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Abstract

This paper introduces a novel method to simultaneously

super-resolve and colour-predict images acquired by snap-

shot mosaic sensors. These sensors allow for spectral im-

ages to be acquired using low-power, small form factor,

solid-state CMOS sensors that can operate at video frame

rates without the need for complex optical setups. Despite

their desirable traits, their main drawback stems from the

fact that the spatial resolution of the imagery acquired by

these sensors is low. Moreover, chromatic mapping in snap-

shot mosaic sensors is not straightforward since the bands

delivered by the sensor tend to be narrow and unevenly dis-

tributed across the range in which they operate. We tackle

this drawback as applied to chromatic mapping by using a

residual channel attention network equipped with a texture

sensitive block. Our method significantly outperforms the

traditional approach of interpolating the image and, after-

wards, applying a colour matching function. This work es-

tablishes state-of-the-art in this domain while also making

available to the research community a dataset containing

296 registered stereo multi-spectral/RGB images pairs.

1. Introduction

Imaging spectroscopy devices can capture an

information-rich representation of a scene, often in

terms of tens or hundreds of wavelength-indexed bands.

Recent advances in imaging spectroscopy have seen the

development of real-time snapshot mosaic image sensors,

which are compact in size and exhibit comparable frame

rates to current trichromatic cameras [44, 6]. Despite

of the extensive interest in snapshot mosaic sensors and

their potential for multi-spectral imaging, they suffer from
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Figure 1. (a) Original mosaic images, with (b) the actual one pixel

of the multi-spectral vs 4 pixels of the RGB bayer image encom-

passing 16 vs 3 channels (wavelengths) per pixel respectively. (c)

and (d) demonstrate the data formation for multi-spectral vs RGB

images. Each colour is indicative of respective wavelength. The

multi-spectral cube is formed by a one-to-one mapping of each

wavelength (sub-pixel) to respective channel (one of 16) and zero

padding the other 15 sub-pixels. The RGB image is debayered (in-

terpolated) to form the respective R-G-B channels. While a one-

to-one mapping (with zero-padding) leads to a large number of re-

dundant zero pixels, as opposed to debayering for RGB images, it

results in better super-resolution by taking into account the spatial

offset of each pixel.
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an inherent trade-off between the spatial and spectral

resolution. This is as a result of their architecture, where

the raw resolution of the detector is distributed across the

number of wavelength-indexed bands in the spectral image

produced at output.

As a result, a higher spatial resolution (smaller pixel

size) reduces the number of wavelength bins that can fit on

that pixel on the image sensor. This creates a constraint

for certain applications where smaller/lighter cameras are

needed, for instance, on a UAV [10]. A smaller/lighter

camera for portability reasons renders a device suffering

from lower spatial and spectral resolution. Further, these

sensors have promising applications ranging from remote

sensing [15, 17] to food monitoring [13], and from astron-

omy [5] to object detection in autonomous vehicles [37, 29].

Furthermore, in many applications it is useful, or in fact

crucial, to obtain an RGB image of the same scene. There is

a large body of work in computer vision that can be directly

leveraged if we can devise a method that delivers a high-

quality, high-resolution RGB image from a multi-spectral

sensor. For example, in case of object detection in au-

tonomous vehicles [10, 29], RGB cameras as well as multi-

spectral cameras were deployed. The acquired RGB images

are usually registered against their multi-spectral counter-

part to obtain 3D information of the scene, or to compen-

sate for lower spectral information of the multi-spectral im-

ages. However, the low spatial/spectral resolution of multi-

spectral cameras could render the registration challenging.

Traditionally, the RGB equivalent of a scene can be ex-

tracted from the spectral image using a Colour Matching

Function [35], given that the wavelength range of the cam-

era covers, relatively densely, the complete range of the vi-

sual spectrum. Given the relatively limited spectral resolu-

tion of snapshot mosaic sensors and their uneven spacing

over the operating spectral range, the problem of obtaining

high resolution RGB images from low spatial and spectral

resolution multi-spectral images is an interesting one that

needs to be addressed. Therefore, in this paper, we iden-

tify a gap in the scientific literature and propose a single

unifying method that carries out 1) color-prediction, and 2)

super-resolution (SR) from the multi-spectral space to the

RGB space simultaneously.

