
Accuracy Booster: Performance Boosting using Feature Map Re-calibration

Pravendra Singh Pratik Mazumder Vinay P. Namboodiri

Department of Computer Science and Engineering, IIT Kanpur, India

{psingh, pratikm, vinaypn}@iitk.ac.in

Abstract

Convolution Neural Networks (CNN) have been ex-

tremely successful in solving intensive computer vision

tasks. The convolutional filters used in CNNs have played

a major role in this success, by extracting useful features

from the inputs. Recently researchers have tried to boost

the performance of CNNs by re-calibrating the feature maps

produced by these filters, e.g., Squeeze-and-Excitation Net-

works (SENets). These approaches have achieved better

performance by Exciting up the important channels or fea-

ture maps while diminishing the rest. However, in the pro-

cess, architectural complexity has increased. We propose

an architectural block that introduces much lower complex-

ity than the existing methods of CNN performance boosting

while performing significantly better than them. We carry

out experiments on the CIFAR, ImageNet and MS-COCO

datasets, and show that the proposed block can challenge

the state-of-the-art results. Our method boosts the ResNet-

50 architecture to perform comparably to the ResNet-152

architecture, which is a three times deeper network, on clas-

sification. We also show experimentally that our method

is not limited to classification but also generalizes well to

other tasks such as object detection.

1. Introduction

Convolutional neural networks (CNNs) have surpassed

many traditional machine learning approaches in solving

several computer vision tasks such as classification [9, 18],

segmentation [2], detection [16, 12] and others. Various

works [24, 25, 20, 23, 21, 19, 13, 26, 22] have been pro-

posed for efficient deep learning. Researchers have recently

been trying to improve CNN performance, by promoting

channels (feature maps) that are more relevant [5]. Each

channel or feature map is produced by a Convolutional fil-

ter, and each Convolutional layer can have multiple such

filters. Therefore, the significance of a feature map points

to the relevance of the Convolutional filter that produced it.

It has been experimentally shown that increasing the con-

tribution of relevant channels towards creating higher-level

features improves the performance of CNNs [5]. Therefore,

the recent works have focussed on learning the significance

(re-calibration weights) of the feature maps. We will use

the terms feature map and channel interchangeably to refer

to the output produced by a Convolutional filter.

The [5] paper (SENet) captures this channel relevance

and shows improvement over the base CNN models. The

[29] (CBAM) paper improves upon the SENet idea by us-

ing a combination of channel importance and spatial im-

portance to learn better features and improve the network

performance further.

However, we find that these methods perform certain re-

dundant transformations to find the re-calibration weights

of feature maps, and in the process, they shoot up the ar-

chitectural complexity of the base model. We propose an

idea that performs better than these methods while requir-

ing simpler and lighter modifications to the base networks

as compared to these methods. Our method finds a single

representative data-point for each channel and applies 1× 1
Depth Wise Convolution operation with Batch Normaliza-

tion (BN) and sigmoid activation to find the channel sig-

nificance (re-calibration weights). Our lighter architecture,

Accuracy Booster block (Figure 1), performs better than the

existing methods. We also propose a heavier model (AB-

Plus) that significantly beats all the other methods in per-

formance while having a similar computation complexity

(FLOPS).

In this work, we show that our design beats the state-

of-the-art results in classification on ImageNet and CIFAR

datasets and generalizes well for object detection on MS-

COCO dataset. We analyze the effects of further reducing

our model complexity in our detailed ablation studies.

Our major contributions are as follows:

• We propose a simpler and more efficient Accuracy

Booster block (AB) that significantly boosts the per-

formance of CNNs. We provide experimental results

that vindicate our choice of architecture through ex-

tensive ablation studies.

• We show that our proposed block works well for var-

ious networks not only for classification but also for

884



detection.

• We empirically show that our proposed block consis-

tently performs better than SE blocks and other follow

up architectures while introducing much lower com-

plexity (extra FLOPs, Parameters, Runtime Memory)

to the original model as compared the other blocks.

2. Related Works

Network Design Improvement: Improving the net-

work architecture of CNNs has remained a hot topic from

some time now [6, 33]. Improvements have targeted design

changes that lead to better performance by the network on

various tasks. With an increase in computation power and

dataset size, researchers have looked towards even deeper

network architectures for CNNs to improve their perfor-

mance. Architectures like Inception models [27] and VG-

GNet [18] showed that increasing the depth of a network

could significantly increase the quality of representations

that it was capable of learning. While Deeper Architec-

tures improved the performance of CNNs, they also intro-

duced problems like vanishing gradients, longer training

time and higher space requirements for training and deploy-

ment. ResNet [3] proposed skip-connections based on iden-

tity mapping, which reduced the optimization issues of deep

networks. This allowed for using deeper and more complex

networks. WideResNet [31] restricted the network depth

and used wider layers to improve the performance, thereby

modifying this idea. ResNeXt [30] proposed parallel ag-

gregated transformations blocks and showed that increas-

ing the number of such parallel blocks led to better perfor-

mance. Our proposed approach improves network perfor-

mance without significantly increasing the network depth

or complexity.

