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Abstract

Researchers have proposed various activation functions.

These activation functions help the deep network to learn

non-linear behavior with a significant effect on training dy-

namics and task performance. The performance of these

activations also depends on the initial state of the weight

parameters, i.e., different initial state leads to a difference

in the performance of a network. In this paper, we have

proposed a cooperative initialization for training the deep

network using ReLU activation function to improve the net-

work performance. Our approach uses multiple activation

functions in the initial few epochs for the update of all sets

of weight parameters while training the network. These ac-

tivation functions cooperate to overcome their drawbacks in

the update of weight parameters, which in effect learn bet-

ter “feature representation” and boost the network perfor-

mance later. Cooperative initialization based training also

helps in reducing the overfitting problem and does not in-

crease the number of parameters, inference (test) time in the

final model while improving the performance. Experiments

show that our approach outperforms various baselines and,

at the same time, performs well over various tasks such as

classification and detection. The Top-1 classification accu-

racy of the model trained using our approach improves by

2.8% for VGG-16 and 2.1% for ResNet-56 on CIFAR-100

dataset.

1. Introduction

Deep neural networks (DNNs) are state-of-the-art mod-

els, responsible for transforming research in the area of

vision, language and speech [14, 7, 4]. Various works

[30, 31, 26, 29, 27, 28, 25, 20, 32] have been proposed for

efficient deep learning. These deep network at core per-

forms a linear transformation followed by a non-linear op-

eration using an activation function. The activation func-

tion is the one, which is responsible for nonlinear behaviour

and the learning capabilities of the network. These activa-

tions are non-linear continuous functions which may also

possess non-differentiability [22, 18, 8]. Researchers have

proposed many activation functions which can be classified

into saturated [2, 21, 10] and non-saturated activation func-

tions [2, 18, 35, 22].

The saturated activation belongs to a category, in which

the learning process gets slow down due to the very small

gradient near-saturated output. These activation functions

are experimentally proved to be less effective for training a

deep network. The key reason for the failure is the (van-

ishing/exploding) gradient problems, which mostly occurs

due to saturated output in an activation function. This prob-

lem is efficiently tackled by using non-saturated activation

function, like ReLU [22, 18]. In particular, the derivative of

ReLU is one for the positive inputs; hence, the gradient can-

not vanish. In contrast, all the negative values are mapped

to zero, which restricts the flow of information in DNNs

for these negative values. ReLU gets saturated exactly at

zero, which makes ReLU fragile at the time of training, and

the neuron can die forever. For example, the flow of large

gradients through ReLU may update weight parameters in

a way that may deactivate neurons for all data points. This

problem is known as dying ReLU, which implies that the

gradients flow through the neuron will forever be zero from

that point. Due to this, the gradient-based optimization al-

gorithm will not be able to update the weights of that neuron

unit. Also, training the network on a high learning rate may

shoot the number of “dead” neurons in the network as much

as 40% of the network [18] (i.e., neurons that never activate

across the entire training dataset). So there is a need to set

the learning rate properly to reduce the issues.

To resolve these potential problems originated by the

hard zero mappings in the ReLU units, various general-

izations of ReLU such as Leaky ReLU [18], and PReLU

[8] have been proposed. Both Leaky ReLU and PReLU

are same as ReLU except for the case of negative inputs in

which a small constant slope for Leaky ReLU and a learn-

able slope for PReLU are used. Similarly, Exponential Lin-

ear Units (ELU) [3] is also proposed, which resolves the

bias shift [11] from the succeeding layers. ELU [3] gives an

exponential value corresponding to negative inputs, which

force the mean output of the activation function to reach

towards zero. Although ELU is not backed by concrete the-
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ory, ELU shows competitive results. Besides all these, Soft-

plus [36] is approximately similar to ReLU, except at zero,

where softplus is differentiable and smooth. Softplus is also

differentiable everywhere and saturates less, which gives an

edge over ReLU. In practice, there is no non-linear activa-

tion function that outperforms all the time over all models,

datasets, and problems.

