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Abstract

Outdoor images are often deteriorated due to the pres-

ence of haze in the atmosphere. Conventionally, the single

image dehazing problem aims to restore the haze-free im-

age. Previous successful approaches have utilized various

hand-crafted features/priors. However, such images suffer

from color degradation and halo artifacts. By way of anal-

ysis, these artifacts, in general, prevail around the regions

with high-intensity variation, such as edgy structures. This

finding inspires us to consider the Laplacians of Gaussian

(LoG) of the images which exceptionally retains this infor-

mation, to solve the problem of single image haze removal.

In this line of thought, we present an end-to-end model that

learns to remove the haze based on the per-pixel difference

between LoGs of the dehazed and original haze-free im-

ages. The optimization of the proposed network is further

enhanced by using the adversarial training and perceptual

loss function. The proposed method has been appraised on

Synthetic Objective Testing Set (SOTS) and benchmark real-

world hazy images using 16 image quality measures. Based

on the Color Difference (CIEDE 2000), an improvement

of ∼ 15.89% has been observed over the state-of-the-art

method, Yang et al. [50]. An ablation study has been pre-

sented at the end to illustrate the improvements achieved by

various modules of the proposed network.

1. Introduction

One may describe the process of image dehazing as a

method to restore the haze-free images from their hazy

counterpart, which are affected by the reduced contrast, dull

colors and obscured visibility caused by the haze or fog

veils. Outdoor images are often deteriorated due to the pres-

ence of haze. Haze is an anthropogenic atmospheric event

in which the suspended aerosol particles of size in sub-

micrometres such as dust, mist, fog, smoke, sand and other

particulates (wet type) degrade the visibility of the scene.

The particulates or droplets impair the visibility in one of

the following two ways:(a) when the particles obscure the

scene-objects behind them, and (b) as a consequence of the

light scattering effect at a particular wavelength. Following

the majority of existing works [14, 4, 25, 54, 57, 41], the

degradation due to haze veils in the images can be analyti-

cally expressed as

H(p) = C(p)T (p) + L(p)(1− T (p)) (1)

where, H is the hazy image, C is the haze-free background

image, T is the transmission map, L is the global atmo-

spheric light (homogeneous), demonstrating its intensity

and p is the pixel location. The term L(p)(1 − T (p)) in

the above equation is also known as Airlight. The transmis-

sion map T denotes an Exponential Decay with the scene

depth and can be expressed as

T (p) = exp−βd(p) (2)

where, β denotes the attenuation coefficient of the atmo-

sphere and d refers to the scene depth. To recover the de-

hazed image C̄, the estimated atmospheric light (L̄) and

transmission (T̄ ) maps can be used by inverting the Eq. 1

as

C̄(p) =
H(p)− L̄(p)(1− T̄ (p))

T̄ (p)
(3)

1.1. Background

Over the past few years, a significant number of re-

searchers have delved into the domain of single image de-

hazing, proposed various filter and learning-based methods

for the same with outstanding results. One of the early yet

significant contributions towards single image dehazing was

proposed by He et al. [14] that uses the Dark Channel Prior

(DCP) to estimate the statistical distribution in clean im-

ages taken outdoors. It works based on the assumption that

at least one of the three color channels (Red, Green and

Blue) have a low-intensity value (known as Dark Pixels)

that belongs to the haze-free image. Yu et al. [52] assumed

the scattering model as L(p)H(p)T (p) + L(p)(1 − T (p))
and proposed a fast bilateral filter to smoothen the fine tex-

ture of the image for single image de-fogging. The term

L(p)H(p)T (p) is also known as Direct Attenuation. To re-

move the halo artifacts generated by the DCP [14], He et al.
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[15] proposed the guided image filtering method which pre-

serves the edges. However, it fails to enhance the contrast

in the haze-free images. Meng et al. [30] (EIDBR) mod-

elled the dehazing problem as an optimization task based on

a weighted L1-norm based contextual regularization. Zhu

et al. [64] devised a Color Attenuation Prior (CAP) to re-

cover the depth of the hazy image. The transmission map

is further estimated using the recovered depth scene to re-

store the dehazed image. Berman et al. [4] introduced a

deterministic approach called Non-Local Image Dehazing

(NLD) based on the haze-lines that directly estimates the

haze-free images.

With the evolution of Convolutional Neural Networks

(CNN’s) [22], many deep learning-based schemes [37, 25,

54, 41, 50, 12, 6] have been introduced for single image

dehazing task. Ren et al. [37] proposed a Multi-Scale Con-

volutional Neural Network (MSCNN) for single image de-

hazing. The proposed method in [37] directly maps the

input hazy image to the transmission map using a coarse

deep CNN. Li et al. [25] proposed a method AOD-Net

which does not predict the transmission and airlight maps

separately. Instead, it generates the haze-free image us-

ing a lightweight CNN, unifying transmission map and

airlight estimation steps within a single unit known as the

K-Estimation Block. Zhang et al. [54] proposed a method

called DCPDN that estimates the transmission and atmo-

spheric light maps by using a pyramid [13] densely con-

nected CNN and a U-Net [38] respectively. The haze-free

image is then recovered by using Eq. 3. The estimated haze-

free image is further enhanced using a joint discriminator.