Attention: Attention mechanisms in a network give

higher importance to the most relevant components of the

information flowing through the network [7, 10, 14, 1, 28].

Channel-wise attention provides the re-calibration

weights for the channels (feature maps) generated by con-

volutional filters. The SE block [5] Squeezes the output

channels, finds the re-calibration weights for each chan-

nel and then Excites the channels using these weights. But

it also adds to the depth of the network, thereby increas-

ing the complexity of the network and the network latency.

CBAM [29] makes use of a combination of channel-wise

attention and spatial attention to learn better representations

for achieving the same goal. GE-Θ+ model [4] uses the

excitation module of the SE block as a black box and exper-

iments with the squeeze module.

Our proposed AB block uses a very simple transforma-

tion to get the re-calibration weights (RW) and still gets bet-

ter performance than all the other existing methods derived

from SE [5]. AB-Plus block achieves even better perfor-

Figure 1. Figure shows the Accuracy Booster block with Depth

Wise 1× 1 Convolution (best viewed in color).

mance than the AB block but introduces a higher number of

parameters with similar computational complexity.

All recent block architectures that have built upon the SE

block architecture have increased the complexity of the base

model further. Our Proposed AB block is the first to intro-

duce lower complexity than the SE block and still perform

consistently better than all other blocks.

3. Accuracy Booster Blocks

We propose two types of AB block architectures: AB

(Fig 1) and AB-Plus (Fig 2(C)).

In the AB block, first, we need a representative for

each channel (feature map), on the basis of which we can

judge their importance. We use the Global Average Pool-

ing (FGAP ) operator for this purpose. Our input feature

maps X ∈ R
H×W×C consist of C channels of height H

and width W . Therefore, given an input X , we compute a

channel-wise representative for it, Y ∈ R
C , using global

average pooling as follows:

yk = FGAP (xk) =

∑H

i=1

∑W

j=1 xk(i, j)

H ×W

where each yk ∈ R is a representative for the kth channel

and Y = [y1, y2, .., yk, .., yC ] is the channel-wise descrip-

tor. xk ∈ R
H×W is the feature map for kth channel of X

where X = [x1, x2, .., xk, .., xC ]. FGAP is the the Global

Average Pooling operator.

We use this simple technique (GAP) to get a descrip-

tor for each channel because it adds no extra parameters.

Other techniques for this purpose are discussed in the abla-

tion studies.

Next, we need to use these representatives to find out

the significance of each channel over the other (FRW ).

We use C Depth Wise 1 × 1 Convolution operators W =
[W1,W2, ...,WC ], one for each of the channel representa-

tives, where each Wk ∈ R. This is followed by Batch Nor-

malization (BN) and a sigmoid activation operator to get

the re-calibration weight for each channel (Fig 1, Fig 2(D)).

Formally, the re-calibration weights can be defined as,

P = FRW (Y ) = σ(BN(DWConv(Y )))

885



Figure 2. Figure shows the evolution of AB block from the SE block architecture. (A) SE block, (C) AB-Plus block, and (D) AB block.

(B) and (C) are similar as fully connected layer performs the same operation as Conv 1×1 layer when operating on a 1×1 feature maps.

Where σ is the sigmoid activation operator, P is the

channel-wise re-calibration weights, DWConv is the Depth

Wise 1 × 1 Convolution operator, BN is Batch Nor-

malization applied after performing the Depth Wise

Convolution operations. The DWConv can also be

seen as the channel-wise product of the re-calibration

weights in W and the channel representatives in Y , i.e.,

[W1.y1,W2.y2, ...,WC .yC ].
Finally, the input X = [x1, x2, .., xk, .., xC ] is re-

calibrated using the learned re-calibration weights P =
[p1, p2, .., pk, .., pC ] ie. X̃ = FRC(P,X), such that,

x̃k = pk.xk

where, pk.xk is a product of the scalar re-calibration weight

pk and the feature xk ∈ R
H×W of kth the channel of the

input. X̃ = [x̃1, x̃2, .., x̃k, .., x̃C ] is the re-calibrated output

feature maps.

The AB-Plus block is almost the same as the AB block,

but it uses C 1 × 1 Convolutional Operators instead of C

Depth Wise 1× 1 Convolutional Operators. The difference

is that each of the C Depth Wise 1 × 1 Convolutiona1 lay-

ers learns 1 scalar weight Wk for mapping the kth channel

descriptor yk to its re-calibration weight pk,i.e. it can be

thought of as a one to one connection between 2 sets of C

nodes each. Whereas, each of the C Full 1 × 1 Convolu-

tional layers learns a weight vector W̃k ∈ R
C for using the

entire channel-wise descriptor Y to learn the re-calibration

weight pk of the kth channel,i.e. it can be thought of as a

fully connected layer between 2 sets of C nodes each. This

means that the AB-Plus block has more parameters than the

AB block.