In this paper, we propose an approach in which multiple

non-linear activation functions are exploited using a coop-

erative strategy to overcome their drawbacks. We have used

multiple activation functions in the initial epochs of train-

ing the deep network. The aggregation of gradient from all

the activation function gives a regularization effect for the

gradient flow corresponding to the whole range of inputs

(negative values also). This results in regularizing the up-

date of weight parameters, which is a very crucial step in

the initial stage. In the next stage, we train the network with

only one activation function (standard network) correspond-

ing to each layer of the network. The proposed approach has

experimented extensively on different architectures such as

ResNet, and VGG-16 models over CIFAR-10, CIFAR-100,

and ImageNet datasets. We also experimented with object

detection task using SSD-300 on the PASCAL VOC dataset.

Major contributions of this paper are as follows:

• We have shown experimentally that using multiple ac-

tivation functions in the initial few epochs of the train-

ing process benefits the update of the full set of weight

parameters, which results in substantial performance

improvement later.

• We have shown empirically that a mixture of non-

linear activation functions results in significant im-

provement in the performance as compared to the in-

dividual non-linear activation function.

• We have shown that Cooperative Initialization based

training also help in reducing overfitting problem.

• Our proposed approach does not increase the num-

ber of parameters and inference (test) time in the final

model while improving the performance.

2. Previous Work

The first activation function is a step function originally

used in the perceptron model [21]. Researchers in the

same direction have also proposed many other saturated ac-

tivation functions such as sigmoid, softmax, and tanh [2].

The ReLU activation further replaces these activation func-

tions, owing to the outstanding performance on deep neu-

ral networks [22, 33, 13]. ReLU had escalated the conver-

gence and resolved the vanish gradient problem, normally

occurred in saturated activation functions. These activa-

tion functions have accelerated the efforts of the research

community in solving various vision problems. Several

attempts have been made to develop a more efficient net-

work by developing better activation functions, which can

resolve the problems arising in the above activation func-

tions. Some variants of ReLU have been proposed such as

RReLU, PReLU, leaky ReLU, and others [35, 8, 18].

To resolve the issues of mapping, all negative input to

zero (dying ReLU) in the ReLU activation function, Leaky

ReLU [18] has been proposed. This mapping causes an in-

formation loss (dead neuron), which is resolved by defining

a linear function corresponding to negative input, having a

small predefined constant slope, to leak some information

[18]. However, Leaky ReLU does not give any notable re-

sults on performance experimentally. Further, a parametric

rectified linear unit (PReLU) has been proposed [8] which

uses a learnable slope parameter instead of a constant slope

as in Leaky ReLU [18] for negative inputs. PReLU gives

better performance than ReLU in many cases. On the sec-

ond thought, the slope parameter can be randomly sampled

from a uniform distribution as used in Randomized Leaky

Rectified Linear Unit (RReLU) [35] which reduces the risk

of overfitting in the training phase. ELU [3] is also same as

ReLU for positive input while it behaves similarly to sat-

urated exponential function for negative inputs. Further,

Parametric ELU (PELU) is a scaled version of ELU hav-

ing a learnable scaling parameter [34]. Most of the above

discussed ReLU variants are based on the experiments over

the negative inputs of ReLU.

There are few other works in which new activation func-

tions are proposed, such as Maxout (maximum over K affine

functions), Softplus, and Adaptive Piecewise Linear (APL)

[6, 36, 1]. The APL consist of many non-differentiable

points that scale linearly with the number of hinge func-

tions. This will increase the model complexity and affect

the parameter updates during back-propagation [14]. In the

same manner, Maxout take maximum over multiple fea-

ture maps. Softplus is the smooth approximation of ReLU,

which is differentiable everywhere.

In this work, we have focused on leveraging benefits

from the multiple non-linear activation functions simulta-

neously. To the best of our knowledge, this is the first work

that considers a mixture of non-linear activation functions

in the initial few epochs. We have also presented an abla-

tion study and feature visualization to support the proposed

approach.

