use the prediction probability measure. This

is calculated for each method for each reference stan-

dard (pathologist 1 and pathologist 2), then averaged to

determine a final overall prediction probability value.

Our method significantly improves the cellularity score

prediction over the CountCeption-based method. This

indicates that merely information about the malignant cell

count is not sufficient to predict the cellularity score with

good accuracy. Estimating the size distribution histogram

significantly helps and improves prediction accuracy.

Among the variants of HistoNet we found using two fully

connected layers of size 64 to predict cellularity score

performs best as shown in Tab. 6.

Ablation Study. We finally perform an ablation study to

evaluate how the performance of the method changes with

the amount of training data. Because of the scarcity of la-

beled data in biomedical applications, it is important to de-

sign methods that are lightweight and can be trained with-

out resorting to a large number of labeled examples. As we

show in Fig. 11, as the amount of training data is reduced,

Mask-RCNN results for kld and MAE error increase, while

our approach requires less training data to achieve better re-

sults.

Figure 11. Ablation Study (a) KL-Divergence Error (b) Mean ab-

solute count error

5. Conclusion

We have presented HistoNet, a new deep learning approach

that predicts object size distributions and total counts in

cluttered scenes directly from an input image. Experimental

evaluation on a new FlyLarvae data set and a medical data

set show superior performance compared to explicit object

instance segmentation methods and data-driven methods

that predict only object counts. We verify with synthetic im-

ages of strongly varying object densities and object overlap

that our method can predict a diverse set of size histogram

shapes. We show that directly learning and predicting ob-

ject size distributions, without a detour via explicit, pixel-

accurate instance segmentation, significantly improves per-

formance. In addition, we save 85% of model parameters,

which leads to a much leaner architecture that can be trained

with fewer annotations. We believe that the value of direct

histogram prediction goes beyond our specific use cases. In

future work, we will investigate its potential to significantly

speed up state-of-the-art object detectors by modelling spa-

tial priors on anchor box distributions, which is mostly done

in a greedy fashion nowadays.
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