The reason for this gap in the literature is the fact that

these devices, with relatively recent technology, have just

come in to the market. This leads to a limited exposure to

researchers and a lack of rich, publicly available, datasets.

Thus, we not only present a method that can simultane-

ously super-resolve and colour-predict spectral images ac-

quired by snapshot mosaic sensors, but also introduce a

novel stereo registered multi-spectral/RGB dataset. Further,

our method is quite general in nature, being applicable not

only to mosaic snapshot sensor imagery but also to spectral

images delivered by other kinds of cameras.

Contributions

• We propose a data representation method which ex-

ploits the mosaic structure of the images acquired by

a snapshot sensor directly as opposed to demosaicing

images to perform SR and colour prediction sequen-

tially.

• We introduce a novel algorithm, to our knowledge

the first in the literature, to carry out SR and colour-

prediction simultaneously from mosaic images, estab-

lishing state-of-the-art in the field.

• We introduce a novel dataset containing 296 registered

stereo snapshot mosaic-RGB image pairs.

2. Related work

Due to the lack of suitable datasets, color-prediction is

not a problem that has been extensively studied for multi-

spectral images in general. Most of the work is carried

out with simulated multi-spectral images [27, 28, 26, 18].

The images were simulated exploiting high resolution hy-

perspectral images. In addition, the focus of these works,

while producing RGB images from simulated multi-spectral

images, is to mitigate the structural artifacts introduced by

different demosaicing methods. They achieve this, with

demonstrated good results, via using forms of interpolation

(eg, linear, polynomial, low pass filtering in the frequency

domain) to insert additional pixels between the observed

spatial/spectral ones. None of the works above attempt to

predict RGB from spectrally under-sampled data. The cam-

era we are using is an off-the-shelf commercial camera with

narrow FWHM ≈ 15nm. In addition, it covers the blue

and red spectra only partially (see Figure 3). Furthermore,

many demosaicing methods such as [27, 28] are dependent

on a given mosaic pattern as part of their approach. Also,

[27, 28, 26, 18] and most of the demosaicing algorithms

rely on a wavelength channel being more densely sampled

than the others, using that as a guide image. A 4 × 4 pat-

tern, with each of the 16 pixels/wavelengths appearing only

once (similar to our camera), would be considered by [18]

as severely under-sampled and as demonstrated experimen-

tally, leads to poor results [18]. Note that a multi-spectral

camera that covers a broader spectral range by using a larger

number of narrow wavelength bins would be rendered very

bulky and expensive, while the camera used here1 has di-

mensions of 26mm× 26mm× 26mm.

Image super-resolution (SR) is a problem that has been

studied extensively for RGB images. While these algo-

rithms are not perfect for multi-spectral images, they could

be exploited to design efficient multi-spectral SR methods.

Early approaches to SR were often based upon the ratio-

nale that images with higher spatial information have a fre-

1Ximea model MQ022HG-IM-SM4x4 470-620
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quency domain response whose higher frequency compo-

nents contribute more compared to images with lower spa-

tial information. Hence, such methods [41] utilise the shift

and aliasing properties of the Fourier transform to obtain a

high-resolution representation of the image. Kim et al. [21]

further extended the concept in [41] to take into account

noise and spatial blurring present in the input image. In

a related development, in [8], Tikhonov regularization was

exploited to carry out SR in the frequency domain.

Modern single-image methods, often based upon learn-

ing, also known as example-based single image SR aim at

learning the relationship between low resolution (LR) and

high resolution (HR) images by training with LR and HR

image pairs. Dong et al. [11] present a deep convolutional

network for single-image SR which surpasses the state-of-

the-art performance at that time represented by patch-based

methods using sparse coding [45] or anchored neighbor-

hood regression [39]. Kim et al. [19] go deeper with a

network based on VGG-net [34]. The network in [19] is

comprised of 20 layers so as to exploit the image con-

text across larger image regions. More recently, thanks to

some of the recent benchmarks on example-based single

image SR [38, 40, 7], several algorithms were introduced

for super-resolving images [25, 12, 4, 3, 16]. These algo-

rithms can be directly used on multi-spectral images, how-

ever, as applied to snapshot mosaic sensors, they do not take

into account the spectral correlation of different channels

nor the spatial offset of each pixel.