3. Cooperative Network Design (Phase-1)

Nowadays, deep networks consist of huge depth due to

the presence of multiple convolutional layers. These con-

volutional layers are followed by an activation function,

which operates on the feature maps (output) of these layers.

The training process will update weight parameters using

back-propagation. This update solely depends on the be-
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Figure 1. Cooperative design for a particular layer in deep network during Phase-1 training time (Best viewed in color).

havior of the activation function, i.e., ReLU never updates

the weight parameter corresponding to negative inputs. Re-

stricting these weights from an update in the initial phase

of training may hurt the performance of the deep network

later.

To overcome these issues in the network, researchers

have proposed various activation functions, which have

their advantages and disadvantages. In this work, we have

proposed a cooperative design having multiple activation

functions, helping each other in the initial update of param-

eters in such a way that all set of weight parameters get an

opportunity to contribute to the performance. These activa-

tion functions cooperate to overcome their drawbacks and

improve the update process for all sets of weight parame-

ters in the initial epochs of training.

In Figure 1, we have shown a block diagram of a layer,

where the convolution operation is same as of standard

CNN, but we have used k activation functions instead of

one activation function. The input feature maps for the

given layer are represented as FMi in Figure 1, which are

then convolved using convolutional filters shown in green

color. The output feature maps FMo generated by convolu-

tion operation are passed to each activation function, which

operates over each element of the given feature maps. This

results in the generation of k different sets of feature maps

corresponding to each activation function, as shown in Fig-

ure 1. The Final output Feature Maps (FFMo) are the re-

sult of the weighted average of these k feature maps as given

by the following equation:

FFMo = β1F1(FMo)+β2F2(FMo)+ ...+βkFk(FMo);

where F1, F2, ...Fk are the activation functions applied on

the FMo feature map. The final output feature maps

(FFMo) are the weighted average of outputs from these ac-

tivation function when applied to input feature maps (shown

in red color). The corresponding weights for averaging

are β1, β2, ..., βk where 1, 2, ..., k represents the k activa-

tion functions. We assume that each activation contributes

equally in the update process (improvement) of the weight

parameters by assigning equal weight to each parameter

(βi = 1/k).

We have presented an ablation study to shown empiri-

cally that even if we train the model completely by using

a mixture of activation functions, it will results in substan-

tial performance improvement as compare to the individual

activation function.

4. Standard Network Design (Phase-2)

In Phase-2, the network use only a single activation func-

tion, i.e., ReLU activation for each layer in the model, in-

stead of the mixture of activation functions. In the training

process of phase-1 design, our focus is to shift the model in

a stable state where all sets of model parameters are in a bet-

ter state than a randomly initialized state. The phase-1 net-

work design is trained for a few epochs such that the mix-

ture of activation functions will overcome the drawbacks of

each other by cooperation in the update process of weight

parameters. All the k activation functions will get different

gradients and averaging them give a regularization effect,

which updates all sets of parameters uniformly without un-

dermining others.

In Phase-2, We use only one activation function, so we

opt to use only ReLU as our activation function. ReLU is

a linear (identity) mapping for all positive values and zero

values for all negative values. ReLU activation shows a

sparse behavior as all negative inputs are mapped to zero.

After getting into a better state from phase-1, we often de-

sire to make feature maps sparse enough, which is easily

possible with ReLU as it possesses many deactivated neu-

rons, giving a regularized effect to the model. Sparsity

results in concise models that often have better predictive

power and fewer chances of overfitting/noise. In a sparse

network, all neurons cannot be activated simultaneously in

a model. Only those set of neurons get activated which are

responsible for a particular aspect of the given task, e.g.,
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there are a given set of neurons which gets activated for

a face like structure in a human detecting task while the

same set of neurons are inactive for other parts of the body.

That’s the reason standard ReLU seems to be less prone

to overfitting vs. leaky ReLU with modern architectures.

We have also presented an ablation study to empirically

show that ReLU in Phase-2 will results in substantially im-

proved performance as compare to other possible options.

