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Abstract

Recently image-to-image translation has attracted sig-

nificant interests in the literature, starting from the suc-

cessful use of the generative adversarial network (GAN), to

the introduction of cyclic constraint, to extensions to mul-

tiple domains. However, in existing approaches, there is

no guarantee that the mapping between two image domains

is unique or one-to-one. Here we propose a self-inverse

network learning approach for unpaired image-to-image

translation. Building on top of CycleGAN, we learn a self-

inverse function by simply augmenting the training samples

by swapping inputs and outputs during training and with

separated cycle consistency loss for each mapping direc-

tion. The outcome of such learning is a proven one-to-one

mapping function. Our extensive experiments on a variety

of datasets, including cross-modal medical image synthe-

sis, object transfiguration, and semantic labeling, consis-

tently demonstrate clear improvement over the CycleGAN

method both qualitatively and quantitatively. Especially

our proposed method reaches the state-of-the-art result on

the cityscapes benchmark dataset for the label to photo un-

paired directional image translation.

1. Introduction

Image-to-image translation (or cross-domain image syn-

thesis) learns a mapping function from an input image to an

output image or vice versa. It can grouped into two cate-

gories: supervised [12] vs unsupervised (or unpaired) [39].

The task of learning mappings between two domains

from unpaired data has attracted a lot of attention, espe-

cially in the form of unpaired image-to-image translation

X Y

DY

X

DY

Y

G

(b)

Dx

X'

DY

x Y' x'

Dx

X'Y'

DY

F

Dx

G

DX

x x'

G

F

G

G

y y'

y y'

F

G

G

G

(a)

G

Figure 1. A comparison of our one2one CycleGAN with the orig-

inal CycleGAN [40] for the mapping between two domains X and

Y. (a) Original CycleGAN model. It contains two separated map-

ping functions G : X → Y and F : Y → X . (b) Our One2one

CycleGAN. We propose to realize one-to-one mapping by learning

ONLY one self-inverse function G for the mapping between two

domains bidirectionally. It contains only one mapping function

G : X ↔ Y .

[40, 41, 15, 21]. Thanks to the pioneer work of GAN[10]

and cycleGAN [39], recent works [32, 28, 38, 37, 6, 11,

18, 1, 35, 31] have shown promising result for unpaired

image-to-image translation. This task is very important be-

cause paired data are not available in many cases and the

paired information are difficult or time-consuming to get.

For example, in the medical field of cross domain medical

image segmentation[37, 38]: with the brain CT image se-

mantic label and without the brain MRI semantic label, the

goal is to generate semantic label for the brain MRI im-

age. Amazing works [37, 38] like this cross domain image

segmentation task in the medical image application could

be further improved if unpaired image translation can be

unique and more accurate. In many cases, the information

source like patient is unique. For example, there is only a
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brain MRI image for a patient, but there should be a unique

CT brain image for the same patient. This uniqueness re-

quirement can be called one-to-one mapping of the brain

CT and the brain MRI image from the same patient. If the

unpaired image-to-image translation can achieve this one-

to-one mapping, the cross-domain medical image segmena-

tion performance can be further improved. However, exist-

ing method can not meet this requirement.

As mentioned above, the major limitation of existing

methods for unpaired image-to-image translation like Cy-

cleGAN is that they can not realize one-to-one mapping

which is necessary in many cases like the information

source of the unpaired image is unique. Without the pairing

information, CycleGAN using the distribution constraint al-

lows many-to-many mappings. To reduce the space of pos-

sible mappings and improve in finding a more unique map-

ping, their models add an essential cycle-consistency con-

straint. The cycle-consistency constraint enforces a stronger

connection cross domains by requiring the input image and

the output image to be close. The output image is gener-

ated by first mapping from source domain to target domain

then mapping back to the source domain. But this only re-

duces the many-to-many mapping to many-to-one mapping

or one-to-many mapping cross domains, which will be il-

lustrate in detail in section 3.2 and 3.3.

With the success of image generation[10, 29] model

Generation Adversarial Networks(GANs) and unsupervised

mapping methods like CycleGAN [39], motivated by the

recent works [30, 13] of exploring invertibility of convo-

lutional neural networks (CNNs), we propose to learn a

one-to-one mapping between domains from unpaired data

to compensate the limitation of the exsiting methods such

us CycleGAN.

Specifically, we enforce the generator of the Cycle-

GAN as a self-inverse function to realize a one-to-one map-

ping. So we call our proposed method One2one CycleGAN.