Santra et al. [41] proposed a CNN based Patch Quality

Comparator (PQC) to estimate the dehazed images. The

method proposed in [10] uses unpaired training based on

the Cycle-GAN framework [63] for image dehazing task.

Yang et al. [50] leveraged the benefits of deep learning-

based and prior-based methods in a single framework for

haze removal problem.

1.2. Our contributions

Most of the methods discussed above have been success-

ful in the single image dehazing task. However, a few of

such haze-free images suffer from color degradation and

halo artifacts that prevail around the high-intensity regions

and edgy structures. Based on the inverse scattering model

(Eq. 3) to recover C, two essential parameters T,L have to

be estimated. Existing approaches except a few [25, 10],

separately predict the transmission and atmospheric light

maps. Whereas the proposed scheme directly approximates

the distribution of haze in the hazy image H and recover the

haze-free image C.

Scale-space invariant deep model. Deep learning mod-

els, in case of image denoising, may consider every ob-

ject in an image at same scale-space. As a result, the de-

noised images may suffer from blurriness and halo artifacts.

It is based on the fact that a traditional CNN model does

not aware of scale-space of an object. Therefore, this paper

makes the first attempt to study the behaviour of a scale-

space aware deep learning-based model. For this, we define

a new loss function which is based on the LoG of an image.

LoG preserve the finer details of the edgy structures in the

images at different scale-space which can be lost during the

process of dehazing. It has been observed during our exper-

imentation that difference of LoG’s between clean and de-

hazed images can be used as a cost function to optimize the

proposed model. Such incorporations may help the model

to learn the scale-space [27] of every object in an image. An

analogy, based on the use of perceptual loss function [19] in

a deep network to recover the high-frequency details of an

image, may support this argument. Therefore, the contribu-

tions of this paper can be summarised as follows:

1. A novel scale-space aware Conditional Generative Ad-

versarial Network (CGAN) based method has been

proposed for single image dehazing. In addition to the

adversarial training, the perceptual loss function has

been used to enhance the visual quality of the dehazed

images.

2. We introduce the LoG difference between clean and

dehazed images as a cost function to optimize the pro-

posed CGAN-based model and wipe out the halo arti-

facts in the dehazed images by retaining the edgy struc-

tures more precisely.

3. A random data augmentation has been done when

training to improve the efficiency of the proposed

model further. A brief study of the same has been given

in this paper followed by an ablation study, which is

presented at the end of this paper, along with extensive

experiments.

The rest of this manuscript is organized as follows: A brief

introduction of the adopted modules in the proposed method

is presented in Section 2. Section 3 describes the proposed

method. The experimental details and results are elaborated

in Section 4 and finally, the paper is concluded in Section 5.

2. Priliminaries

2.1. Laplacians of Gaussian (LoGs)

Laplacians are isotropic measure of second-order spatial

derivative filters used to find the regions of rapid intensity

variations (edgy structures) in an image. These filters are

sensitive to the noise present in the image, and hence, it is

common first to smooth the given image using the Gaussian

filter with standard deviation σ - the combined filter, in gen-

eral, known as Laplacian of Gaussian (LoG). In general, it
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SSIM = 0.7818 SSIM = 0.8790 SSIM = 0.9260 SSIM = 1

PSNR = 13.80 dB PSNR = 15.83 dB PSNR = 22.03 dB PSNR = inf

Hazy Image DCPDN [54] Proposed Ground Truth

(i) (ii) (i) (ii) (i) (ii) (i) (ii)

(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)

(I) (II) (III) (IV)

Figure 1. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [54], (III) Proposed and (IV) Clean images. For

each in I,II,III and IV, (i) G(m,n, kσ) − G(m,n, σ), (ii) G(m,n, k2σ) − G(m,n, kσ), (iii) G(m,n, k3σ) − G(m,n, k2σ), and (iv)

G(m,n, k4σ)− G(m,n, k3σ). A detailed description of the notations has been provided in subsection 2.1.

is written as

L(m,n) = ∇2F(m,n) =
∂2F

∂m2
+

∂2F

∂n2

= − 1

πσ4

[

1− m2 + n2

2σ2

]

exp
(

− m2 + n2

2σ2

)