Hence ReLU is competing with all other non-linear activa-

tion functions in Phase-2.

5. Training Method

The proposed training framework is divided into two

phases corresponding to the two network design phases. For

Phase-1 (Cooperative) training, we use 20% of epochs used

in standard (Phase-2) training with a mixture of non-linear

activation functions (having equal weight). We have pre-

sented an ablation on the number of epochs used in Phase-1

training to validate the choice mentioned above.

In the phase-1 training process, gradient calculation in

the back-propagation algorithm [15] is the aggregate of the

gradient calculated for each activation function. This gives

a regularized effect on the gradient and provides equal op-

portunity for all weight parameters to optimize. Phase-2

training is the same as the standard training of the model

with only one non-linear activation function (ReLU). Please

note that a mixture of activation functions is used in only

Phase-1 training, while Phase-2 has only ReLU at every

layer. Further details are provided in the experimental sec-

tion.

6. Experiments and Results

In this section, we have evaluated the performance of

the proposed approach on classification and detection task.

Our experimentation uses the state-of-art CNN architec-

tures such as ResNet [9], and VGG-16 [24] for various acti-

vation functions. All these models are trained over three

standard benchmark datasets: CIFAR10, CIFAR100 [12]

and ImageNet [13] dataset. We have also performed ex-

periments using SSD [17] on PASCAL VOC [5] for object

detection.

In these experiments, we have used four most promi-

nently used non-linear activation functions (ReLU, PReLU,

ELU, and SoftPlus). We have preferred PReLU to resolve

the issue of dying ReLU; however, someone may also pre-

fer Leaky ReLU. ELU has an exponential function for neg-

ative input, which is contrary to ReLU. This behavior of

ELU pushes the mean to the neighborhood of zero, similar

to the case of batch normalization [11]. This shift of mean

toward the vicinity of zero accelerate the training of net-

work (fast convergence). ELU also guarantees more robust-

ness towards the noise. These are the few reasons we have

selected ELU in the mixture of activation functions. The

behavior of ReLU and Softplus [36] is almost similar, ex-

cluding near the periphery of zero, where the softplus is dif-

ferentiable and smooth. Softplus has privilege over ReLU

due to differentiability in the entire domain, and it saturates

less.

The scope of activation functions depends on the prob-

lems. We have selected ReLU, PReLU, ELU, and SoftPlus,

which are the most widely used non-linear activation func-

tions in image classification and object detection problems.

In our experiments, baselines (using activation function

ReLU/PReLU/ELU/SoftPlus) have been reproduced using

a standard training procedure in PyTorch [23] framework.

We trained these models using 300 and 90 epochs for CI-

FAR and ImageNet dataset respectively.

6.1. CIFAR 10 and CIFAR 100

The CIFAR-10 and CIFAR-100 [12] are the datasets hav-

ing tiny natural images. CIFAR10 datasets have 10 dif-

ferent image classes, while CIFAR-100 datasets have 100

classes. There are 50,000 training images and 10,000 test

images, where all images are RGB images with a dimen-

sion of 32x32.

In the experiments with the CIFAR dataset, we perform

standard data augmentation methods of random cropping to

a size of 32 × 32 and random horizontal flipping. The op-

timization is performed using Stochastic Gradient Descent

(SGD) algorithm with momentum 0.9 and a minibatch size

of 64. In Phase-2 training, the initial learning rate is set to

0.1, which is decreased by a factor of 5 after every 50 epoch.

The models are trained from scratch for around 300 epochs.

For Phase-1 (Cooperative) training, we use only 20% of

epochs used in Phase-2 training with PReLU, ReLU, ELU,

and SoftPlus activation functions (having equal weight).

The learning rate is set to 0.1 and is decreased by a factor

of 5 after every 10 epoch in Phase-1 (Cooperative) training.

For evaluation, the validation images are used. The results

on the CIFAR-10/100 datasets for all the architectures have

been reproduced in the PyTorch framework.

