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Abstract

Automatic detection of animals that have strayed into

human inhabited areas has important security and road

safety applications. This paper attempts to solve this prob-

lem using deep learning techniques from a variety of com-

puter vision fields including object detection, segmentation,

tracking and edge detection. Several interesting insights

into transfer learning are elicited while adapting models

trained on benchmark datasets for real world deployment.

Empirical evidence is presented to demonstrate the inabil-

ity of detectors to generalize from training images of an-

imals in their natural habitats to deployment scenarios of

man-made environments. A solution is also proposed using

semi-automated synthetic data generation for domain spe-

cific training. Code and data used in the experiments are

made available to facilitate further work in this domain.

1. Introduction

Object detection is an important field in computer vision

that has seen very rapid improvements in recent years using

deep learning [96, 48, 67]. Most detectors are trained and

tested on benchmark datasets like COCO [66], Open Images

[61], KITTI [33] and VOC [30]. In order to apply these in a

particular domain like animal detection, a model pre-trained

on one of these datasets is fine-tuned on domain-specific

data, usually by training only the last few layers. This is

known as transfer learning [73, 115] and is often enough

to obtain good performance in the new domain as long as

it does not differ drastically from the original. The goal of

this work is to use transfer learning to adapt state of the art

object detection methods for detecting several types of large

Alberta animals in real-time video sequences captured from

one or more monocular cameras in moving ground vehicles.

The animals that most commonly stray into human habita-

tions include: deer, moose, coyotes, bears, elks, bison, cows

and horses. There are two deployment scenarios:

• Detecting threats in an autonomous all-terrain vehicle

(ATV) patrolling the Edmonton International Airport

perimeter for security and surveillance purposes.

• Finding approaching animals in side–mounted cameras

on buses plying the Alberta highways to issue a timely

warning to the driver for collision avoidance.

The main challenge here is the scarcity of existing la-

beled data with sufficient specificity to the target domain to

yield good models by fine-tuning pre-trained detection net-

works. Although several of the large public datasets like

COCO [66] do include some of the more common animals

like bears and horses, these rarely include the Canadian

varieties that are the focus of this work and often feature

incorrect backgrounds. Even larger classification datasets

like Imagenet [27] do include images of many of the target

animals but only provide image level labels so the bound-

ing boxes would have to be added manually. There are

also several animal specific datasets [4, 38] but these like-

wise do not match the target requirements well, having,

for example, aerial viewpoints [57, 58], incorrect species

[60, 75, 62, 108, 44, 93, 74] or habitats [13, 12] and no

bounding box annotations [45, 93, 98, 111].
The lack of training data was addressed by collecting and

labelling a sufficiently large number of images of the target

animals. This was initially confined to videos since label-

ing these was easier to semi-automate (Sec. 3.1) and train-

ing detectors on videos showing the animals in a variety

of poses seemed to concur better with deployment on cam-

era videos captured from moving vehicles. However, tests

showed that detection performance is far more sensitive to

the range of backgrounds present in the training set rather

than variations in the appearance of the animal itself (Sec.

4). Though static images helped to resolve this to a cer-

tain extent, they are much harder to obtain in large numbers

and a lot more time-consuming to label. More importantly,

neither static nor video images of animals are easy to ac-

quire with the kinds of structured man-made surroundings

that the airport perimeter and highways present. This paper

thus proposes a solution based on synthetic data generation

using a combination of interactive mask labelling, instance

segmentation and automatic mask generation (Sec. 3.4).
Another significant challenge is the need for the detector

to be fast enough to process streams from up to 4 cameras in

real time while running on relatively low-power machines
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since both deployment scenarios involve mobile computa-

tion where limited power availability makes it impractical

to run a multi-GPU system. This is addressed using Reti-

naNet [65] and YOLOv3 [82] which turned out to be sur-

prisingly competitive with respect to much slower models.

To the best of our knowledge, this is also the first large-scale

study of applying deep learning for animal detection in gen-

eral and their Canadian varieties in particular. It presents in-

teresting insights about transfer learning gained by training

and testing the models on static, video and synthetic im-

ages in a large variety of configurations. Finally, it provides

practical tips that might be useful for real world deployment

of deep learning models. Code and data are made publicly

available to facilitate further work in this field [10].