When a function G is self-inverse, illustrated as

G = G−1, (1)

it guarantees a one-to-one mapping. We use the Cycle-

GAN [39] as the baseline framework for image-to-image

translation. To impose the self-inverse property, we imple-

ment a simple idea of augmenting the training samples by

switching inputs and outputs during training. However, as

we will demonstrate empirically, this seemingly simple idea

makes a genuinely big difference!

The distinct feature of our self-inverse network is that it

learns one network to perform both forward (X → Y : from

X to Y) and backward (Y → X: from Y to X) transla-

tion tasks. It contrasts with the state-of-the-art approaches

which typically learn two separate networks, one for for-

warding translation and the other for backward translation.

As a result, it enjoys several benefits. First, it halves the

necessary parameters, assuming that the self-inverse net-

work and the two separate networks share the same network

architecture. Second, it automatically doubles the sample

size, a great feature for any data-driven models, thus be-

coming less likely to over-fit the model.

One key question arises: Is it feasible to learn such a self-

inverse network for image-to-image translation? We can not

theoretically prove this existence; however, we experimen-

tally demonstrate so. Intuitively, such an existence is related

to the redundancy in the expressive power of the deep neu-

ral network. Even given a fixed network architecture, the

function space for a network that translates an image from

A to B is large enough, that is, there are many neural net-

works with different parameters capable of doing the same

translation job. The same holds for the inversion network.

Therefore, the overlap between these two spaces, in which

the self-inverse network resides, does exist.

Our contribution are as follows: (i) We introduce the

One2one CycleGAN model for learning one-to-one map-

pings cross domains in an unsupervised way. (ii) We show

that our model can learn mappings that generate a more ac-

curate output for each input. (iii) We evaluate our method

in extensive experiments on a variety of datasets, includ-

ing cross-modal medical image synthesis, object transfig-

uration, and semantic labeling, consistently demonstrate

clear improvement over the CycleGAN method both quali-

tatively and quantitatively. Especially our proposed method

reaches the state-of-the-art result on the cityscapes bench-

mark dataset for the label to photo unpaired directional im-

age translation.

2. Literature Review

Iosla et al. [12] presented the seminar work of image-to-

image translation that offered a general-purpose solution,

and Goodfellow et al. proposed to use the generative ad-

versarial network (GAN) [10] for the first time in the lit-

erature. While paired data are assumed in [12], later Zhu

et al. [39] proposed the CycleGAN approach for addressing

the unpaired setting using the so-called cyclic constraints.

There are many recent advances that use guidance informa-

tion [32, 28], impose different constraints [9, 22, 36], or deal

with multiple domains[41, 6, 11, 18], etc. In this paper, we

study unpaired image-to-image translation.

In addition to using the GAN that essentially enforces

similarity in image distribution, other guidance informa-

tion is used such as landmark points [32], contours [8],

sketches [23], anatomical information [28] etc. In addi-

tion to cyclic constraint [39], other constraints like ternary

discriminative function [9], optimal transport function [22],

smoothness over the sample graph [36] are used as well.

Also, extensions were proposed to deal with video in-

puts [33, 3], to synthesize images in high resolution [34],

to seek for diversity [25]and to handle more than two im-
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Figure 2. (a) The mapping routes of CycleGAN. The limitations

of the CycleGAN model is that it allows biased and non-unique

unpaired image translation. For the mapping route x → x′, the

mapping G : x → y′ is a one to many mapping which result that

x can be mapped to infinity possible y′, Let’s denote the unique

target is y′

t and the actually mapped result is y′

k; The mapping F :

y′

k → x′ is a many to one mapping. As a result, there is allowable

bias between the target y′

t and the prediction y′

k. Similarly,for the

mapping route y → y′, the mapping F : y → x′ is a one to many

mapping which result that y can be mapped to infinity possible x′,

Let’s denote the unique target is x′

t and the actually mapped result

is x′

k; The mapping G : x′

k → y′ is a many to one mapping.

As a result, there is allowable bias between the target x′

t and the

prediction x′

k. (b) The mapping routes of one2one CycleGAN.