The proposed block can be added after any convolutional

layer. In the case of residual blocks, the proposed block

should be added before the summation operator for the skip

connection, as shown in Fig 2.

4. Relation to SE-Net

As mentioned earlier, the SE-Net [5] also learns chan-

nel (feature map) importance and uses them to promote

the useful channels. As can be seen in Fig.2(A), the SE

block Squeezes the channels produced by a Convolutional

layer using Global Average Pooling, to get a channel-wise

descriptor Y = [y1, y2, .., yk, .., yC ] where yk ∈ R and

Y ∈ R
C . Next, a fully connected layer transforms Y of

size C to another smaller descriptor of size C
r

, where r is a

hyperparameter. Then, another fully connected layer trans-

forms the smaller descriptor back to the original C sized

descriptor which is followed by a sigmoid activation oper-

ator to get the channel-wise re-calibration weights. These

weights are used to Excite the channels.

A shallower design (Fig.2(B)) can have only one fully

connected layer after the Global Average Pooling operator,

which transforms the channel-wise descriptor Y to another

descriptor of the same size. The sigmoid activation is then

applied to it, to get the re-calibration weights.

This design is equivalent to using C 1× 1 Convolutional

operators, which in effect is the same as a fully connected

layer of C nodes. This is our AB-Plus model (Fig.2(C)).

Our proposed design (Fig.2(D)) replaces the C Convo-

lutional operator in the previous with C Depth Wise Con-

volutional operators. Depth Wise Convolutional operators

create a one to one connection between the channel-wise

descriptors, before and after the transformation, as can be

seen in Fig.1. This means our design is lighter than the

model in Fig.2(C) and significantly lighter than the SE-

Block Fig.2(A).

To the best of our knowledge, this is the first work that

reduces the complexity of the SE block while consistently

886



Table 1. Analysis of Extra Parameters, Extra FLOPS, and Extra

Run Time Memory (RTM) introduced per block for B batch size.

Models AB SE CBAM

Extra Params. C 2C2

r
> 2C2

r

Extra FLOPS C.B 2C2.B
r

> 2C2.B
r

RTM 4C(1 +B) 8C(C+B)
r

>
8C(C+B)

r

performing better than it.

Our Experiments and Ablation studies show that the

compressing and expanding of the channel-wise descriptor

by the SE block prevents the SE block from achieving the

full potential of improvements that can be obtained by us-

ing channel-wise re-calibrations. Our approach improves

the CNN performance further by overcoming this architec-

tural drawback.

Further, complexity analysis of our proposed design and

previous designs are given in the next section.

5. Analysis of Model Complexity

One of the major goals of Network Architecture im-

provement is to avoid increasing the network complexity

significantly in the process of improving network perfor-

mance. We compare the complexity introduced by our

block to that done by the other recent designs. We com-

pare the designs on the basis of the extra parameters, extra

computation, and extra run time memory requirement intro-

duced by the performance-boosting approaches.

5.1. Extra Parameters

As mentioned in Table 1, the AB block introduces only

C extra parameters which are the parameters in the C Depth

Wise 1 × 1 Convolutional operators. The SE block adds
2C2

r
since it uses 2 fully connected layers of size C

r
and C

respectively. The CBAM block uses the SE block for the

channel attention along with another subnetwork for spa-

tial attention. Therefore, the number amount of extra pa-

rameters it introduces is greater than that of SE. So we can

see that the AB block introduces only extra parameters of

the order of O(C), which very less compared to the others,

and still performs better. The AB-Plus block adds C2 extra

parameters, which makes it heavier than the others, but it

performs significantly better than all the other designs.

5.2. Extra FLOPS

FLoating point OPerations per Second (FLOPS) for a

model can be used to describe its computational complex-

ity. FLOPS can be used to represent the total number of

computations. The FLOPS are calculated using the process

described in [20].

As mentioned in Table 1, the AB block introduces only

C.B extra FLOPS. The SE block adds 2C2.B
r

extra FLOPS.

Since the CBAM block uses the SE block for the channel at-

tention along with another subnetwork for spatial attention,

therefore it introduces extra FLOPS greater than that of SE.

So the AB block requires lesser extra FLOPS than both of

them while the AB-Plus model adds C2.B extra FLOPS.

5.3. Extra Run Time Memory Size Requirements

Run Time Memory (RTM) denotes the memory space

required to store the feature maps and the model parameters.

The extra Run Time Memory is calculated using the process

described in [20].

As mentioned in Table 1, the AB block introduces only

C×4+1×1×C×4×B = 4C(1+B) extra RTM. The SE

block adds 2C2

r
× 4+ 2C

r
× 4×B = 8C(C+B)

r
extra RTM.

Since the CBAM block uses the SE block for the channel at-

tention along with another subnetwork for spatial attention,

therefore it introduces extra RTM greater than that of SE.

So the AB block has the lowest extra RTM requirement.

6. Experiments

This section explores the experimental results of incor-

porating the AB block into various CNN architectures for

various tasks and datasets.