2. Related Work

Animal recognition in natural images is a well re-

searched area with applications mostly in ecological con-

servation. As in the case of available data, most of the ex-

isting work is not closely allied to the domain investigated

in this paper. Three main categories of methods can be dis-

tinguished from the literature corresponding to the type of

input images used. The first category corresponds to aerial

images captured from unmanned aerial vehicles (UAVs). A

recent work [56] introduced an active learning [101] method

called transfer sampling that uses optimal transport [25] to

handle domain shift between training and testing images

that occurs when using training data from previous years

for target re-acquisition in follow-up years. This scenario

is somewhat similar to the current work so transfer sam-

pling might have been useful here but most of this work had

already been done by the time [56] became available. Fur-

ther, it would need to be reimplemented since its code is not

released and the considerable domain difference between

aerial and ground imagery is likely to make adaptation dif-

ficult. Finally, most domain adaptation methods, includ-

ing [56], require unlabeled samples from the target domain

which are not available in the current case. Other examples

of animal detection in UAV images include [59, 85, 58, 57]

but, like [56], all of these are focused on African animals.

The second category corresponds to motion triggered

camera trap images. These have been reviewed in [91] and

[14] where the latter reported similar difficulties in gener-

alizing to new environments as were found here. The ear-

liest work using deep learning was [20] where graph cut

based video segmentation is first used to extract the animal

as a moving foreground object and then a classification net-

work is run on the extracted patch. A more recent work

[90] that most closely resembles ours tested two detectors

- Faster RCNN [83] and YOLOv2 [81] - and reported re-

spective accuracies of 93% and 76%. However, the eval-

uation criterion used there is more like classification than

detection since it involves computing the overlaps of all de-

Table 1: Annotation counts (seq, syn: sequences, synthetic)

Class
Videos (Real) Static Images

Total
Seq Images Real Syn Total

Bear 92 25715 1115 286 1401 27116

Bison 88 25133 0 0 0 25133

Cow 14 5221 0 0 0 5221

Coyote 113 23334 1736 260 1996 25330

Deer 67 23985 1549 286 1835 25820

Elk 78 25059 0 0 0 25059

Horse 23 4871 0 0 0 4871

Moose 97 24800 0 260 260 25060

Total 572 158118 4400 1092 5492 163610

tected boxes with the ground truth and then comparing the

class of only the maximum overlap detection to decide if

it is correct. Other recent works in this category, most of

them likewise dealing mainly with classification, include

[72, 111, 98, 117, 116, 119].

The third category, which includes this work, involves

real-time videos captured using ground-level cameras. An

important application of such methods is in ethology for

which many general purpose end-to-end graphical interface

systems have been developed [71, 92, 109, 86, 76]. Methods

specialized for particular species like cows [124], beef cattle

[99] and tigers [62] have also been proposed where the latter

includes re-identification that is typically done using cam-

era trap images. Surveillance and road safety applications

like ours are much rarer in the literature and it seems more

common to employ non-vision sensors and fencing/barrier

based solutions, probably because many animal vehicle col-

lisions happen in the dark [110]. Examples include infrared

images [32], thermal and motion sensors [37], ultra wide

band wireless sensor network [113] and kinect [120].

A general review of the vision techniques used in this

work including object detection, segmentation and tracking

are excluded here due to space constraints. The actual meth-

ods used in the experiments are detailed in Sec. 3.

3. Methodology

3.1. Data Collection

To facilitate the large number of training images needed,

a combination of video and static images was used. Video

was collected both directly with handheld video cameras

around Calgary area, such as the Calgary Zoo, as well as on-

line via YouTube and Nature Footage [5]. Due to the large

quantity of static images that was required, downloading

them one by one was not feasible. Instead, ImageNet [27]

was used as it provides a searchable database of images with

links whereby they can be downloaded in bulk using scripts.