(4)

where, F is a 2D signal (an image in this case) with pixel

location (m,n). Theoretically, the Difference of Gaussian

can be used to closely approximate the LoG [27, 28] with

various σ values as

G(m,n, kσ)− G(m,n, σ) ≈ (k − 1)σ2∆2
G (5)

where, σ2∆2G denotes scale-normalized LoG and k, σ are

typically set to
√
2, 1.6 respectively [27]. The 2D Gaussian

kernel is defined as

G(m,n, σ) =
1√
2πσ2

exp
(

− m2 + n2

2σ2

)

(6)

In this paper, we have used four LoG filters using five Gaus-

sian kernels of size 7 × 7 with σ, kσ, k2σ, k3σ and k4σ as

their standard deviations. Finally, the per-pixel difference

between LoGs of clean and the dehazed image generated

by the proposed model is used as a cost function to train our

model. A few of the LoG filters of a sample hazy image, the

corresponding dehazed images generated by using the pro-

posed method and Zhang et al. [54], are shown in Figure 1.

It can be clearly observed that the LoG filters of the de-

hazed image (generated by using the proposed model), have

retained the edgy information better than the same of the de-

hazed image (estimated by using Zhang et al. [54]). Thus,

the use of LoG difference (between dehazed and clean im-

ages) as a cost function to train a deep CNN can be useful

for solving the single image dehazing problem.

2.2. Generative Adversarial Networks (GANs)

The proposed model is based on the Conditional GAN

[31] framework which consists of two main sub-networks

called ”Generator” and ”Discriminator” which are denoted

as φG, φD respectively in our case. While φG aims to de-

haze the given hazy image, φD learns to distinguish be-

tween the real (actual clean) and fake (dehazed) images.

The proposed φG learns from its adversary φD until a Nash

Equilibrium [34] is achieved by playing a 2-player mini-

max game based on the following equation

min
φG

max
φD

LGAN (7)

where, φG, φD learn by stochastically descending, asscend-

ing their parameters respectively and LGAN can be written

as

LGAN =λA.(EH∼Phaze
log(1− φD(φG(H)))) +

EC∼Pclean
log(φD(C))

(8)

with λA as a weight constant.

3. Proposed approach

In this section, we first present the architecture of the

proposed model as shown in Figure 2, which is based on

a Conditional GAN framework followed by the cost func-

tions incorporated for the single image dehazing task. The

proposed model comprises of two main sub-networks, Gen-

erator (φG) and Discriminator (φD). The regimes of opera-

tions of φG and φD are as follows.

Generator (φG) model takes input as hazy image H in

RGB color space and predicts the corresponding dehazed

image C̄. It consists of an encoder-decoder [38] archi-

tecture which has been useful in various image restoration
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Figure 2. An overview of the proposed model for the single image

dehazing problem.

tasks. The encoder part consists of 6 convolutional layers,

each with 64 kernels followed by Batch Normalization (BN)

[17] and ReLU activation function. Each kernel has a spa-

tial dimension of 3×3 with stride and padding of 1. On the

other hand, the decoder part comprises of 6 transpose con-

volutional layers which are also known as Deconvolution.

Each deconvolution layer consists of 64 kernels except the

last, with the spatial dimension of 3×3 and stride, padding

of 1 followed by BN and ReLU. Orhan et al. [35] have

shown that skip connections may reduce the singularities,

such as elimination, overlap and those caused by the lin-

ear dependence of the nodes, that slow down the training

process of deep CNN. Therefore, the skip connections have

been assigned between layers 4, 5 of the encoder to layers

3, 2 of the decoder. The proposed φG directly estimates the

dehazed image C̄ = φG(H) from the input hazy image H.

Unlike Zhang et al. [54], the proposed scheme preserves the

spatial dimension of the input (H) and output (C̄) images,

thereby achieving the shape invariant nature.

Discriminator (φD) learns to maximize the probability of

precisely classifying the input samples into real or fake de-

hazed images. As discussed in sub-section 2.2, this, in turn,

helps the φG to generate natural dehazed images. The pro-

posed φD consists of 4 convolution layers with 8, 16, 32,

and 3 kernels respectively, followed by BN and PReLU [16]

activation function. Each kernel in φD has a spatial dimen-

sion of 3×3 with stride and padding of 1. The output of the

φD is the mean sigmoid over the feature maps from the last

convolution layer.