6.1. Image Classification

In this section, we explore how the AB block improves

the performance of networks like ResNet-50 and others on

the image classification task.

Experiments are conducted on the ImageNet large scale

dataset [17], CIFAR-10 and CIFAR-100 datasets [8]. The

ImageNet dataset has around 1.28 million training images

and 50000 validation images from 1000 different classes.

The training is done on the training set, and the Top-1 and

Top-5 errors on the validation set are reported.

For the ImageNet dataset, we verify the performance of

ResNet-50 [3], WideResNet-18 (widen=2) [31] with and

without the AB block. For the CIFAR-10 and CIFAR-

100 datasets, we verify the performance of ResNet-56 [3],

ResNet-164 [3], WideResNet-22 (widen=10) [31] with and

without the AB block. For ImageNet experiments, we use

the same settings and setup as mentioned in CBAM [29].

The results on the CIFAR-10/100 datasets for all the archi-

tectures have been reproduced in the PyTorch [15].

We also compare our AB and AB-Plus results with the

networks modified with SE blocks and CBAM blocks. The

additional tricks used by SE Blocks, such as repeated train-

ing with lower learning rate when the loss plateaus and addi-

tional augmentation techniques such as pixel jittering, im-

age rotation, are not used in our experiments in order to

maintain standard conditions.

As can be seen in Table 2, AB blocks significantly im-

prove the network performance over the baseline ResNet-

50 and also exceed the improvement produced by the SE

887



Table 2. Single-crop error rate (%) on the ImageNet validation set

and complexity comparisons for ResNet-50.
Models Top-1 Top-5 Params FLOPS

ResNet-50 (Baseline) [29, 3] 24.56 7.50 25.56M 3.858G

ResNet-152 [5, 3] 22.42 6.34 60.19M 11.30G

SE [29, 5] 23.14 6.70 28.09M 3.860G

CBAM [29] 22.66 6.31 28.09M 3.864G

AB (Ours) 22.4 6.2 25.57M 3.858G

AB-Plus (Ours) 22.1 6.1 45.67M 3.878G

Table 3. Inference Time per batch needed for base ResNet-50

network and base modified by SE and AB blocks on ImageNet

dataset.
Models Batch Size Time in sec FLOPS

ResNet-50 (Baseline) 256 0.152 3.858G

SE 256 0.187 3.860G

AB (Ours) 256 0.163 3.858G

AB-Plus (Ours) 256 0.192 3.878G

Table 4. Single-crop error (Top-1 and Top-5 error rate) (%)

on the ImageNet validation set and complexity comparisons for

WideResNet-18 with widen=2 (WRN).
Models Top-1 Top-5 Params FLOPS

WRN-18-2 (Baseline) [29, 31] 25.63 8.20 45.62M 6.696G

SE [29, 5] 24.93 7.65 45.97M 6.696G

CBAM [29] 24.84 7.63 45.97M 6.697G

AB (Ours) 24.7 7.6 45.62M 6.696G

AB-Plus (Ours) 24.6 7.5 48.40M 6.698G

Table 5. Classification error (%) on the CIFAR-10 for ResNet-56,

ResNet-164, WideResNet-22-10.
Models Original SE AB AB-Plus

ResNet-56 6.5 5.6 5.34 5.26

ResNet-164 5.5 4.4 4.0 3.9

WideResNet-22-10 4.4 4.0 3.7 3.7

and CBAM blocks. The ResNet-50 network with AB

blocks also performs comparably to the ResNet-152 net-

work which is 3 times deeper, uses more than twice the

number of parameters and requires almost 3 times the

FLOPS required by the ResNet-50 network with AB blocks.

We can also see that the SE and CBAM blocks add 2.5M

more parameters to base ResNet-50 network, whereas our

AB blocks just add 0.01M extra parameters. AB-Plus

blocks further improve the performance, but since it intro-

duces more parameters, there is a trade-off. Though the

AB-Plus blocks introduce a lot of parameters, the FLOPS

do not increase by much because the extra parameters be-

long only to the 1 × 1 Convolutions applied on 1 × 1 × C

sized feature maps.

From Table 4, we can also see that AB blocks signifi-

cantly improve the network performance over the baseline

WideResNet-18 (widen=2) and those modified by the SE

and CBAM blocks. AB-Plus blocks further reduce the error

rates for WideResNet.

From the Table 5, we can see that the networks modified

with AB blocks show significant improvement in perfor-

mance over the baseline ResNet-56 and ResNet-56 modi-

fied with the SE blocks for classification over the CIFAR-10

Table 6. Classification error (%) on the CIFAR-100 for ResNet-56,

ResNet-164, WideResNet-22 (widen=10).
Models Original SE AB AB-Plus

ResNet-56 28.6 27.3 26.9 26.3

ResNet-164 24.3 21.8 21.5 21.3

WideResNet-22-10 20.6 19.3 19.0 18.8

Table 7. Performance of Mobile optimised networks: Single-crop

error rates (%) on the ImageNet validation set and complexity

comparisons for ShuffleNet.
Models Top-1 Top-5 Params FLOPS

ShuffleNet (Baseline) [5, 32] 32.6 12.5 1.80M 140.0M

SE [5, 32] 31.0 11.1 2.40M 142.0M

AB (Ours) 30.5 11.0 1.82M 140.5M

AB-Plus (Ours) 30.3 10.9 6.70M 145.3M

dataset. The AB modified ResNet-56 even performs simi-

larly to the deeper ResNet-164 base model. AB-Plus blocks

further reduce the error rate.