However, not all animal species are available there and not

all available ones have enough images. Google Images was

thus also used by searching for specific taxonomic classi-

fication and downloading the results in bulk using browser

extensions. After downloading static images, it was neces-
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Figure 1: Sample collected images: (clockwise from top left) bear (Calgary Zoo), deer (Google Images), coyote (Google

Images), elk (Nature Footage), horse (YouTube), cow (YouTube), moose (YouTube) and bison (Calgary Zoo)

sary to verify that all were of the intended animal and re-

move any mislabeled or unhelpful images. Figure 1 shows

sample images of all animals while Table 1 provides quan-

titative details.

3.2. Labeling

3.2.1 Bounding Boxes

Annotation was done using a heavily modified version of an

open source image annotation tool called LabelImg [102].

This tool takes a video file or sequence of images as input

and allows the users to annotate bounding boxes with class

labels over them. The SiamFC tracker [17] was integrated

with the tool to make video annotation semi–automated so

that the user only needs to manually annotate the animal in

the first frame, track it till the tracker starts drifting, fix the

box in the last tracked frame, start tracking again and repeat

this process till all frames are labeled.

3.2.2 Segmentation Masks

Pixel wise masks were needed to generate high-quality syn-

thetic data (Sec. 3.4). Annotation tools that support masks

do exist [29, 28, 103, 19, 88, 55, 3], including AI assisted

services [6], but all have issues such as too course masks

[29, 28, 103, 19], Linux incompatibility [55], paid or propri-

ety license [6, 3] or cloud-data restriction [88]. Also, it was

desirable to semi-automate mask generation using the al-

ready existing bounding boxes which is not allowed by any

of the tools. Mask annotation functionality was thus added

to the labelling tool with support for 3 different modalities

to add or refine masks - drawing, clicking to add boundary

points and painting with variable sized brushes.
Semi-automated mask generation was done using a com-

bination of motion based interpolation, edge detection and

tracking. An approximate mask is generated for a given

frame by estimating the motion between its bounding box

and that in a previous frame whose mask has already been

annotated. In addition, holistically nested edge detection

(HED) [112] followed by adaptive thresholding is used to

obtain a rough boundary of the animal that can be refined

by painting. Finally, the SiamMask tracker [106], that out-

puts both bounding boxes and segmentation masks, was

integrated with the labelling tool to generate low-quality

masks in a fully automated manner. Mask labelling was

a slow and laborious task and took anywhere from 1 - 8

minutes per frame depending on animal shape and back-

ground clutter. An arguably more sophisticated pipeline for

rapid generation of segmentation masks has recently been

proposed [15]. However, it became available too late to be

utilized in this project, does not provide a publicly available

implementation and its proposed pipeline includes human

involvement on too large a scale to be practicable here. A

recent video mask prediction method [114] likewise came

out too late and also rendered unnecessary by SiamMask.

3.3. Object Detection

Object detection has improved considerably since the ad-

vent of deep learning [96] within which two main categories

of detectors have been developed. The first category in-

cludes methods based on the RCNN architecture [35, 36]

that utilize a two-step approach. A region proposal method

is first used to generate a large number of class agnostic

bounding boxes that show high probability of containing a

foreground object. Some of these are then processed by a

classification and regression network to give the final de-

tections. Examples include Fast [34] and Faster [83, 84]

RCNN and RFCN [26]. The second category includes

methods that combine the two steps into a single end to end

trainable network. Examples include YOLO [80, 81, 82],

SSD [70] and RetinaNet [64, 65]. Apart from its high-
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Figure 2: Synthetic data samples with corresponding source and target images for (top) coyote on airport and (bottom) moose

on highway. Each row shows (left to right) animal source image, target background image and crops of synthetic images

generated using (clockwise from top left) manual labeling, Mask RCNN, SiamMask and Gaussian blending (no mask).

level architecture, the performance of a detector also de-

pends on the backbone network used for feature extraction.

Three of the most widely used families of performance-

oriented backbones include ResNet [42, 43, 51], Incep-

tion [95, 97, 24, 94] and Neural Architecture Search (NAS)

[125, 126]. Several architectures have also been developed

with focus on high speed and low computational require-

ments. The most widely used among these are the several

variants of MobileNet [47, 89, 46].