The results are shown in Table 1, 2. We observe a con-

sistent improvement in accuracy for VGG-16 and ResNet-

56 over CIFAR. The model trained with our proposed two-

phase training procedure not only outperforms ReLU sig-

nificantly but also other non-linear activation functions such

as PReLU, ELU, and SoftPlus, as shown in Table 1, 2.

6.2. ImageNet

ImageNet dataset [13] contains 1000 classes, each cat-

egory roughly having 1000 images. The dataset contains

about 1.2 million training images, 50,000 validation images,

and 100,000 test images (with no labels). The training is

performed on training data, whereas all evaluations are per-

formed on the validation set.
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Model Activation Function Accuracy(%)

VGG-16 (Baseline) ReLU 93.6

VGG-16 (Baseline) PReLU 93.7

VGG-16 (Baseline) SoftPlus 90.5

VGG-16 (Baseline) ELU 92.3

VGG-16 (Ours) Mix (ReLU) 94.2

ResNet-56 (Baseline) ReLU 93.5

ResNet-56 (Baseline) PReLU 94.0

ResNet-56 (Baseline) SoftPlus 92.0

ResNet-56 (Baseline) ELU 92.0

ResNet-56 (Ours) Mix (ReLU) 94.4

Table 1. Classification accuracies for CIFAR 10. All baselines

have been reproduced using corresponding activation function in

PyTorch framework. Activation Function: Mix (ReLU) means

model is trained using a mixture of Activation Functions in Phase-

1 (Cooperative) training and then in Phase-2 model is trained using

ReLU Activation Function.

Model Activation Function Accuracy(%)

VGG-16 (Baseline) ReLU 72.0

VGG-16 (Baseline) PReLU 72.5

VGG-16 (Baseline) SoftPlus 64.2

VGG-16 (Baseline) ELU 66.9

VGG-16 (Ours) Mix (ReLU) 74.0

ResNet-56 (Baseline) ReLU 71.6

ResNet-56 (Baseline) PReLU 71.9

ResNet-56 (Baseline) SoftPlus 69.3

ResNet-56 (Baseline) ELU 69.5

ResNet-56 (Ours) Mix (ReLU) 73.1

Table 2. Classification accuracies for CIFAR 100. All baselines

have been reproduced using corresponding activation function in

PyTorch framework. Activation Function: Mix (ReLU) means

model is trained using a mixture of Activation Functions in Phase-

1 (Cooperative) training and then in Phase-2 model is trained using

ReLU Activation Function.

Model Activation Function Accuracy(%)

AlexNet (Baseline) ReLU 56.6

AlexNet (Baseline) PReLU 56.9

AlexNet (Baseline) SoftPlus 55.2

AlexNet (Baseline) ELU 56.6

AlexNet (Ours) Mix (ReLU) 57.2

ResNet-18 (Baseline) ReLU 69.8

ResNet-18 (Baseline) PReLU 69.1

ResNet-18 (Baseline) SoftPlus 68.8

ResNet-18 (Baseline) ELU 68.2

ResNet-18 (Ours) Mix (ReLU) 70.8

Table 3. Classification accuracies for ImageNet. The ac-

curacy is reported over validation set using 1-crop setting

(https://pytorch.org/docs/stable/torchvision/models.html).

For ImageNet experiments, we perform standard data

augmentation methods of random cropping to a size of

224×224 and random horizontal flipping. For optimization,

Stochastic Gradient Descent (SGD) is used with momentum

Class SSD (Baseline) AP SSD Mix (ReLU) AP

aero 80.40 82.53

bike 82.95 82.54

bird 74.62 77.02

boat 71.61 72.45

bottle 50.49 51.36

bus 86.04 85.57

car 86.55 86.28

cat 88.02 86.91

chair 60.88 63.23

cow 83.10 81.58

table 77.87 78.35

dog 85.55 84.06

horse 86.68 87.79

mbike 84.14 85.85

person 78.26 79.29

plant 50.44 52.82

sheep 74.28 78.13

sofa 80.03 80.72

train 85.88 87.28

tv 75.49 77.15

mAP 77.16 78.05

Table 4. AP for each class with Baseline SSD-300 (using standard

training schedule) and SSD-300 Mix (ReLU) using our proposed

training schedule on VOC2007 test dataset. Training data, 07+12

is the union of the VOC2007 and VOC2012 trainval dataset.