3.1. Loss function

Let φG(H) ∈ [0, 1]c×w×h be the dehazed image es-

timated by the proposed model with c, w, h as channels,

width and height respectively. The conventional per-pixel

loss (LE) between dehazed and ground truth (C) images

can be written as

LE =
∑

ci,wi,hi

∥

∥φG(H)ci,wi,hi −Cci,wi,hi

∥

∥

2

2
(9)

In general, the noise present in an image exhibit high-

frequency nature. During image de-noising by using a tradi-

tional CNN, the use of Euclidean distance as a cost function

may incur the loss of high-frequency details of the image

along with the noise removal [62]. As a result, the de-noised

images appear to be blurry and degraded. The perceptual

loss function proposed by Johnson et al. [19] has been used

in the majority of the image de-noising and restoration prob-

lems [40, 56, 51, 45, 55, 60, 23] in recent times to overcome

this drawback by retaining the high-frequency details of an

image. The perceptual cost function is defined as a differ-

ence between high-level features of predicted and target im-

ages extracted by using a pre-trained CNN. In this case, ini-

tial five layers (l) of a pre-trained VGG16 [44] model (V )

have been used to extract the features 1. The perceptual loss

function (LP ) can be expressed as

LP =
∑

l

∑

ci,wi,hi

∥

∥Vl(φG(H))ci,wi,hi − Vl(C)ci,wi,hi

∥

∥

2

2

(10)

Adversarial training has been beneficial in many of the de-

noising tasks [5, 24, 53, 21]. In this case, the proposed gen-

erator φG can learn from its adversary φD based on the ad-

versarial loss for a set of N training samples defined as

LA = − 1

N

N
∑

i=1

log φD(φG(H)i) (11)

Intuitively, the use of Euclidean, Perceptual and Adversarial

losses to train the proposed model may have given the visu-

ally appealing results. However, it is observed that a few of

the estimated dehazed images suffer from halo and checker-

board artifacts. The Laplacians of Gaussian (LoG) filters

(f ), as discussed in sub-section 2.1, capture these finer de-

tails and can be used as a cost function based on the follow-

ing equation 2.

LLoG =
∑

f,ci,wi,hi

∥

∥Lf (φG(H))ci,wi,hi − Lf (C)ci,wi,hi

∥

∥

2

2

(12)

Therefore, the aggregated loss to train the proposed genera-

tor model φG can be written as

LφG
= λE .LE + λA.LA + λP .LP + λG.LLoG (13)

where, λE , λA, λP and λG are the cost weights. Moreover,

the final objective function of the proposed model for single

image dehazing task defined in Eq. 7 becomes

min
φG

max
φD

{LGAN + λE .LE + λP .LP + λG.LLoG}
(14)

1https://github.com/pytorch/examples/tree/

master/fast_neural_style
2Parameters of the laplacian model are not

updated when training.
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Measure Behaviour Input

DCP EIDBR CAP DEFADE MSCNN NLD AOD-Net DCPDN PQC PLD DSIE

Proposed[14] [30] [64] [7] [37] [4] [25] [54] [41] [50] [12]

TPAMI ‘11 ICCV ‘13 TIP ‘15 TIP ‘15 ECCV ‘16 CVPR ‘16 ICCV ‘17 CVPR ‘18 TIP ‘18 ECCV ‘18 CVPRW ‘19

SSIM ❛ 0.8148 0.8254 0.7665 0.7584 0.8072 0.8389 0.8210 0.9062 0.8722 0.8791 0.8889 0.7580 0.8941

PSNR ❛ 15.95 17.33 15.47 18.12 18.89 19.48 17.97 20.43 18.04 19.28 19.45 15.57 20.57

VIF ❛ 0.7348 0.5529 0.5766 0.5047 0.5380 0.5492 0.6003 0.6638 0.7502 0.7892 0.8150 0.4969 0.6890

MSE ❝ 2.084 1.566 2.850 1.216 1.238 0.822 1.413 0.695 1.279 1.021 0.938 2.062 0.642

UQI ❛ 0.7765 0.8581 0.8210 0.7565 0.8314 0.8649 0.8511 0.8962 0.8434 0.8552 0.8653 0.8015 0.8754

LPIPS ❝ 0.1038 0.1604 0.1855 0.1348 0.1425 0.1155 0.1465 0.0795 0.0885 0.0751 0.0792 0.2320 0.0728

MS-SSIM ❛ 0.9263 0.8859 0.8399 0.8796 0.8948 0.9101 0.8920 0.9435 0.9435 0.9524 0.9521 0.8296 0.9456

TV-Error ❝ 0.7802 1.1151 1.7031 0.9753 1.3706 1.0559 1.4894 1.1302 0.8623 1.2920 1.1211 1.3097 1.1720

NIQE ❝ 2.9053 2.8033 3.2193 1.5827 2.5663 2.4603 3.1550 2.4240 2.2705 2.7443 2.7819 4.0628 2.1452

FSIM ❛ 0.9448 0.9445 0.8769 0.9405 0.9441 0.9598 0.9361 0.9579 0.9635 0.9665 0.9701 0.8830 0.9687

CIEDE 2000 ❝ 23.80 15.50 18.82 17.88 16.30 14.83 16.04 12.11 17.66 14.61 14.22 21.08 11.96

Haar PSI ❛ 0.8616 0.7866 0.6382 0.8219 0.8180 0.8582 0.7633 0.8768 0.8418 0.8804 0.9037 0.6552 0.8752