Five high level detector architectures have been used

here – Faster RCNN, RFCN, SSD, RetinaNet and YOLO.

Three different backbone networks are used for Faster

RCNN - ResNet101, InceptionResnetv2, NAS - and two

for SSD - Inceptionv2 [97], Mobilenetv2 [89] - for a total

of 8 detectors. ResNet101 and ResNet50 are used as back-

bones for RFCN and RetinaNet respectively. All 3 variants

of YOLO [80, 81, 82] were experimented with, though only

YOLOv3 [82] results are included here as being the best

performer. These methods were chosen to cover a good

range of accuracies and speeds among modern detectors.

All of the above are static detectors that process each

frame individually without utilizing the temporal correla-

tion inherent in video frames. Detectors have also been de-

veloped to incorporate this information for reducing missed

detections due to issues like partial occlusions and motion

blur. Examples include Seq-NMS [40], TCNN [54, 53],

TPN [52], D&T [31] and FGFA [121, 122]. However, none

of these have compatible implementations and most need

either optical flow, patch tracking or both to run in paral-

lel with a static detector which makes them too slow to be

used here. LSTM-SSD [68, 69] is the only recent video

detector that is both fast and open source but attempts to in-

corporate this here showed its implementation [8] to be too

buggy and poorly documented to be usable without signif-

icant reimplementation effort not warranted by the modest

improvement it seemed likely to provide. Instead, a simple

algorithm was devised to combine the DASiamRPN tracker

[123] with YOLO (Sec. 4.2.6) to gauge the potential benefit

of temporal information in videos.

3.4. Synthetic Data Generation

Experiments showed that detectors have limited ability

to generalize to new backgrounds (Sec. 4.2.1). A solu-

tion considered first was to collect static images with as

much background variation as possible to cover all target

scenarios. This proved to be impracticable due the diffi-

culty of finding and labeling sufficient quantities of static

images, exacerbated by our target scenarios consisting of

man-made environments where it is extremely rare to find

animals at all. As a result, synthetic data was generated by

extracting animals from existing labeled images and adding

them to images of the target backgrounds. Attempts were

initially made to do this without masks by selecting only

the best matching source images for each target background

through techniques like histogram matching and then using

Gaussian blending to smoothen the transition from source to

target background. However, this failed to generate images

that could either be perceived as realistic by humans or im-

prove detection performance (Sec. 4.3). Pixel wise masks

were therefore generated by manually labelling a sparse col-

lection of frames with as much background variation as pos-

sible and then training instance segmentation models (Sec.

3.5) to automatically generate masks for remaining frames

with similar backgrounds. SiamMask tracker [106] was also
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Table 2: Implementations used for the various methods

(TF: Tensorflow, PT: PyTorch)

Methods Implementations

All static detectors except YOLO TF (Object Detection API) [9]

YOLOv3, YOLOv2, YOLOv1 PT [50], TF [100], Darknet [79]

Mask RCNN, Sharpmask, FCIS TF [9], TF [7], MXNet [2]

SiamFC, SiamMask, DASiamRPN TF [16], PT [105], PT [104]

Deeplab, UNet/SegNet, HED TF [22], Keras [39], OpenCV[18]

used towards the end of the project to make this process

fully automated. Generating synthetic images was much

faster than labelling masks and only took about 1-10 sec-

onds/frame. Most of the effort was focused on generating

static images since experiments (Sec. 4.2.2) showed that

videos do not help to improve detectors much. It is also

significantly harder to generate realistic videos as that re-

quires camera motion in the source and target video clips to

be identical. Images were generated from 14 airport and 12

highway backgrounds with 11 source images for bears and

deer, and 10 for coyotes and moose. Fig. 2 shows examples.

3.5. Instance Segmentation

Instance segmentation distinguishes between each in-

stance of an object as opposed to semantic segmentation

that only identifies categories of objects. The former in-

tuitively seems more suitable for extracting animal bound-

aries from bounding boxes since it uses object level rea-

soning whereas the latter is more oriented towards pixel-

level classification. This was confirmed by experiments

with several state of the art semantic segmentation methods,

including DeepLab [21, 23], UNet [87] and SegNet [11].