0.9 and a minibatch size of 256. For Phase-2 training, the

initial learning rate is set to 0.1, which is decreased by a fac-

tor of 10 after every 30 epoch. The models are trained for

around 90 epochs. The evaluation is done over validation

images are subjected to center cropping of size 224 × 224.

For Phase-1 (Cooperative) training, we use 20% of epochs

used in Phase-2 training with PReLU, ReLU, ELU, and

SoftPlus activation functions (having equal weight). The

learning rate is set to 0.1 and is decreased by a factor of 10
after every 5 epoch in Phase-1 (Cooperative) training.

The results are shown in Table 3. We have consistent

improvement in accuracy for AlexNet [13], ResNet-18 [9]

over ImageNet dataset. The model trained with our pro-

posed two-phase training procedure not only significantly

outperforms ReLU but also other non-linear activation func-

tion such as PReLU, ELU, and SoftPlus (Table 3).

6.3. PASCAL VOC

We have performed experiments on the SSD model over

PASCAL VOC [5] dataset to validate our proposed ap-

proach for the object detection task. In this experiment, we

follow the same experimental setting and training schedule,

as described in [17] for Phase-2 training. For Phase-1 (Co-

operative) training, we have used 20% iterations of Phase-2

training with PReLU, ReLU, ELU, and SoftPlus activation

functions (having equal weight). The SSD [17] detection

model is a feed-forward convolutional network that pro-

duces a collection of fixed-size bounding boxes and predicts
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Model Activation Function Accuracy(%)

ResNet-56 (Baseline) ReLU 93.5

ResNet-56 (Baseline) PReLU 94.0

ResNet-56 (Baseline) SoftPlus 92.0

ResNet-56 (Baseline) ELU 92.0

ResNet-56 (Baseline-TPT) ReLU 93.6

ResNet-56 (Baseline-TPT) PReLU 94.0

ResNet-56 (Baseline-TPT) SoftPlus 92.0

ResNet-56 (Baseline-TPT) ELU 92.1

ResNet-56 WNLA 40.0

ResNet-56 Mixture 94.3

ResNet-56 Mix (PReLU) 94.1

ResNet-56 Mix (SoftPlus) 93.1

ResNet-56 Mix (ELU) 93.2

ResNet-56 (Ours) Mix (ReLU) 94.4

Table 5. Classification accuracies for ResNet-56 on CIFAR 10.

Activation Function: Mixture means model is trained completely

using a mixture (ReLU, PReLU, ELU, and SoftPlus) of Activation

Functions. Activation Function: Mix (γ) means model is trained

using a mixture of Activation Functions in Phase-1 (Cooperative)

training and then in Phase-2 model is trained using γ Activation

Function. Baseline-TPT means baseline uses Two Phase Training.

#Epochs in Phase-1 Activation Function Accuracy(%)

10% Mix (ReLU) 94.03

20% Mix (ReLU) 94.40

30% Mix (ReLU) 94.40

40% Mix (ReLU) 94.42

Table 6. The table shows results for changing the number of

Epochs in Phase-1 training for ResNet-56 model on CIFAR 10.

classification scores to represent the presence of object class

instances in these boxes, followed by a non-maximum sup-

pression which produces the final detections.

As shown in Table 4, our proposed approach is not lim-

ited to classification but also works well on object detection

task. We have a significant improvement (approx. 1%) in

mAP as compare to baseline by using our training proce-

dure.

7. Ablation Studies

As shown in Table 5, if we train a model without any

non-linear activation function (WNLA), the performance of

the model degrades massively since ResNet-56 is a deep

CNN model which is very hard to optimize without any

non-linear activation function. There is a performance boost

in the case of Mix (SoftPlus) and Mix (ELU) from their re-

spective baselines, but the overall performance scores are

significantly lower than Mix (ReLU). The key reason for the

significant difference in the performance can be due to the

sparse behavior of (ReLU) activation function in Phase-2

training. This sparsity is often desirable in the deep network

due to better predictive power and less overfitting/noise.