From the Table 6, we can see that the networks modi-

fied with AB blocks show significant improvement in per-

formance over the baseline ResNet-56 dataset and ResNet-

56 modified with the SE blocks for classification over the

CIFAR-100 dataset. AB-Plus blocks further reduce the er-

ror rates. If we remove Batch Normalization from the AB

block, we observe 0.3%, 0.2%, and 0.2% reduction in the

accuracy reported in Table 6 for ResNet-56, ResNet-164,

and WideResNet-22-10 respectively.

6.1.1 Inference Time

From Table 3, we can see that our modification results in a

significant reduction in the inference time of the SE mod-

ified ResNet-50 on ImageNet dataset. The AB model re-

duces the extra inference time needed by the SE block by

one-third because the SE block introduces more latency by

using 2 layers in the calibration process while the AB block

uses 1 layer. Therefore, the AB block has a lower inference

time than the SE block, although the FLOPS for the models

are similar. All these experiments were run on a single Titan

X GPU, with batch size 256. Since CBAM [29] and GE-Θ+

[4] both use the SE block as a black box and adds further

layers/computation on top of it, they are bound to have more

inference time that the SE block and the AB block.

6.1.2 Mobile-optimized networks

We verify the performance of the AB blocks on mobile-

optimized networks such as ShuffleNet [32]. We use the

same training settings, as mentioned in the SE-Net paper

[5]. Apart from comparing our results with the baseline

ShuffleNet, we also compare our results with the ShuffleNet

with SE blocks. As can be seen in Table 7, AB and AB-Plus

blocks significantly improve the network performance over

the baseline network and also exceed the improvement pro-

duced by the SE blocks.

888



Table 8. Single-crop error rate (%) on the ImageNet validation set

and complexity comparisons for ResNeXt-101 (32×4d).
Models Top-1 Top-5 Params FLOPS

ResNeXt-101 (Baseline) 21.2 5.6 44.18M 7.99G

SE 20.7 5.01 48.96M 8.00G

GE-θ+ 20.5 4.8 57.92M 8.02G

GE-θ+ with AB (Ours) 20.2 4.6 53.23M 8.00G

Table 9. Performance on Object Detection: Object detection mAP

(%) on the MS COCO validation set using Faster R-CNN.

Base Model AP@IoU=0.5 AP@IoU=0.5:0.95

ResNet-50 [5, 16] 45.2 25.1
SE ResNet-50 [5] 46.8 26.4
AB ResNet-50 (Ours) 47.2 26.7

6.1.3 Improving GE-Θ+ using AB block

The top-performing model (GE-θ+) of [4] uses the excita-

tion phase of SE (2 fully connected layers with reduction

ratio r = 16) as a black box to perform excitation. There-

fore, if we replace the SE Excitation module used in GE-

θ+ by our proposed Excitation module (1 × 1 DW Conv +

BN), then the performance improvement is guaranteed since

our proposed excitation module performs significantly bet-

ter than the SE excitation module.

In Table 8, GE-θ+ with AB is the model which uses our

proposed Excitation module (1×1 DW Conv + BN) in place

of SE Excitation module (two FC with r = 16) in GE-θ+.

From Table 8 we can see that GE-θ+ with AB significantly

reduces the number of parameters (by around 4.7 Million)

when compared to GE-θ+ and also performs better than it.

6.2. Object Detection

We explore how the AB block improves object detection

performance. We use the MS-COCO dataset [11]. It con-

sists of around 80,000 training and 40,000 validation im-

ages. The ResNet-50 model used in the Faster R-CNN net-

work [16] is modified with AB blocks to explore how the

AB blocks generalize well to object detection tasks.

Table 9 shows the validation set performance of the ob-

ject detector using the base ResNet-50 and the modified

ResNet-50 with the AB and SE blocks. The AB modified

ResNet-50 shows improvement over the base and SE model.

We can conclude from these experiments that AB blocks

induce better improvements in the network performance

across a number of architectures, datasets and task than

other existing methods.

7. Ablation Study

We perform ablation experiments on the AB block

architecture to explore the significance of the design

choices that we have made. Performance of AB modified

ResNet-50/ResNet-56 is computed for Classification task

on ImageNet/CIFAR-100 dataset. The Standard data aug-

mentation strategy of random crop and random horizontal

Table 10. Classification accuracy % on CIFAR-100 dataset for the

ResNet-56 network with modifications as given in Fig 2 (A,C,D).