Despite the fact that modern multi-spectral cameras are

more adversely affected by resolution constraints than reg-

ular RGB cameras, there are not many works specifically

on CNN based multi-spectral SR. Example-based learning

methods are limited mainly due to the lack of multi-spectral

SR benchmarking platforms and difficulty accessing suit-

able SR spectral datasets. For example, [24], which focuses

on hyperspectral SR and not multi-spectral SR, is among

one of the few example-based spectral SR methods. The

only directly related multi-spectral SR methods [23, 31],

to the best of our knowledge, were recently introduced

through the PIRM2018 spectral SR challenge [32, 33]. The

work proposed by Lahoud et al. [23], used an image com-

pletion technique followed by 12 convolutional layers to

super-resolve images. The second work, [31] by Shi et

al., proposes a deep residual network with channel attention

(RCAN) to super-resolve images. The former method [23],

unlike the latter [31] involves some image pre-processing

and is not an end-to-end CNN implementation. The RCAN

network exploited in [31], has also exhibited state-of-the-art

performance in the context of RGB image SR [46]. Both of

these works take into account spectral correlation, and do

not consider the spatial offsets of each wavelength channel.

While all the above exploit demosaiced (debayered or in-

terpolated) images as their LR/HR pair, a very recent work

by Fu et al. [14] exploits the mosaic RGB images directly

to super-resolve hyperspectral images using a variational

method. The work was preceded by the SR work by Zhou et

al. [47] who presented a deep residual network for RGB SR

that uses mosaic images. They highlighted the fact that de-

mosaicing, which involves some sort of interpolation (such

as bicubic), introduces artifacts that can deteriorate SR per-

formance.

3. Proposed Method

As mentioned earlier, the method presented here is quite

general in nature. For the sake of generality we view the

problem at hand as that of super-resolving and chromati-

cally mapping images with missing or unevenly distributed

wavelength bands. To this end, we propose to investigate

the structure of the RCAN network in [31] as a baseline,

for the combined task of image SR and color-prediction.

Moreover, we propose an additional texture network as a

means to re-introduce lost information about these bands in

the scene. In addition, we notice that the concept of using

mosaic images can be extended to multi-spectral images as

well, while to the best of our knowledge there is no work

reported on using mosaic multi-spectral SR. As a result of

this treatment, we can also capitalise on the on-sensor spa-

tial arrangement of the wavelength indexed channels on the

mosaic images to improve the SR and colour-prediction per-

formance of our proposed network instead of using demo-

saiced imagery as input.

3.1. Texture Sensitive Residual Channel Attention
Network (TSRCAN)

As depicted in Figure 2, our network consists of an

RCAN network, and a texture network structure. The

RCAN network [46, 31] encompasses three main parts, the

head, the body, and the tail. The head of the network

carries out feature extraction via two convolutional layers.

The body is comprised of g number of sequential residual

groups as the body of the network. Each residual group con-

tains b number of residual channel attention networks, each

constituting a residual block which incorporates within it

a channel attention network (CA). The tail of the RCAN

network is the reconstruction part which consists of only

one convolutional layer to produce an output with the de-

sired dimension of RGB images. The RCAN network, on

its own, given the LRMS and HRRGB pairs, can do a rel-

atively modest job to super-resolve and colour-predict the

input multi-spectral images. The RCAN network can be

shown as

SR
′

RGB = RCAN(ILRMS
). (1)

However, our network expands the RCAN by introducing a

texture sensitive network (TN) on the output of the RCAN.

Its structure constitutes two convolutional layers and a pool-
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It also shows the relative amplitude of a CMF for three

channels. It is obvious that our multi-spectral images have

incomplete blue and red channels, which is one of the main

drivers behind this work. We believe that the above loss

functions, along with our proposed network, can predict the

missing channels and hence improve the colour-prediction

performance.

3.3. Implementation Details

Now we specify the implementation details of our pro-

posed TSRCAN. The RCAN part of our network has g = 5
residual groups. Each residual group contains b = 3 resid-

ual channel attention blocks (RCAB). The channel atten-

tion, similar to [46], has a 64 channel input and 64 weighted

channel output with a reduction factor of 16. The kernel

size of all our convolutional layers are set to 3 × 3. Con-

volutional layers in shallow feature extraction and the body

have c = 64 filters, except at the tail of the RCAN where

channels are reduced to 3.