The motivation of one2one CycleGAN is to realize unique and

accurate unpaired image translation. The mapping function G is

self inverse function with the one-to-one mapping property. For

the mapping route x → x′, the mapping G : x → y′ is a one

to one mapping which result that x is only mapped to the unique

target is y′

t. The mapping F : y′

t → x′ is also a one to one

mapping. As a result, there is no bias between the target and the

prediction. Similarly, for the mapping route y → y′, the mapping

F : y → x′ is a one to one mapping which result that y can only

be mapped to the unique target is x′

t. The mapping G : x′

t → y′

is also a one to one mapping. As a result, there is no bias between

the target and the prediction.

age domains [41, 6, 11, 18]. Furthermore, there are meth-

ods that leverage attention mechanism [24, 5, 26] and mask

guidance [20]. Finally, disentangling is a new emerging di-

rection [11, 18].

In terms of works about inverse problem with neural net-

works, [13] makes the CNN architecture invertible by pro-

viding an explicit inverse. Ardizzone et.al [2] prove the

invertibility theoretically. More specifically, Kingma [17]

shows the benefit of a invertible 1× 1 convolution.

Different from a one-to-one mapping function are one-

to-many, many-to-one, and many-to-many [1] 1 mapping

functions. In [12], the well-studied scenarios of labels-to-

scenes, edge-to-photo are more likely one-to-many map-

1It is worth noting that recently there are quite some works focusing

on addressing image-to-image translation among many domains, also the

so-called one-to-many .

ping as it is possible that multiple photos (scenes) have the

same edge (label) information. The colorization example

is also one-to-many. From an information theory perspec-

tive, the entropy of the edge map (label) is low while that of

the photo is high. When an image translation goes from an

information-gaining direction, that is, from low-entropy to

high-entropy, its mapping leans towards one-to-many. Sim-

ilarly, if it goes from an information-losing direction, then

its mapping leans toward many-to-one. If the information

level of both domains is close (or information-similar), then

the mapping is close to one-to-one. In [12], the examples of

Monet-to-photo, summer-to-winter are closer to one-to-one

mapping as the underlying contents of both images before

and after translation are regarded the same but the styles are

different, which does not change the image entropy signif-

icantly. For image to image translation, many works has

been done to diversify the output [1, 21, 18, 11, 41, 19],

while not too many work has been done to make the output

unique [31]. Our work goes to the latter direction.

Although there are so many research works on image-

to-image translation, the perspective of learning a one-to-

one mapping network has not been fully investigated, with

the exception of [22]. In [22], Lu et al. show that Cycle-

GAN can not theoretically guarantee the one-to-one map-

ping property and propose to use an optimal transport mech-

anism to mitigate this issue. However, like GAN, the opti-

mal transport method also measures the similarity in im-

age distribution; hence the one-to-one issue is not fully re-

solved. By contrast, our self-inverse learning comes with

a guarantee that the learned network realizes a one-to-one

mapping.

3. Unsupervised Learning of One-to-one Map-

pings between Domains

3.1. Problem setting

For any two domains X and Y with only unpaired ele-

ments available, we assume there exists a mapping, poten-

tially one-to-one mapping, between the elements of each

domain. The goal to make sure there is a unique target ele-

ment in the target domain to match a element in the source

domain. The objective is to recover this mapping. Since

there are only unpaired samples available, this goal is real-

ized by matching the distributions pd(x) and pd(y) of each

domain. This can be treated as a conditional generating

task. The true conditionals p(x|y) and p(x|y) are estimated

from the true marginals. To be able to uncover this mapping,

the elements in both domain X and domain Y are highly de-

pendent.

3.2. CycleGAN model

As shown in Figure 1, the CycleGAN model [39] solves

this problem by estimating these two conditionals with two
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separated mappings functions G : X → Y and F : Y →
X . Both of the mapping functions are parameterized with

identical neural networks and constrained by the follow-

ings:

• Distribution matching: The distribution of the each

mapping output should match the distribution of the

target domain. This constrain allows many-to-many

mappings between the source domain X and the target

domain Y and vice versa.

• Cycle-consistency: Each element is mapped from the

source domain to the target domain, then mapped back

to source domain. The output should be close to the

input element. This constrains one-to-many mapping

from source domain and many-to-one mapping from

target domain to source domain.

3.3. Limitations of CycleGAN for one­to­one map­
ping

The main weakness of the CycleGAN model is that is

can not realize one-to-one mapping for accurate and unique

unpaired image translation. Based on the above constrains

and the illustration in Figure 2, the CycleGAN model can

not satisfy our problem’s goal. Next, we show how to mod-

ify CycleGAN to meet the goal of our problem.

The distribution matching is implemented by GAN[10].