Models Accuracy(%) Depth

ResNet-56 (baseline) 71.4 0
SE (2 FC layers) 72.7 2
AB (1 × 1 DWConv+BN) 73.1 1
AB-Plus (1 × 1 Conv+BN) 73.7 1

flip is used for carrying out the ablation experiments. All the

architectures have been extensively trained with the same

settings for fair comparisons.

7.1. Network Depth

As shown in Fig 2, our AB block (Fig.2(D)) reduces the

number of transformations used in the SE block. The SE

block (Fig.2(A)) uses 2 fully connected (FC) layers. A shal-

lower design (Fig.2(B)) can have only one FC layer after

the Global Average Pooling, which transforms the channel-

wise descriptor Y to another descriptor of the same size.

This is equivalent to using C 1 × 1 Convolutional opera-

tors which is in effect the same as a fully connected layer of

C nodes (Fig.2(C)). This is the architecture of our AB-Plus

block. Our AB block (Fig.2(D)) replaces the C Convolu-

tional operators in the previous design with C Depth Wise

Convolutional operators.

We checked the performance improvement induced by

the designs in Fig 2(A,C,D) on the ResNet-56 network on

Classification accuracy.

Table 10 shows that the AB design (Fig 2(D)) beats the

SE design (Fig 2(A), 2 FC layers). This shows that our

choice of architecture (having fewer parameters and lower

computational complexity than SE) does not hurt the CNN

performance but improves it further. The AB-Plus design

(Fig 2(C)) beats all the other designs but has more param-

eters (with similar computational complexity) than all the

others.

7.2. Average Pooling

We further experimented with the AB block design by

removing the 1 × 1 Depth Wise Convolutional layer. The

first design (E) used only Global Average Pooling (GAP)

to get the channel-wise descriptors followed by a sigmoid

operation to get the re-calibration weights. The second de-

sign (F) modified the design (E) by using 1D Batch Nor-

malization after the GAP operation. Since the GAP opera-

tion gives equal importance to all the points in each channel

while finding the average, we checked if a weighted aver-

age with learnable weights can improve the performance

further. The third design (G), uses C Depth Wise Convo-

lutional operators of the same spatial size as the channels

or feature maps (W × H) produced by the Convolutional

filters of the base model. Each of the C Depth Wise Convo-

lutional operators is for one of the C channels. So it learns

a weight for each point in the input feature map. The fourth

889



Table 11. Classification accuracy % on CIFAR-100 dataset for the

AB ResNet-56 network with modifications on the averaging pro-

cess after removing the 1× 1 DWConv layer in AB.

Models Accuracy(%)

ResNet-56 (baseline) 71.4
AB (1× 1 DWConv+BN) 73.1
AB-Plus (1× 1 Conv+BN) 73.7

(E) Only GAP 72.0
(F) Only GAP + BN 71.9
(G) Global DW Wt. Avg 72.8
(H) Global Wt. Avg 73.8

Table 12. Classification accuracy % on CIFAR-100 dataset for the

ResNet-56 network with modifications in AB block to use calibra-

tion for each point in the Feature Map (fine-grained calibration).

Models Accuracy(%)

(I) 3× 3 Conv 71.36
(J) 3× 3 DW Conv 70.6
(K) 7× 7 Conv 72.3
(L) 7× 7 DW Conv 72.3

design (H), uses C Convolutional operators of the same size

as the set of feature maps (W × H × C) given as input to

the block.

From Table 11, we can see that using “Only GAP” (E

design) improves the network performance over the base-

line but still lags behind the performance of the AB blocks.

Adding Batch Normalization to GAP (F design) is of no

help too. The Depth Wise Global Weighted Average method

(G design) improves the performance but still falls short of

our AB design. The Global Weighted Average design (H)

exceeds even the AB-Plus block results. But it is not prac-

tical to use this design since it adds W × H × C × C pa-

rameters for every block and will drastically shoot up the

computational complexity (in the order of O(WHC2) per

block.

7.3. Calibration Level

In the AB block, we learn a single calibration weight for

each channel. We experiment with the concept of learn-

ing calibration weights for each point in the feature map.

The first design (I) uses C 3 × 3 Convolutional operators

with padding=1 to get another same sized point-wise de-

scriptor for the set of feature maps (RW×H×C). This is

then passed through a sigmoid operator, which gives sepa-

rate re-calibration weights for each point in the set of chan-

nels (feature maps). The re-calibrated output is obtained by

performing element-wise multiplication (Hadamard prod-

uct) of each point in the original set of channels and in

the re-calibration matrix. The second design (J) modifies

the design (I) to use C 3 × 3 Depth Wise Convolutional

operators instead. The third (K) and fourth (L) design are

similar to the design (I) and (J), except that they use 7 × 7
sized kernels for convolution with padding=3 so that a same

sized (same size as the input set of channels RW×H×C) re-

calibration matrix can be obtained.