All of these generated masks that were too fine-grained to

cleanly segment out the animal from its background, instead

producing many small groups of background pixels inside

the animal and, conversely, animal pixels within the back-

ground. Three instance segmentation methods were then

considered – SharpMask/DeepMask [78, 77], Mask RCNN

[41] and FCIS [63]. Mask RCNN was found to produce the

highest quality masks so only its results are included.

3.6. Implementations and Training

Table 2 lists all implementations used here. Training was

done by fine tuning models pre-trained on large benchmark

datasets – COCO [1] for Mask RCNN and all detectors; Im-

ageNet [27] for Sharpmask and FCIS; ADE20K [118] for

Deeplab, UNet and SegNet. HED and all trackers were used

directly with pretrained weights without any fine tuning.
In order to avoid class bias while training, number of

samples from all classes must be similar [107]. Number of

labeled images, however, varies significantly between ani-

mals (Table 1), especially when the source type – video or

static – is taken into account. Therefore, experiments were

done with 3, 4 and 6 classes (Table 3) in addition to all 8 to

cover a range of scenarios while maintaining class balance.

4. Results

4.1. Evaluation Metrics

Object detectors are usually evaluated using their mean

average precision (mAP) [49], defined as the mean, over

all classes, of the area under the recall–precision curve

for each class. Although a good measure of the overall

threshold-independent performance, mAP may not accu-

rately represent deployment accuracy where a single thresh-

old must be chosen. Since mAP considers the variation

of recall and precision with threshold separately for each

class, and this can differ greatly between classes (Fig. 3c),

it is more indicative of accuracy when a different threshold

can be chosen for each class to optimize the recall-precision

characteristics for that class. It is also difficult to interpret

mAP to gauge the practical usability of a detector in terms

of how likely it is to miss objects or give false detections.

This paper therefore proposes another metric obtained by

first averaging recall and precision for each threshold over

all classes and then taking the recall–precision (RP) value

at the threshold where the two are equal. This metric is

named mean Recall-Precision (mRP) and provides a more

interpretable measure of performance when using a single

threshold for all classes.

Further, this work deals mainly with human-in-the-loop

type security applications where detections alert humans to

take suitable measures after verification. In such cases, sim-

ply detecting an object can be far more crucial than classify-

ing it correctly. For example, when used as an early warning

system for bus drivers, misclassification would have little

impact on the driver’s response as long as the animal is de-

tected early enough. A less stringent evaluation criterion

named class-agnostic Recall-Precision (cRP) is thus also

used that treats all animals as belonging to the same class

so that misclassifications are not penalized.

4.2. Real Data

4.2.1 How well do detectors generalize ?

Fig. 3 summarizes the results for several training and test-

ing configurations (Table 4) used to study the generalization

ability of detectors in a range of scenarios. These are hence-

forth referred to by their numeric IDs (first column of Table

4) and detectors by acronyms (Fig. 3) for brevity.

Fig. 3a gives results for all detectors in #1 - #5. The

large difference between #1 and #2 clearly demonstrates the

inability of detectors to generalize to unseen backgrounds.

Both have 1K video images/class but the latter has these

sampled from all sequences to allow training over nearly

all backgrounds in the test set while the former does not

get any frames from the tested sequences. This is sufficient

for the detectors to achieve near perfect mRPs in #2 while

giving far poorer performance with only 35-60% mRP in

#2. A similar trend is seen, though to a lesser extent, in #3
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Figure 3: Detection mRP (solid), corresponding confidence thresholds (dotted) and cRP (dashed, only #1, #3): (a) #1 - #5 for

all 8 models (b) #6 - #8 for 3 models (c) class-specific #1 results for 3 models. Model Acronyms: NAS, RES101, INRES -

Faster RCNN w/ NAS, ResNet101, Inception-ResNetv2 backbones; RFCN - RFCN w/ ResNet101; RETINA - RetinaNet w/

ResNet50; SSDIN, SSDMO - SSD w/ Inceptionv2, MobileNetv2; YOLO - YOLOv3. Best viewed under high magnification.