GMSD ❝ 0.0522 0.0643 0.1162 0.0643 0.0561 0.0438 0.0677 0.0462 0.0572 0.0425 0.0333 0.1137 0.0325

BRISQUE ❝ 15.79 23.43 27.21 24.18 22.13 22.63 22.32 12.95 23.40 16.06 15.19 17.25 14.67

SpEED-QA ❝ 8.66 13.88 28.61 17.84 16.53 15.21 17.33 12.99 11.96 12.00 11.15 25.23 10.17

fom ❛ - 0 0 1 0 0 0 3 0.6 1.8 3 0 5.6

Table 1. Quantitative comparison on the SOTS (Outdoor) dataset. Best and second best results are shown in blue and red colors respectively.

A figure of merit (fom) decides the final score as number of (0.6×Best+0.4×Second Best)/Total Metrics. TV-Error is 107.

Measure Behaviour Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25] DCPDN [54] Cycle-Dehaze [10] MAMF [6] MS-PPD [57] PQC [41] PLD [50] DSIE [12] Proposed

NIQE ❙ 4.5196 3.6763 5.6602 3.3444 3.6283 4.4219 4.7583 4.1259 5.9101 4.5506 8.6962 5.5536 4.4316 4.5568 8.1091 4.3041

BRISQUE ❙ 18.49 21.80 22.55 19.11 22.98 20.29 20.19 18.73 20.57 13.23 21.62 19.73 19.78 22.42 21.03 18.65

BLINDS II ◗ 5.87 7.20 11.34 6.44 10.08 10.27 10.65 9.70 14.00 10.48 12.18 12.18 10.48 6.50 12.27 13.44

Table 2. Quantitative results on the Benchmark images provided by Fattal et al. [11].

Baseline Input M-LE M-LP M-LE + LP M-LE + LA M-LE + LA + LP M-NDA Proposed

SSIM 0.8148 0.7780 0.8220 0.8321 0.7937 0.8602 0.8750 0.8941

PSNR 15.95 17.78 16.80 17.83 17.49 18.58 19.28 20.57

Table 3. Quantitative comparison of the proposed method with the

baseline configurations on the SOTS (Outdoor) test set.

4. Experiments and results

This section illustrates the details of the experimental

setup and dataset used for the training and testing of the pro-

posed model. A concise description of image assessment

metrics chosen, followed by an ablation study and compar-

ison with the existing methods on both synthetic and real-

world hazy images are given.

4.1. Datasets and training details

We have chosen the training dataset provided by Zhang

et al. [54], which consists of 4000 indoor images. In ad-

dition, we have also included 45 hazy outdoor images pro-

vided by Ancuti et al. [2]. During training, following [61],

we have augmented the input pairs by using (1) Random ro-

tation, (2) Vertical flip, (3) Horizontal flip and, (4) Random

cropping. Each data augmentation technique has a proba-

bility of 0.5 to be applied to the input pair. Whereas, the

input pair will be augmented with the expectation (pdat) of

0.5. Input pair is rotated with the degree randomly cho-

sen between [1◦, 359◦]. Cropping is done with the size

u × u;u ∈ [8, 256] randomly chosen at a random loca-

tion in the input pair. For each input pair when training, a

randomly selected transformation between {Horizontal flip,

Vertical flip}, in addition to Rotation and Cropping, is ap-

plied in random order. For testing, we have used synthetic

dataset (SOTS) provided by Li et al. [26] which consists

of 500 outdoor and indoor images. We have also evaluated

our proposed work on the benchmark test set3 provided by

Fattal et al. [11] and real-world hazy images.

The proposed network is trained on a Nvidia Tesla GPU

using the Torch framework [9] for 104 epochs. For training,

we have experimentally chosen λE = λA = λP = λG = 1
for the losses in estimating the dehazed image. With the

batch size of 5 images, Adam [20] optimization algorithm

with a fixed learning rate of 2 × 10−4 has been used when

training. The training samples are resized to 496 × 496.