Although Mixture and Mix (ReLU) have similar perfor-

mance, Mix (ReLU) should be preferred because of the fol-

lowing reasons:

• Mixture will occupy more feature maps memory as

compare to Mix (ReLU) at run time because separate

feature maps will be generated for every non-linear ac-

tivation function. Mix (ReLU) will not increase in fea-

ture maps memory at a run time (GPU Memory).

• Mixture will add some delay at the inference time as

compare to Mix (ReLU) due to extra calculations per-

formed by multiple activation functions.

Hence, Mix (ReLU) is the most suitable combination

while considering all the other possibilities. Our proposed

approach uses Two-Phase Training (TPT), where Phase-1

training uses 20% of Phase-2 epochs. Therefore, one may

think that performance improvement is due to more train-

ing epochs (20%). Hence we also train baselines with the

same Two-Phase Training schedule (Baseline-TPT), except

in Phase-1, only a single activation function is used. As

shown in Table 5, Baseline-TPT has a similar performance

as the baseline. From Table 5, we can conclude that per-

formance improvement is not due to more training epochs

(20%) in Two-Phase Training (TPT) but because of cooper-

ative initialization in Phase-1.

We also conduct an ablation to decide the number of

Epochs in Phase-1 training. For Phase-1 (Cooperative)

training, we use 10-40% of epochs used in standard (Phase-

2) training. As shown in Table 6, 20% of Phase-2 epochs in

Phase-1 (Cooperative) training is the most suitable choice

because it gives significant performance improvement with

only 20% increase in overall training time.

8. Visualizing Last Layer Features on MNIST

In the Figure 2, we are plotting t-SNE [19] plots for

LeNet-like network on MNIST [16] dataset to visualize the

features learned for various non linear activation functions.

The LeNet-like network contains two convolutional layers

and one fully-connected layer. The convolutional layers

have 5x5 kernel size while the first and second convolu-

tional layer consists of twenty and thirty number of filters

respectively.

The t-Distributed Stochastic Neighbor Embedding (t-

SNE) is a dimensionality reduction technique that is heavily

used to visualize the high-level features learned by CNN.

The t-SNE is a commonly used technique to visualize fea-

ture representations in high-dimensional data into a space of

two or three dimensions. From Figure 2, we can visualize

the two-dimensional embeddings of the last layer. The fea-

tures corresponding to Mix (Relu) are more separable than

remaining other embeddings. The features corresponding to

Mix (ReLU) are well separated and discriminated enough,

as shown using corresponding representative points in Fig-

ure 2.

1146



Figure 2. Two-dimensional t-SNE visualization of trained flatten layer features for LeNet-like network on MNIST (Best viewed in color).

Figure 3. ResNet-56 ReLU and ResNet-56 Mix (ReLU) training and test losses over CIFAR-100 dataset. ResNet-56 Mix (ReLU) exhibits

improved optimisation/convergence characteristics and produces significant gain in performance (Best viewed in color).

9. Analysis

This section focused on the analysis of performance gain

from two different perspectives. The first perspective focus

on investigating the convergence of Mix (ReLU) and ReLU

on the ResNet-56 architecture. The convergence speed of

Mix (ReLU) is much faster as compared to ReLU, which

can be inferred in Figure-3. The second perspective for in-

vestigation is based on over-fitting aspects of the models

where Mix (ReLU) is more robust compared to ReLU based

on the empirical results.

The investigation is performed on the CIFAR-100

dataset using the ResNet-56 model. We used standard data

augmentation techniques such as random horizontal flip-

ping and random cropping to size 32 × 32. The optimiza-

tion is performed using Stochastic Gradient Descent (SGD)

with momentum set to 0.9 and weight decay as 0.0001. The

minibatch size of 64 is selected to perform experiments.