Table 13. Classification accuracy % on ImageNet dataset for the

ResNet-50 network with modifications in AB block to use calibra-

tion for each point in the Feature Map (fine-grained calibration).

Models Accuracy(%)

ResNet-50 (baseline) 75.44
AB (1× 1 DWConv+BN) 77.6
AB-Plus (1× 1 Conv+BN) 77.9

3× 3 DW Conv + BN 76.6
9× 9 DW Conv + BN 77.2

Table 14. Classification accuracy % on CIFAR-100 dataset for the

ResNet-56 network with modifications in AB block to use the 2

types of calibration fine-grained and channel-wise.

Models Accuracy(%)

ResNet-56 (baseline) 71.4
SE 72.7
AB (1× 1 DWConv+BN) 73.1
AB-Plus (1× 1 Conv+BN) 73.7

(M) 7× 7 DW Conv + GAP 72.8
(N) 7× 7 DW Conv + GAP + 1× 1 DW Conv 73.0
(O) 7× 7 DW Conv + GAP + 1× 1 Conv 73.5

From Table 12, we can see that the designs with 3×3 fil-

ters perform worse than the baseline. The 7×7 filter designs

perform better but do not come close to the performance of

AB blocks.

We also perform fine-grained calibration (for each point)

on the large scale dataset, Imagenet using the ResNet-50

architecture. We use 3× 3 and 9× 9 Depth Wise Convolu-

tion with suitable padding to get re-calibration weights for

each point in the set of feature maps. The results in Table

13 show that both the designs are unable to beat the perfor-

mance of the AB blocks. Therefore, fine-grained calibration

is unable to beat channel-wise calibration.

7.4. Combining two types of Calibration Levels

We also experiment with using the two types of calibra-

tion (channel-wise and fine-grained) simultaneously. The

first design (M) combines the design (L) (7× 7 DW Conv)

with a GAP operator followed by a sigmoid to get a final

channel-wise relevance. The second design (N) combines

the design (L) (7× 7 DW Conv) with the AB block (GAP +

1× 1 DWConv + BN) design. It consists of C 7× 7 Depth

Wise convolutional operators with padding=3 to get another

same sized point-wise descriptor for the set of feature maps

(RW×H×C). This is followed by a GAP operator, C 1× 1
Depth Wise Convolutional operators, Batch Normalization

and the sigmoid operator as present in the AB block. The

third design (O) is same as the design (N) but uses the AB-

Plus block (GAP + 1 × 1 Conv + BN) in place of the AB

block design, which uses 1 × 1 Convolutional operators in

place of Depth Wise Convolution.

From Table 14, we can see that the design (N), which

uses the AB block, performs worse than the standalone AB

block. The design O, which uses the AB-Plus block, per-

forms worse than the standalone AB-Plus block. Therefore,

890



Table 15. Classification Accuracy (%) on the CIFAR-100 test set

and complexity comparisons for ResNet-164.

Models Acc(%) Params FLOPS

ResNet-164 (Baseline) 75.70 1.734M 246.58M

AB G= #Channel (DW conv) 78.50 1.758M 246.59M

AB G (number of groups) = 16 78.53 1.847M 246.68M

AB G (number of groups) = 8 78.57 1.944M 246.78M

AB G (number of groups) = 4 78.62 2.137M 246.97M

AB G (number of groups) = 2 78.66 2.524M 247.36M

AB-Plus G=1 (Standard conv) 78.70 3.298M 248.14M

Figure 3. Figure shows the histogram of average channel-wise re-

calibration weights (scale factor) for the Conv4 1 layer of AB

ResNet-56 trained on CIFAR-10

adding the fine-grained re-calibration to the channel-wise

re-calibration results in better performance than the base

network and the SE modified network but fails to reach the

performance of the AB blocks. Also, since this approach

combines two types of calibration, it has more parameters

and computations than the AB blocks.

7.5. Group Number

We perform experiments on the number of groups (from

1 to number of channels) in the Convolution operation in the

AB block. As can be seen in Table 15 there is no significant

performance improvement by reducing the group number.

7.6. Relevance of Calibration

Fig 3 shows a histogram over the channel (feature map)

re-calibration weights produced by the AB block on the

Conv4 1 layer, i.e., the first layer of the last block, of

AB ResNet-56 after being trained on CIFAR-10. The re-

calibration weights were averaged over 10,000 test images

in the CIFAR-10 dataset. We can see that the network gives

different re-calibration weights to different channels.

The calibration weights produced by the AB block, re-

calibrates the channels (feature maps) of the output pro-

duced the Convolutional filters. We perform two types of

experiments to find out how these weights affect the net-

work performance. First, we progressively zero out x% of

the highest channel re-calibration weights at each AB block.

Second, we progressively zero out x% of the lowest channel

re-calibration weights at each AB block. x is varied from

Table 16. Classification accuracy % on CIFAR-10 dataset for

the ResNet-56 network with AB block by zeroing out the high

value re-calibration weights and by zeroing out the low value re-

calibration weights.

% of Channels Acc(%) High wts. Acc(%) Low wts.