The TN structure constitutes a convolutional layer, fol-

lowed by batch normalization, ReLU, maxpooling, and a

residual block similar to that of RCAN but without a chan-

nel attention mechanism. In fact, the texture network is

identical to the first few layers of the Resnet-18 struc-

ture, and we only remove the last layers up to the first

residual block. This is followed by a convolutional layer

with k = 256 channels to achieve a tensor with the size

256 × 576 × 1152. After concatenating this tensor with

SR
′

RGB
, the last layer, a convolutional layer with 3 filters

produces the desired output dimensions of 3× 576× 1152.

3.4. Zero padded, uninterpolated data

As explained in the introduction, interpolation of mosaic

images gives rise to artifacts. For example, SR CNN based

methods such as VDSR [19], and SRCNN [20] that first in-

terpolate the input LR images up to the scale of the HR im-

ages suffer from these artifacts via losing information and

decreasing computational efficiency [46]. Hence, inspired

by the procedures in [14, 47], where authors super-resolved

hyperspectral [14], and RGB images [47], using RGB bayer

patterns, we choose not to interpolate the multi-spectral im-

age. Instead, we use the mosaic pattern in the manner pre-

sented in Figure 1. The mosaic multi-spectral pattern in

Figure 1(c) represents 1 multi-spectral pixel which consti-

tutes 16 sub-pixels of 16 wavelength channels. To transform

the mosaic multi-spectral input to a format that is suitable to

be consumed by the network, and to avoid interpolation, we

take the following approach. We generate an image with

size 16 × 576 × 1152, that is a multi-spectral image with

height and width of the mosaic image, but with 16 chan-

nels. For each channel the value of respective sub-pixel is

used and another 15 sub-pixels are added and set to zero.

This process, for 1 multi-spectral pixel alone for ease of il-

lustration, is shown in Figure 1(c-d).

4. Experiments

4.1. Dataset description2

We carry out our experiments using our 296 registered

stereo pair multi-spectral/RGB images which were col-

lected from a diverse range of environments. During ac-

quisition time, no gamma correction was applied to the im-

ages. In addition, since the stereo pairs were captured using

cameras with different image mosaic sensors, the exposure

time was optimised for each camera individually for opti-

mum image quality. One is an RGB camera and the other

is a multi-spectral camera covering the visible wavelength

range (477− 617nm). The RGB camera has a CMOS im-

age sensor with a 2×2 mosaic (bayer) pattern delivering the

three RGB channels whereas the mosaic sensor of the multi-

spectral camera has a 4×4 pattern delivering 16 wavelength

bands. Hence, the resolution of the RGB images in each

axis is twice that of the spectral images. Figure 1 illustrates

this resolution relationship between the two filter arrays on

both cameras. The original images were interpolated and

converted to grayscale for registering using PWC-Net [36],

the state-of-the-art optical flow algorithm. Original multi-

spectral and the registered RGB were then cropped to the

size 576 × 1152 to minimise optical flow artifacts on the

border of the images which also led to training accelera-

tion. We split our 296 image pairs to 250 image pairs for

training, 25 for validation and 21 for testing. For each im-

age pair, the multi-spectral image with lower spectral and

spatial resolution is referred to as LRMS and the registered

RGB image with higher spatial resolution is referred to as

HRRGB .

4.2. Analysis of the effect of occlusions

We train our CNN using the LRMS and its registered

HRRGB pair. However, with every registration, there are

some artifacts including wrong registration and occlusions

[42]. We hypothesise that if these artifacts are abundant,

they could affect the training process. To check if errors of

the above nature could affect the training process, we take

the following approach. We calculate optical flow from the

multi-spectral image to the RGB image and vice-versa us-

ing the [36] algorithm. A straightforward way to detect er-

roneous flow and occlusions is to calculate the euclidean

distance between the two optical flows and remove the pix-

els with errors larger than a threshold [42]. Thereby, we re-

moved pixels with errors larger than 3 pixels, and created a

mask for each image. We multiplied this mask with LRMS ,

HRRGB , and the output of respective model (SRRGB). Af-

2The dataset can be downloaded from:

https://doi.org/10.25919/5d9bd506d3def. The code is available at:

https://github.com/mehrdadshoeiby/multi-spectral to RGB
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