4.2. Evaluation metrics

The proposed scheme has been compared with exist-

ing approaches using following 16 full-reference and no-

reference image quality metrics: Full-reference - SSIM

[47], PSNR, Visual information fidelity (VIF) [43], Uni-

versal image quality index (UQI) [46], Learned percep-

tual image patch similarity (LPIPS) [59], Mean squared

error (MSE), Multi-scale structural similarity (MS-SSIM)

[48], Feature similarity (FSIM) index [58], Color difference

(CIEDE 2000) [42], Haar wavelet-based perceptual simi-

larity index (HaarPSI) [36], Gradient magnitude similarity

deviation (GMSD) [49] and SpEED-QA: Spatial Efficient

Entropic Differencing for Image and Video Quality [3]. No-

reference - Total variation error (TV-Error) [1], Naturalness

image quality evaluator (NIQE) [33], Blind Image Quality

Assessment: A Natural Scene Statistics Approach in the

DCT Domain (BLINDS II)4 [39], and Blind/referenceless

image spatial quality evaluator (BRISQUE) [32]. In this pa-

per, the behaviour of these evaluation norms are described

by using following symbols: ❛ (denotes higher is better)

3http://www.cs.huji.ac.il/˜raananf/projects/

dehaze_cl/results/
4Images are resized to 512 × 512 to reduce the

computation time.
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Measure Behaviour Input

DCP EIDBR CAP DEFADE MSCNN NLD AOD-Net DCPDN PQC PLD DSIE

Proposed[14] [30] [64] [7] [37] [4] [25] [54] [41] [50] [12]

TPAMI ‘11 ICCV ‘13 TIP ‘15 TIP ‘15 ECCV ‘16 CVPR ‘16 ICCV ‘17 CVPR ‘18 TIP ‘18 ECCV ‘18 CVPRW ‘19

SSIM ❛ 0.6942 0.8595 0.7682 0.8171 0.7565 0.7955 0.7775 0.8260 0.7283 0.8513 0.8445 0.6791 0.8598

PSNR ❛ 11.97 20.04 16.13 18.97 17.20 17.12 17.29 19.07 13.19 20.25 20.28 13.78 19.68

VIF ❛ 0.6858 0.7179 0.6782 0.6468 0.6656 0.7305 0.7808 0.6698 0.7148 0.7785 0.7765 0.4563 0.6945

MSE ❝ 4.856 0.776 2.024 0.983 1.531 1.592 1.427 1.144 3.723 0.722 0.728 3.114 0.914

UQI ❛ 0.6435 0.8492 0.7681 0.7879 0.7326 0.7577 0.7698 0.8019 0.6774 0.8228 0.8144 0.7029 0.8406

LPIPS ❝ 0.1999 0.1033 0.1584 0.1108 0.1449 0.1116 0.1432 0.1014 0.1531 0.0771 0.0779 0.2690 0.1128

MS-SSIM ❛ 0.8771 0.9266 0.8767 0.9095 0.8924 0.9269 0.8968 0.9199 0.8915 0.9432 0.9409 0.7858 0.9267

TV-Error ❝ 0.4808 0.7683 0.9635 0.6685 0.8218 0.6657 0.9738 0.6626 0.6302 0.8343 0.7430 1.0559 0.8786

NIQE ❝ 1.8977 1.2869 1.7616 1.3165 1.6364 1.7327 1.7397 1.6264 2.3240 1.6780 1.7007 3.7639 0.9852

FSIM ❛ 0.9112 0.9418 0.8978 0.9309 0.9289 0.9473 0.9203 0.9410 0.9253 0.9569 0.9573 0.8637 0.9613

CIEDE 2000 ❝ 34.73 11.85 18.76 15.24 18.91 21.39 18.34 16.14 29.00 12.41 13.48 23.36 12.14

Haar PSI ❛ 0.7599 0.8313 0.6751 0.8138 0.7764 0.8514 0.7275 0.8336 0.7180 0.8663 0.8797 0.6332 0.8155

GMSD ❝ 0.0879 0.0668 0.1129 0.0793 0.0805 0.0656 0.0935 0.0652 0.1134 0.0582 0.0547 0.1398 0.0517

BRISQUE ❝ 38.92 34.86 33.48 36.33 33.71 35.44 33.42 34.74 41.74 33.78 34.10 29.87 32.95

SpEED-QA ❝ 15.26 15.83 24.14 18.61 17.49 15.16 20.00 14.00 18.46 14.16 12.92 29.54 10.77

fom ❛ - 2 0 0 0 0 0.6 0.4 0.6 3 3.6 0.6 4.2

Table 4. Quantitative comparison on the SOTS (Indoor) dataset. Best and second best results are shown in blue and red colors respectively.

A figure of merit (fom) decides the final score as number of (0.6×Best+0.4×Second Best)/Total Metrics. TV-Error is 107.

Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25] DCPDN [54] PQC [41] PLD [50] Proposed

Figure 3. Subjective comparison of the proposed method with the existing state-of-the-art schemes on the SOTS (Indoor) test images.

Outdoor

Measure Behaviour Cycle-Dehaze [10] MAMF [6] MS-PPD [57] Proposed

SSIM ❛ 0.7850 0.7502 0.8119 0.8941

PSNR ❛ 12.93 17.81 17.23 20.57

SpEED-QA ❝ 10.64 21.50 14.84 10.17

Indoor

Measure Behaviour Cycle-Dehaze [10] MAMF [6] MS-PPD [57] Proposed

SSIM ❛ 0.7748 0.7269 0.7687 0.8598

PSNR ❛ 17.18 17.16 16.67 19.68

SpEED-QA ❝ 16.86 24.36 18.97 10.77

Table 5. Comparison with other existing methods on SOTS.

and, ❝ (denotes lower is better). The detailed description

of adopted evaluation metrics has been given in the supple-

mentary material.