and #4. The former, with 10K images/class from complete

sequences, is significantly outperformed by the latter with

only 5% images from the start of each sequence (or ∼1.2K

images/class). The smaller difference here is attributable

to the much greater frame count in #3 and the fact that #4

uses consecutive frames from each sequence which contain

a smaller range of backgrounds than the evenly sampled

frames in #2. Performance in #5 is comparable to #4, even

though #5 involves testing over a far greater proportion of

unseen backgrounds, probably because most static images

depict animals in their natural habitats (Sec. 3.1) which, ex-

hibiting limited variability, allow the detectors to generalize

relatively well.
Fig. 3a also shows cRP, though only for #1 and #3 since

remaining configurations all had cRP > 90% whose inclu-

sion would have cluttered the plots so these have been de-

ferred to the supplementary. As expected, cRPs are signifi-

cantly higher than mRPs for all models, though the gain is

most notable for YOLO, particularly in #1 where it more

than doubles its performance, outperforming both the SSDs

as well as RETINA. This suggests, and qualitative exami-

nation has confirmed, that the form of overfitting YOLO is

susceptible to involves associating backgrounds to specific

animals whose training images had similar backgrounds.

For example, if a particular scene is present in bear train-

ing images but not in those of deer, a test image of a similar

scene, but containing deer, would have the animal detected

as bear. The other models are susceptible to this too but to

a smaller degree and more often miss the animal altogether.

4.2.2 How much are video annotations worth ?

Fig. 3b shows results for #6 - #8; only 3 detectors are in-

cluded to reduce clutter since the others showed similar per-

formance patterns. #6 involved training with 1, 2, 5 and 10

Table 3: Class configurations for training (c: no. of classes)

c Animals Comments

6 all except cow, horse these have only ∼5K images

4 bear, deer, moose, coyote synthetic images

3 bear, deer, coyote real static images

Table 4: Training configurations for both real and synthetic

data (c, img, seq - number of classes, images, sequences).

# c Details
Train Test

img (seq) img (seq)

1 8
1K video images/class sampled

from complete sequences
8001 (33)

150117

(539)

2 8
1K video images/class sampled

evenly across all sequences
8156 149962

3 6
10K video images/class sampled

from complete sequences

60003

(218)

88023

(317)

4 6
5% images from the start of each

video sequence
7169 140857

5 3 500 static images/class 1500 2900

6a-

6d
6

1, 2, 5, 10 images sampled evenly

from each of 67 sequences

402, 804,

2010,4020
103235

7 3
20K video images/class tested on

static images
60000 4400

8a,

8b
3

1K static images/class tested on

video, synthetic images
3000

73034,

598

9 4
20K video images/class tested on

synthetic images
80008 780

10a,

10b

3,

4

3, 4 class models trained on 28%

of synthetic images, tested on rest
234, 312

598,

780

frames/sequence, with the sequence count limited to 67 by

the class with the fewest sequences (deer) to maintain class

balance. All 4 models were tested on the same 67 sequences

using frames not included in any of their training sets. It can

be seen that even 1 frame/sequence is enough for all detec-

tors to give 90% mRP, which improves only marginally

with 2 and 5 frames, plateauing thereafter. Further, though

RETINA does catch up with RES101 using ≥ 2 frames,
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YOLO is unable to even narrow the gap, which might in-

dicate that domain specialization cannot entirely overcome

architectural limitations. #7 and #8 show the relative utility

of video and static frames by training on one and testing on

the other. As expected, static models demonstrate far su-

perior generalizability by outperforming the video models

by 4-12% mRP even though the latter are trained and tested

on 20× more and 16× fewer frames respectively. Perfor-

mance gap between #7 and #8 is also larger for worse per-

forming models, especially YOLO that has twice the gap of

RETINA, which reaffirms its poor generalizability. Finally,

the fact that #8 has lower mRP than #6a even though the for-

mer has nearly 15× more images with varied backgrounds

shows the importance of domain specialization.