The two mapping functions G and F implemented by neural

networks are trained to fool the Discriminator DY and DX

respectively. The adversarial loss[10] for mapping function

G is

LGAN (G,DX , X, Y ) = Ex∼pdata(x)[logDY (x)]

+Ey∼pdata(y)[log(1−Dx(G(y)))]. (2)

The cycle consistency loss is:

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]

+Ey∼pdata(y)[||G(F (y))− y||1]. (3)

The final objective for the mapping function G and F is

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , Y,X) + λLcyc(G,F ) (4)

and we aim to solves

(G∗, F ∗) = argmin
G,F

max
DX,DY

L(G,F,DX , DY ). (5)

4. Self-inverse Learning for Unpaired Image-

to-image Translation

In the section, we first show the property that the self-

inverse function guarantees one-to-one (one2one) mapping.

Then we discuss how to train a self-inverse CycleGAN net-

work for image-to-image translation

4.1. One­to­one property

In image-to-image translation, we define a forward func-

tion as Y = fX→B(X) that maps an image X on domain A

to another image Y on domain B and, similarly, an inverse

function as X = f−1
B→A(Y ). When there is no confusion,

we will skip the subscript (e.g., A→ B).

Property: If a function Y = f(X) is self-inverse, that is

f = f−1, then the function f defines a one-to-one mapping,

that is, Y1 = Y2 if and only if X1 = X2.

Proof:

[⇒] If X1 = X2, then Y1 = f(X1) = f(X2) = Y2.

[⇐] If Y1 = Y2, then X1 = f−1(Y1) = f−1(Y2) = X2

as long as the inverse function exists, which is the case for

a self-inverse function as f−1 = f . #

4.2. One­to­one benefits

There are several advantages in learning a self-inverse

network to have the one-to-one mapping property.

(1) From the perspective of the application, only one

self-inverse function can model both tasks A and B and it

is a novel way for multi-task learning. As shown in Figure

1, the self-inverse network generates an output given an in-

put, and vice versa, with only one CNN and without know-

ing the mapping direction. It is capable of doing both tasks

within the same network, simultaneously. In comparison to

separately assigning two CNNs for tasks A and B, the self-

inverse network halves the necessary parameters, assuming

that the self-inverse network and the two CNNs share the

same network architecture as shown in Figure 1.

(2) It automatically doubles the sample size, an impor-

tant feature for any data-driven models, thus it is less likely

to over-fit the model. The self-inverse function f has the

co-domain Z = X ∪ Y . If the sample size of either domain

X or Y is N , then the sample size for domain Z is 2N . As

a result, the sample size for both tasks A and B are doubled,

becoming a novel method for data augmentation to mitigate

the over-fitting problem.

(3) As shown in Figure 2, In the unpaired image-to-

image translation setting, the goal is to minimize the dis-

tribution gap between the two domains. The state-of-art

methods can realize this but can not guarantee an ordered

mapping or bijection between the two domains. This results

in variations for the generated images.

(4) The one-to-one mapping is a strict constraint. There-

fore, forcing a CNN model as a self-inverse function can

shrink the target function space.

4.3. One­to­one CycleGAN

We are inspired by the basic formulation of Cycle-

GAN [39]. In CycleGAN, there are two generators Y =
F (X) and X = G(Y ), two discriminators Dx and Dy , and

one joint object function. In our one2one CycleGAN, we
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have one shared generator G and still two discriminators

Dx and Dy . Instead of having a joint objective for the dual-

mappings, our proposed method has two separate objective

functions, one for each of two mapping directions.

4.3.1 Separated loss functions

Compared to CycleGAN that uses a joint loss for both

image transfer directions, our method have two separate

losses, one for each image transfer direction. For the map-

ping function G : X → Y and its discriminator DY , the

adversarial loss is

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x)))]. (6)

The cycle consistency loss is

Lx
cyc(G) = Ex∼pdata(x)[||G(G(x))− x||1]. (7)

For the mapping function G : Y → X and its discrimi-

nator DX , the adversarial loss is:

LGAN (G,DX , X, Y ) = Ex∼pdata(x)[logDY (x)]

+Ey∼pdata(y)[log(1−Dx(G(y)))]. (8)

The cycle consistency loss is:

Ly
cyc(G) = Ey∼pdata(y)[||G(G(y))− y||1]. (9)

So, the final objective for the mapping function X → Y

is

L(G,DY ) = LGAN (G,DY , X, Y ) + λxL
x
cyc(G), (10)

and the minimax optimization solves

(G∗, D∗

Y ) = argmin
G

max
DY

L(G,DY ). (11)

Similarly, the final objective for the mapping function

Y → X is

L(G,DX) = LGAN (G,DX , X, Y ) + λyL
y
cyc(G), (12)

and the minimax optimization solves

(G∗, D∗

X) = argmin
G

max
DX

L(G,DX). (13)

4.4. Self­inverse implementation

We apply the proposed method based on the framework

of CycleGAN [39]. To have a fair comparison with Cycle-

GAN, we adopt the architecture of (Johnson et al., 2016) as

the generator and the PatchGAN [12] as the discriminator.