4.3. Ablation study

This sub-section presents an ablation study of the pro-

posed method. We have compared the proposed model with

the baseline configurations (M-X , where X denotes the

proposed model is trained using only loss X) and M-NDA

refers to the proposed model trained without using adopted

data augmentation based on the Eq. 14. It can be observed

from the Table 3 that the inclusion of LP in addition to

LE and LA has shown a significant improvement. Further,

the use of LLoG has contributed an average improvement

of ∼ 1.72%, ∼ 3.76% in SSIM and PSNR, respectively,

over the model M-LE +LA +LP . A noticeable increment

of ∼ 2.18%, ∼ 6.69% in SSIM and PSNR, respectively,

is further observed when the data augmentation techniques,

summarised in sub-section 4.1, are used during the training.

4.4. Comparison with State­of­the­Art Methods

Evaluation on synthetic dataset. Tables 1, 4, and 5

present the quantitative comparison of the proposed scheme

with 14 state-of-the-art methods using 15 image quality

metrics as mentioned in earlier subsection 4.2. Based on the

proposed figure of merit (fom) in Tables 1 and 4, it can be

observed that the proposed scheme has shown a significant

improvement over the existing methods [50, 41, 54, 25].

Despite the fact that SSIM value achieved by [25] on SOTS

(outdoor) test set is ∼ 1.35% higher, the proposed scheme

outperforms [25] by a noticeable margin of ∼ 86% in over-

all ranking (fom). One of the important aspect of the single

image haze removal problem is color restoration. To evalu-

ate this, we have employed CIEDE which essentially mea-

sures the color difference between two images. As reported

in Table 1, the proposed scheme has outperformed the ex-

isting methods [14, 64, 37, 4, 25, 50, 54, 41] with the lowest

CIEDE value of 11.96.

Qualitative analysis on outdoor and indoor test sets, as

shown in Figures 4, 6 respectively, proves the supremacy

of the proposed scheme over other methods. Unlike [12,

10, 57, 54], the proposed scheme does not suffer from color

degradation. As shown in Figure 4(c), results obtained by

using [37, 25, 41] still contain the hazy part and obscured

edgy structures. Whereas, the result obtained by using the

proposed scheme is free from such artifacts.

The primary reason behind such improvement may be

the use of perceptual loss [19] and the introduced LoG dif-

ference as the cost functions. Especially, the LoG loss,
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DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25] DCPDN [54] PQC [41] PLD [50] DSIE [12] Proposed

Platform MATLAB [29] MATLAB [29] MATLAB [29] MATLAB [29] MATLAB [29] MATLAB [29] Pycaffe [18] Torch [9] Keras [8] MATLAB [29] Torch [9] Torch [9]

Time 16.37 2.64 0.78 34.84 1.71 5.05 0.48 0.13† 29 1.68 6.10‡ 0.05

Table 6. Average running time (in seconds) on the test set SOTS (Indoor). † Tested with images of size 512× 512. ‡ On CPU.

SSIM = 0.7229 SSIM = 0.6822 SSIM = 0.7587 SSIM = 0.8274 SSIM = 0.8763 SSIM = 0.8054 SSIM = 0.7650 SSIM = 0.9344

PSNR = 12.59 dB PSNR = 21.95 dB PSNR = 14.05 dB PSNR = 20.54 dB PSNR = 22.19 dB PSNR = 18.48 dB PSNR = 20.60 dB PSNR = 22.68 dB

Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25]

SSIM = 0.7590 SSIM = 0.9211 SSIM = 0.9071 SSIM = 0.7039 SSIM = 0.5298 SSIM = 0.6612 SSIM = 0.9633 SSIM = 1.0000

PSNR = 12.23 dB PSNR = 21.96 dB PSNR = 23.07 dB PSNR = 14.42 dB PSNR = 14.92 dB PSNR = 17.41 dB PSNR = 26.56 dB PSNR = inf

DCPDN [54] PQC [41] PLD [50] DSIE [12] Cycle-Dehaze [10] MS-PPD [57] Proposed Clean

(a)

SSIM = 0.7097 SSIM = 0.9024 SSIM = 0.8343 SSIM = 0.8950 SSIM = 0.8787 SSIM = 0.8087 SSIM = 0.8696 SSIM = 0.8791

PSNR = 12.11 dB PSNR = 19.08 dB PSNR = 15.76 dB PSNR = 20.46 dB PSNR = 18.69 dB PSNR = 17.06 dB PSNR = 20.25 dB PSNR = 19.56 dB

Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25]

SSIM = 0.9065 SSIM = 0.9228 SSIM = 0.9506 SSIM = 0.6358 SSIM = 0.6595 SSIM = 0.7152 SSIM = 0.9522 SSIM = 1.0000

PSNR = 21.71 dB PSNR = 21.65 dB PSNR = 23.02 dB PSNR = 12.96 dB PSNR = 11.29 dB PSNR = 17.68 dB PSNR = 23.29 dB PSNR = inf

DCPDN [54] PQC [41] PLD [50] DSIE [12] Cycle-Dehaze [10] MS-PPD [57] Proposed Clean

(b)

SSIM = 0.6215 SSIM = 0.8134 SSIM = 0.6426 SSIM = 0.8416 SSIM = 0.7774 SSIM = 0.7496 SSIM = 0.8770 SSIM = 0.8454

PSNR = 11.43 dB PSNR = 20.19 dB PSNR = 11.88 dB PSNR = 22.03 dB PSNR = 17.48 dB PSNR = 16.81 dB PSNR = 21.65 dB PSNR = 18.87 dB

Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25]

SSIM = 0.7042 SSIM = 0.8607 SSIM = 0.8856 SSIM = 0.6705 SSIM = 0.5681 SSIM = 0.6992 SSIM = 0.9029 SSIM = 1.0000

PSNR = 13.40 dB PSNR = 20.09 dB PSNR = 22.16 dB PSNR = 13.64 dB PSNR = 13.17 dB PSNR = 15.73 dB PSNR = 19.95 dB PSNR =inf

DCPDN [54] PQC [41] PLD [50] DSIE [12] Cycle-Dehaze [10] MS-PPD [57] Proposed Clean

(c)

Figure 4. Subjective evaluation of the proposed method with existing schemes in terms of SSIM and PSNR(dB) on SOTS (Outdoor) images.

which may have improved the efficiency of the proposed

model by considering the scale-space of the objects from

the initial epoch. The proposed method has also been tested

on the benchmark images provided by the Fattal et al. [11]

and results are tabulated in the Table 2.

Evaluation on real-world dataset. The proposed

model has been evaluated on several real-world hazy im-

ages, as shown in Figure 5. It can be observed that the

earlier existing approaches such as [14, 64] tend to un-

der dehaze the given images whereas schemes such as

[30, 7, 4] have produced the dehazed images with oversat-

urated tones. It may be because these methods have used

a hand-crafted feature such as dark channel prior, to esti-

mate the haze distribution in the images. As a result, the

models may not have generalized well on a variety of hazy

images. Recent deep learning based approaches such as

[37, 25, 41, 50] have been successful compared to the previ-

ous models. However, such methods have failed to address
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Input DCP [14] EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4] AOD-Net [25] DCPDN [54] PQC [41] PLD [50] Proposed

Figure 5. Subjective comparison of the proposed model with the existing methods on the real-world hazy images.

Input DCP [14]

EIDBR [30] CAP [64] DEFADE [7] MSCNN [37] NLD [4]

AOD-Net [25] DCPDN [54] PQC [41] PLD [50] DSIE [12]

Cycle-Dehaze [10] MS-PPD [57] Proposed Clean

Figure 6. Comparison with the existing schemes on a synthetic

hazy image (Indoor).

Input NLD [4] AOD-Net [25]

PQC [41] PLD [50] Proposed

Figure 7. Failure case. The proposed model does not perform well

on the images with dense haze.

the perceptual quality of the dehazed images. The proposed

scheme has produced visually appealing results compared

to other existing methods.

Run-time comparison and failure case. The runtime

comparison of the proposed scheme with existing methods

has been shown in Table 6. It can be observed that the pro-

posed model takes about ∼ 0.05 seconds to test an image

with an average size of 620 × 460. The proposed method

fails to address the images with dense haze, as shown in Fig-

ure 7. However, the perceptual quality of the dehazed image

recovered by using the proposed scheme is better than the

same by using the existing methods [4, 25, 41, 50].

5. Conclusions

In this work, we have presented an end-to-end deep

learning based approach for the single image haze removal

problem. The proposed scheme is built upon the conditional

GAN framework and directly estimates the dehazed image.

We have shown the better preservation of the edgy struc-

tures in the LoGs of the hazy images, which inspired us to

consider the LoG difference as a cost function. The gener-

alization of the proposed model has been verified by using

three benchmark test sets, namely: SOTS (Indoor and Out-

door), Fattal et al. [11] and, real-world hazy images. De-

spite the fact that the proposed model fails to address the

images with dense haze, it has been evaluated using 15 im-

age quality assessment metrics, and extensive comparison

with existing methods proves it’s primacy.
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