0 (baseline AB) 94.66 94.66
5 76.13 91.32
10 53.52 84.50
15 40.01 74.26
20 29.24 63.11
25 18.22 52.40

5% to 25%.

Table 16 shows that, if we zero out the top 5% high value

channel re-calibration weights, the classification accuracy

crashes to 76.13% from 94.66%. This catastrophic drop

continues as we increase the percentage of the high-value

channel re-calibration weights that are to be zeroed, falling

to 18.22% after only 25% high-value channel re-calibration

weights have been zeroed. On the other hand, if we zero out

the top 5% low-value channel re-calibration weights, the

classification accuracy drops by only 3% and by the time

we zero out 25% low-value channel re-calibration weights,

the classification accuracy is still at 52.4%, which is much

higher than the other case. This signifies that those channels

which had higher re-calibration weights had highly relevant

features in them and zeroing them caused a drastic drop in

the classification accuracy. Whereas, those channels which

had lower re-calibration weights had not so relevant features

and zeroing them could not affect the classification accu-

racy in such a drastic manner as the most relevant channels

were still functioning. Therefore, we can conclude that the

channels for which the AB block gives high re-calibration

weights contain highly relevant features.

8. Conclusion

In this paper, we proposed the Accuracy Booster block,

a performance boosting block for CNNs that uses channel-

wise (feature map) re-calibration. Our analysis showed

how the AB block is lighter than other recent approaches.

Through our several experiments, we show that the AB

block performs consistently better than other designs of

higher complexity. In our ablation study, we justified our

architectural choices while experimenting on various archi-

tectures. Since the SE blocks were introduced, the general

trend has been to further increase the complexity of such

blocks to improve the performance of the base model. How-

ever, through extensive ablation studies, we show that too

much increase in the complexity of such blocks may not al-

ways increase the model performance. We also show that

our architecture generalizes to detection as well. Therefore,

the Accuracy Booster block is a useful tool to be utilized in

Neural Networks for boosting their performance.

891



References

[1] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and

T.-S. Chua. Sca-cnn: Spatial and channel-wise attention

in convolutional networks for image captioning. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 6298–6306. IEEE, 2017.

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE transactions on pattern analysis and ma-

chine intelligence, 40(4):834–848, 2018.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[4] J. Hu, L. Shen, S. Albanie, G. Sun, and A. Vedaldi. Gather-

excite: Exploiting feature context in convolutional neural

networks. In Advances in Neural Information Processing

Systems, pages 9401–9411, 2018.

[5] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. arXiv preprint arXiv:1709.01507, 7, 2017.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-

berger. Densely connected convolutional networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 4700–4708, 2017.

[7] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions

on pattern analysis and machine intelligence, 20(11):1254–

1259, 1998.

[8] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[10] H. Larochelle and G. E. Hinton. Learning to combine foveal

glimpses with a third-order boltzmann machine. In Advances

in neural information processing systems, pages 1243–1251,

2010.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016.

[13] P. Mazumder, P. Singh, and V. Namboodiri. Cpwc: Con-

textual point wise convolution for object recognition. arXiv

preprint arXiv:1910.09643, 2019.

[14] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of vi-

sual attention. In Advances in neural information processing

systems, pages 2204–2212, 2014.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015.

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[18] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[19] P. Singh, V. S. R. Kadi, and V. P. Namboodiri. Falf convnets:

Fatuous auxiliary loss based filter-pruning for efficient deep

cnns. Image and Vision Computing, page 103857, 2019.

[20] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.

Stability based filter pruning for accelerating deep cnns. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 1166–1174. IEEE, 2019.

[21] P. Singh, R. Manikandan, N. Matiyali, and V. Namboodiri.

Multi-layer pruning framework for compressing single shot

multibox detector. In 2019 IEEE Winter Conference on Ap-

plications of Computer Vision (WACV), pages 1318–1327.

IEEE, 2019.

[22] P. Singh, M. Varshney, and V. P. Namboodiri. Coopera-

tive initialization based deep neural network training. arXiv

preprint arXiv:2001.01240, 2020.

[23] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Lever-

aging filter correlations for deep model compression. arXiv

preprint arXiv:1811.10559, 2018.

[24] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-

conv: Beyond homogeneous convolution kernels for deep

cnns. International Journal of Computer Vision, pages 1–

21, 2019.

[25] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-

conv: Heterogeneous kernel-based convolutions for deep

cnns. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4835–4844, 2019.

[26] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play and

prune: Adaptive filter pruning for deep model compression.

International Joint Conference on Artificial Intelligence (IJ-

CAI), 2019.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all

you need. In Advances in Neural Information Processing

Systems, pages 5998–6008, 2017.

[29] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon. Cbam: Convo-

lutional block attention module. In Proc. of European Conf.

on Computer Vision (ECCV), 2018.

[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 5987–5995. IEEE, 2017.

892



[31] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

[32] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices, 2017.

[33] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8697–8710, 2018.

893