The initial learning rate is taken as 0.1, which is then de-

creased by a factor of 5 after every 50 epoch. The models

are trained from scratch for around 300 epochs.

9.1. Effect of using Mix (ReLU) on convergence

We analyzed the convergence rate of Mix (ReLU) based

model, and we found that the convergence using Mix

(ReLU) is slightly better compared to ReLU, which can be

inferred from their respective curves in Figure 3. The two

graphs of cross-entropy losses vs. the number of epochs for

training and test set in Figure-3, shows that the dropping

rate of cross-entropy losses is quite higher as compared to

the loss corresponding to ReLU on the training set in the

experimental results shown in Figure-3.
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Figure 4. Training curves for ResNet-56 ReLU and ResNet-56 Mix (ReLU) models over CIFAR-100 dataset (Best viewed in color).

Method Activation Function Train Accuracy(%) Test Accuracy(%)

ResNet-56 Baseline (100% of training set) ReLU 99.4 71.6

ResNet-56 (100% of training set) Mix (ReLU) 99.6 73.1

ResNet-56 Baseline (25% of training set) ReLU 99.9 51.3

ResNet-56 (25% of training set) Mix (ReLU) 99.9 60.8
Table 7. The table shows the results for ResNet-56 ReLU and ResNet-56 Mix (ReLU) over CIFAR-100 dataset in different setups.

9.2. Effect of Mix (ReLU) on over fitting

Our method utilize multiple activation functions in the

initial few training epochs of the deep network. The gra-

dient from these multiple activation functions gets accumu-

lated and gave a regularization effect to the gradient flow

in the model corresponding to the complete range of input

data (negative and positive ). This aggregation of gradi-

ents also helps in the regularization of weight parameters

while updating, which in effect knock-down the chances of

over-fitting issues. In support of our hypothesis, we have

performed some experiments in two different scenarios. In

the first scenario, experiments are performed out over the

complete dataset (100 % of training data), while the second

scenario of experiments is performed on only 25 % of the

training data.

The first scenario of experiments is performed on the

CIFAR-100 dataset using ResNet-56 architecture. The first

experiment with only ReLU achieved an accuracy of 71.6%

as presented in Table-7 while the second experiment uses

Mix (ReLU) and achieve 73.1% accuracy. From Table-7,

we can infer that Mix (ReLU) is more robust to overfitting

as the difference between test and training accuracy is 26.5,

which is lesser than the difference between test and training

accuracy of ReLU (27.8). In these experiments, the differ-

ence between test and training accuracy is not that much

significant for ReLU and Mix (ReLU), hence in the sec-

ond scenario, we have chosen only 25% samples from the

training images of CIFAR-100 dataset to perform various

experiments.

The second scenario of experiments is performed to train

the ResNet-56 ReLU model using only 25% train samples,

and we achieve accuracy of 99.9% and 51.3% correspond-

ing to train and test data respectively. The ResNet-56 Mix

(ReLU), on the other hand, achieves 99.9% and 60.8% of

training and test accuracy respectively.

From Figure-4, We can conclude that the Mix (ReLU)

is less prone to overfitting issues, as the difference between

test and training accuracy is 39.1 while this difference is

quite higher than that of ReLU, i.e., 48.6.

10. Conclusion

We propose a Cooperative Initialization for training deep

networks to improve the performance. We have shown

experimentally that a mixture of the non-linear activation

function is beneficial for CNN in the initial phase of train-

ing, where we start from random initialization. Initially,

multiple activation functions regularize the gradient flow

corresponding to the positive and negative input of acti-

vation functions, thereby improving the update of weight

parameters, which is very crucial at the initial stage. Our

experimental results show that the proposed approach im-

proves the performances of state-of-the-art networks. Our

proposed approach also helps in reducing the overfitting

problem and does not increase the number of parameters,

inference (test) time in the final model while improving

the performance. Therefore, cooperative initialization is a

promising approach to improve the feature representation

and performance of deep networks.
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