4.2.3 How do the detector accuracies compare ?

RES101 turns out to be the best overall, though NAS, RFCN

and INRES remain comparable in all configurations. NAS

even has a slight edge in #1, showing its better generaliz-

ability under the most difficult scenarios. Conversely, the

shortcomings of 1-stage detectors compared to their 2-stage

counterparts are also most apparent in #1. This is partic-

ularly notable for RETINA that is comparable to RES101

and significantly better than the other 1-stage detectors in all

remaining configs. YOLO likewise performs much poorer

relative to the two SSDs while being similar and even better

in other configs. This might indicate that 1-stage detectors

in general, and YOLO in particular, are more prone to over-

fitting with limited training data. From a practical stand-

point, though, YOLO redeems itself well by its relatively

high cRPs, outperforming RETINA in both #1 and #3.

4.2.4 How important is the confidence threshold ?

Fig. 3 shows confidence thresholds corresponding to mRP

or class-specific RP using dotted lines. Fig. 3c shows that

the threshold corresponding to the class-specific RP varies

widely between classes - much more than the RP itself. As

mentioned in Sec. 4.1, this motivates the use of mRP in-

stead of mAP as a practical evaluation criterion. Further,

Fig. 3a,b show that the optimal mRP threshold itself varies

greatly between the detectors too. Therefore, choosing a

single threshold for all of them might not provide a true

picture of their relative performance in practice. It is also

evident, especially in Fig. 3b, that a weak correlation exists

between the relative performance and threshold, with bet-

ter performing detectors usually also having higher thresh-

olds. Notable exceptions to this are INRES and SSDIN,

both having smaller thresholds than their respective mRP

levels. Since both use different variants of Inception, this

might be due to an architectural peculiarity thereof. Also

notable are the very low thresholds of YOLO - often < 5%

and sometimes even < 1%.

Table 5: Speed, GPU memory consumption and maximum

batch size for each detector. Refer Fig. 3 for model names.

(Setup: Titan Xp 12GB, Threadripper 1900X, 32GB RAM)

Model
Batch Size 1 Batch Size 4 Max Batch Size

memory

(MB)

speed

(FPS)

memory

(MB)

speed

(FPS)

batch

size

speed

(FPS)

NAS 9687 1.36 - - 3 1.39

INRES 7889 3.95 8145 4.68 8 4.49

RES101 5077 19.61 5589 25.35 36 27.12

RFCN 5041 19.8 5553 32.12 76 26.94

RETINA 4785 31.5 5553 43.51 120 53.28

YOLO 1487 71.41 2039 104.25 48 119.64

SSDIN 3631 68.35 3631 155.63 160 181.66

SSDMO 1999 78.67 2031 167 480 246.56

4.2.5 How resource intensive are the detectors ?

Since both deployment scenarios of ATV and highway

buses involve mobile systems with limited power availabil-

ity, it is important for the detector to be as lightweight as

possible. Table 5 shows the speed in frames per second

(FPS) along with GPU memory consumption for batch sizes

1 and 4, where the latter is chosen to represent the 4 cameras

needed for a simultaneous 360° field-of-view. The maxi-

mum batch size that can be run on a 12GB Titan Xp GPU

is also shown for scalability comparison. SSDMO turns

out to be the fastest, though YOLO is comparable at batch

size 1 and also has significantly smaller memory footprint.

However, YOLO does not scale as well in either speed or

memory and ends up with only a tenth of the maximum

batch size of SSDMO and less than half the corresponding

speed. NAS and INRES are the slowest and most mem-

ory intensive by far and unsuitable for realtime applications.

RFCN and RES101 are similar with unit batch size, prob-

ably due to their identical backbone, though RFCN scales

better, allowing more than twice the maximum batch size

and 28% higher speed with batch size 4. Finally, RETINA

provides the best compromise between performance and

speed - RES101-like mRP in most configs and fast enough

to process 4 camera streams simultaneously at 10 FPS each

and thus capture an animal visible for a fraction of a second.

4.2.6 Can tracking reduce false negatives ?

As mentioned in Sec. 3.3, tracking was used in an attempt

to reduce false negatives by utilizing temporal information

in videos. DASiamRPN [123] was used as the tracker as

being one of the fastest available Siamese type trackers.