The log likelihood objective in the original GAN is replaced

with a least-squared loss [14] for more stable training. We

Figure 3. Visual comparison for horse↔zebra.

resize the input images to 256 × 256. The loss weights are

set as λx = λy = 10. Following CycleGAN, we adopt

the Adam optimizer [16] with a learning rate of 0.0002.

Similarly, we use a pool size of 50. The learning rate is

fixed for the first 100 epochs and linearly decayed to zero

over the next 100 epochs on Yosemite and apple2orange

datasets. The learning rate is fixed for the first 4 epochs

and linearly decayed to zero over the next 3 epochs on the

BRATS dataset. The learning rate is fixed for the first 90

epochs and linearly decayed to zero over the next 30 epochs

on the Cityscapes dataset.

4.5. Training details and optimization

In our experiments, we use a batch size of 1. At each it-

eration, we randomly sample a batch of pair (xi, yi), where
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samples {xi}
N

i=1 ∈ X and {yi}
M

i=1 ∈ Y . At any iteration j,

we perform the following three steps:

• Firstly, we feed xi as the input and yi as the target, then

forward G and back-propagate G;

• Secondly, we feed yi as the input and xi as the target,

then forward G and back-propagate G;

• Finally, we back-propagate DY and DX individually.

5. Experiments

In order to test the effect of the proposed method, we

evaluate it on an array of applications: cross-modal medical

image synthesis, object transfiguration, and style transfer.

Also we compare against several unpaired image-to-image

translation methods: CycleGAN [39], DiscoGAN [15], Dis-

tanceGAN [4], and UNIT [21]. We conduct a user study

when the ground truth images are unknown and perform

quantitative evaluation when the ground truth images are

present.

5.1. Datasets and results

Object transfiguration. we test our method on the horse

↔ zebra task used in CycleGAN paper [39] with 2401 train-

ing images (939 horses and 1177 zebras) and 260 test im-

ages (120 horses and 140 zebras). This task has no ground

truth for generated images and hence no quantitative eval-

uation is feasible. So we provide the qualitative results

obtained in a user study. In the user study, we ask a user

to rate his/her preferred image out of three randomly posi-

tioned images, one obtains from CycleGAN, one from Dis-

tanceGAN, and the other from one2one CycleGAN. Figure

4 shows examples of input and synthesized images and Ta-

ble 1 summarize the use study results.

Figure 4 tells that one2one CycleGAN likely generates

better quality images in an unsupervised fashion, especially

in terms of the quality of zebra synthesis from the horse

(refer to the first four rows). Our method generated more

real and complete zebra content. From Table 1, it is clear

that our one2one CycleGAN is the most favorable with a

75% (77%) preference percentage for the horse2zebra (ze-

bra2horse) mapping direction. and DistanceGAN is the

least favorable.

we test our method on the apple↔ orange task [39] with

2014 training images (995 apples and 1019 orange) and 514

test images (248 apples and 266 oranges). This task has no

ground truth for generated images and hence no quantitative

evaluation is feasible. Figure 5 shows examples of input and

synthesized images. There are failure cases in rows 1,2,4

from CycleGAN while our model generates normal images.

Cross-modal medical image synthesis. This task evalu-

ates cross-modal medical image synthesis. The models are

Generated

CycleGAN

Generated

One2one

(Ours)

Recycled

CycleGAN

Recycled

One2one

(Ours)
Input

winter summer

Figure 4. Visual comparison for summer↔winter on yosemite.

trained on the BRATS dataset [27] which contains paired

MRI data to allow quantitative evaluation. It contains ample

multi-institutional routine clinically-acquired pre-operative

multi modal MRI scans of glioblastoma (GBM/HGG) and

lower grade glioma (LGG) images. There are 285 3D vol-

umes for training and 66 3D volume for the test. The T1 and

T2 images are selected for our bi-directional image synthe-

sis. All the 3D volumes are preprocessed to one channel

image of size 256 x 256 x 1. We use the Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index Mea-

sure (SSIM) to evaluate the quality of generated images.