YOLO was used as the detector since its PyTorch imple-

mentation was easier to integrate with that of DASiamRPN,

its speed with batch size 1 (necessary to use tracking) is

among the fastest and its poor performance in #1 provides

ample scope for improvement. The detailed algorithm is in-

cluded in the supplementary, though its high level idea is

simple - associate detections with existing trackers, create

new trackers for unassociated detections and remove track-

ers that remain unassociated for too long or those with the
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Figure 4: Results for (a - b) DASiamRPN + YOLO and (c) RETINA and YOLO tested on synthetic data

lowest confidence when tracker count exceeds a threshold.

Fig. 4a shows the mean Recall vs. Precision plots while Fig.

4b gives mRP / cRP and speeds. Tracking mostly helps only

when the detector finds an animal in at least one frame in a

sequence and misses it in several subsequent ones. It turns

out that this seldom happens in practice so that the resultant

increase in recall is very slight and is offset by a signifi-

cant decrease in precision through tracking false positives.

The latter can be mitigated by removing unassociated track-

ers frequently but this leads to a large drop in recall and is

therefore not used in these results. There is thus no net gain

in mRP/cRP using tracking, rather significant drops with >1

trackers. When combined with the reduction in FPS, it does

not seem like an effective way to reduce false negatives.

4.2.7 Can multi-model pooling reduce false negatives ?

Another way to reduce missing detections is to run multiple

detectors simultaneously and pool their detections. A large

variety of methods were explored to pool YOLO, SSDIN

and SSDMO but none managed to increase recall enough

to offset the fall in precision and the net mRPs were even

worse than those from tracking. Descriptions of these meth-

ods and corresponding results are thus in the supplementary.

4.3. Synthetic data

A training set was constructed from synthetic data by

selecting images corresponding to 3 animal poses per back-

ground, with a different combination of poses selected ran-

domly for each background, while all remaining images

were used for testing. Table 4 denotes the corresponding

configs as #10a and #10b for 3 and 4 class models respec-

tively. Corresponding real data configurations are #8b and

#9 with 1K static and 20K video images/class respectively.

Seperate models were trained for each of the 4 methods of

extracting animals from source images (Sec. 3.4) – Gaus-

sian blending, manual masks, Mask RCNN and SiamMask.

All were tested on images generated by manual masks.
As shown in Fig. 4c, models trained on synthetic data

significantly outperform those trained on real data as long

as masks are used. This is remarkable considering that only

78 frames/class were used for the former compared to 1K

or 20K for the latter. This reiterates the results in Sec. 4.2.2

where #6a with 67 images outperformed #8a with the same

1K images as #8b. However, unlike there, YOLO does

manage to match RETINA here, which suggests that high

enough degree of specialization can indeed overcome its

architectural shortcomings. More importantly, there is no

perceptible difference in mRP between models correspond-

ing to the three segmentation methods. This shows that

even the fully unsupervised and visibly coarse masks from

SiamMask have comparable detector training information

to precise manual masks. At the same time, mask quality

does indeed matter since the no mask / Gaussian blending

models perform even worse than real data.

5. Conclusions

This paper presented a large scale study of animal de-

tection with deep learning where 8 state of the art detectors

were compared in a wide range of configurations. A partic-

ular focus of the study was to evaluate their generalization

ability when training and test scenarios do not match. It was

shown that none of the detectors can generalize well enough

to provide usable models for deployment, with missed de-

tections on previously unseen backgrounds being the main

issue. Attempts to increase recall using tracking and multi-

model pooling proved ineffective. Synthetic data genera-

tion using segmentation masks to extract animals from im-

ages of natural habitats and inserting them in target scenes

was shown to be an effective solution. An almost fully auto-

mated way to achieve this was demonstrated by the compet-

itiveness of coarse unsupervised masks with precise manual

ones in terms of the performance of detectors trained on the

corresponding synthetic images. RETINA and YOLO were

shown to be competitive with larger models while being suf-

ficiently lightweight for multi-camera mobile deployment.
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