As shown in Table 2, on the T1 → T2 image synthesis

direction, our one2one model outperforms the CycleGAN

model on PSNR by 6.0%. The qualitative result is shown in

columns 3 and 4 in Figure 7. On the T2 → T1 image syn-

thesis direction, our one2one model outperforms the Cycle-

GAN model on PSNR by 5.0%. The qualitative result is

shown in columns 7 and 8 in Figure 7.

Semantic labeling. We also test our method on the la-

bels ↔ photos task using the Cityscapes dataset [7] under

the unpaired setting as in the original CycleGAN paper. For

quantitative evaluation, in line with previous work, for la-

bels→ photos we adopt the “FCN score” [12], which eval-
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Label→ Photo Photo→ Label

Method Pixel Acc.↑ Class Acc. ↑ Class IoU ↑ Pixel Acc.↑ Class Acc. ↑ Class IoU ↑
CycleGAN 52.7 15.2 11.0 57.2 21.0 15.7

DiscoGAN 45.0 11.1 7.0 45.2 10.9 6.3

DistanceGAN 48.5 10.9 7.3 20.5 8.2 3.4

UNIT 48.5 12.9 7.9 56.0 20.5 14.3

One2one CycleGAN (ours) 58.2 18.9 14.3 52.7 18.1 13.0

Table 1. Results of Photo ↔ Label translation on the Cityscapes dataset.

Direction Metric Cycle Distance One2one

horse2zebra Prefer pct. ↑ 25% 0 75%

zebra2horse Prefer pct. ↑ 23% 0 77%

Table 2. Results of user study on the horse to zebra dataset.

Figure 5. Visual comparison for apple↔orange.

uates how interpretable the generated photos are accord-

ing to a semantic segmentation algorithm. For photos ←
labels, we use the standard segmentation metrics, includ-

ing per-pixel accuracy, per-class accuracy, and mean class

Intersection-Over-Union (Class IoU). The quantitative re-

sult is shown in Table 3. Our model reaches the state-of-

Direction Method PSNR ↑ SSIM ↑

T1→ T2 CycleGAN 20.79 0.85

T1→ T2 One2one CycleGAN 22.03 0.86

T2→ T1 CycleGAN 17.47 0.81

T2→ T1 One2one CycleGAN 18.31 0.82

Table 3. Evaluation of cross-modal medical image synthesis on the

BRATS datase.

Direction Metric Cycle One2one

summer2winter Prefer pct. ↑ 34% 66%

winter2summer Prefer pct. ↑ 41% 59%

Table 4. Results of user study on the summer to winter Yosemite

dataset.

the-art on the label→ photo direction image synthesis un-

der this unpaired setting. The pixel accuracy outperforms

the second best result by 10.4 %; The class accuracy out-

performs the second best result by 24.3 %; The class IoU

outperforms the second best result by 30.0 %. On the photo

→ label direction, our model reaches comparable results.

The qualitative result is shown in Figure 6. Compared

with CycleGAN which is the second best result in the label

→ photo direction, our model has clearly better visual re-

sults. On the photo→ label direction, our model also have

a comparable or better result.

Style Transfer. We also test our method on the summer

↔ winter style transfer task using the Yosemite dataset un-

der the unpaired setting as in the original CycleGAN paper.

As shown in Figure 4 for the qualitative result, our method

has better visual result in both directions of style transfer.

We also do a similar user study by providing the generated

image from the test set by our model and the CyecleGAN to

users. The result is in Table 4. The user study results show

that our model has a higher preference than CycleGAN.

6. Conclusions

We have presented an approach for enforcing the learn-

ing of a one-to-one mapping function for unpaired image-

to-image translation. The proposed one-to-one CycleGAN

consistently outperforms the baseline CycleGAN model
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Figure 6. Visual comparison for photo↔label on the Cityscapes.

(Source)

Real T2

(Target)
CycleGAN

One2one

GAN(ours)

Real T2

(Source)

Real T1

(Target) CycleGAN
One2one

GAN(ours)
Real T1

Figure 7. Qualitative comparison for T1↔T2 on BRATS datasets.

and other state-of-the-art unsupervised approaches in terms

of various qualitative and quantitative metrics.
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