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Abstract

Researchers have proposed various activation functions.
These activation functions help the deep network to learn
non-linear behavior with a significant effect on training dy-
namics and task performance. The performance of these
activations also depends on the initial state of the weight
parameters, i.e., different initial state leads to a difference
in the performance of a network. In this paper, we have
proposed a cooperative initialization for training the deep
network using ReLU activation function to improve the net-
work performance. Our approach uses multiple activation
functions in the initial few epochs for the update of all sets
of weight parameters while training the network. These ac-
tivation functions cooperate to overcome their drawbacks in
the update of weight parameters, which in effect learn bet-
ter “feature representation” and boost the network perfor-
mance later. Cooperative initialization based training also
helps in reducing the overfitting problem and does not in-
crease the number of parameters, inference (test) time in the
final model while improving the performance. Experiments
show that our approach outperforms various baselines and,
at the same time, performs well over various tasks such as
classification and detection. The Top-1 classification accu-
racy of the model trained using our approach improves by
2.8% for VGG-16 and 2.1% for ResNet-56 on CIFAR-100
dataset.

1. Introduction

Deep neural networks (DNN5s) are state-of-the-art mod-
els, responsible for transforming research in the area of
vision, language and speech [14, 7, 4]. Various works
[30, 31, 26, 29, 27, 28, 25, 20, 32] have been proposed for
efficient deep learning. These deep network at core per-
forms a linear transformation followed by a non-linear op-
eration using an activation function. The activation func-
tion is the one, which is responsible for nonlinear behaviour
and the learning capabilities of the network. These activa-
tions are non-linear continuous functions which may also
possess non-differentiability [22, 18, 8]. Researchers have

proposed many activation functions which can be classified
into saturated [2, 21, 10] and non-saturated activation func-
tions [2, 18, 35, 22].

The saturated activation belongs to a category, in which
the learning process gets slow down due to the very small
gradient near-saturated output. These activation functions
are experimentally proved to be less effective for training a
deep network. The key reason for the failure is the (van-
ishing/exploding) gradient problems, which mostly occurs
due to saturated output in an activation function. This prob-
lem is efficiently tackled by using non-saturated activation
function, like ReLLU [22, 18]. In particular, the derivative of
ReLU is one for the positive inputs; hence, the gradient can-
not vanish. In contrast, all the negative values are mapped
to zero, which restricts the flow of information in DNNs
for these negative values. ReLU gets saturated exactly at
zero, which makes ReLU fragile at the time of training, and
the neuron can die forever. For example, the flow of large
gradients through ReLU may update weight parameters in
a way that may deactivate neurons for all data points. This
problem is known as dying ReLU, which implies that the
gradients flow through the neuron will forever be zero from
that point. Due to this, the gradient-based optimization al-
gorithm will not be able to update the weights of that neuron
unit. Also, training the network on a high learning rate may
shoot the number of “dead” neurons in the network as much
as 40% of the network [18] (i.e., neurons that never activate
across the entire training dataset). So there is a need to set
the learning rate properly to reduce the issues.

To resolve these potential problems originated by the
hard zero mappings in the ReLU units, various general-
izations of ReLU such as Leaky ReLU [18], and PReLU
[8] have been proposed. Both Leaky ReLU and PReLU
are same as ReLLU except for the case of negative inputs in
which a small constant slope for Leaky ReLU and a learn-
able slope for PReLU are used. Similarly, Exponential Lin-
ear Units (ELU) [3] is also proposed, which resolves the
bias shift [11] from the succeeding layers. ELU [3] gives an
exponential value corresponding to negative inputs, which
force the mean output of the activation function to reach
towards zero. Although ELU is not backed by concrete the-
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ory, ELU shows competitive results. Besides all these, Soft-
plus [36] is approximately similar to ReLLU, except at zero,
where softplus is differentiable and smooth. Softplus is also
differentiable everywhere and saturates less, which gives an
edge over ReLU. In practice, there is no non-linear activa-
tion function that outperforms all the time over all models,
datasets, and problems.

In this paper, we propose an approach in which multiple
non-linear activation functions are exploited using a coop-
erative strategy to overcome their drawbacks. We have used
multiple activation functions in the initial epochs of train-
ing the deep network. The aggregation of gradient from all
the activation function gives a regularization effect for the
gradient flow corresponding to the whole range of inputs
(negative values also). This results in regularizing the up-
date of weight parameters, which is a very crucial step in
the initial stage. In the next stage, we train the network with
only one activation function (standard network) correspond-
ing to each layer of the network. The proposed approach has
experimented extensively on different architectures such as
ResNet, and VGG-16 models over CIFAR-10, CIFAR-100,
and ImageNet datasets. We also experimented with object
detection task using SSD-300 on the PASCAL VOC dataset.

Major contributions of this paper are as follows:

e We have shown experimentally that using multiple ac-
tivation functions in the initial few epochs of the train-
ing process benefits the update of the full set of weight
parameters, which results in substantial performance
improvement later.

e We have shown empirically that a mixture of non-
linear activation functions results in significant im-
provement in the performance as compared to the in-
dividual non-linear activation function.

e We have shown that Cooperative Initialization based
training also help in reducing overfitting problem.

e Our proposed approach does not increase the num-
ber of parameters and inference (test) time in the final
model while improving the performance.

2. Previous Work

The first activation function is a step function originally
used in the perceptron model [21]. Researchers in the
same direction have also proposed many other saturated ac-
tivation functions such as sigmoid, softmax, and tanh [2].
The ReLLU activation further replaces these activation func-
tions, owing to the outstanding performance on deep neu-
ral networks [22, 33, 13]. ReLLU had escalated the conver-
gence and resolved the vanish gradient problem, normally
occurred in saturated activation functions. These activa-
tion functions have accelerated the efforts of the research

community in solving various vision problems. Several
attempts have been made to develop a more efficient net-
work by developing better activation functions, which can
resolve the problems arising in the above activation func-
tions. Some variants of ReLU have been proposed such as
RReLU, PReLU, leaky ReLU, and others [35, 8, 18].

To resolve the issues of mapping, all negative input to
zero (dying ReLU) in the ReLU activation function, Leaky
ReLU [18] has been proposed. This mapping causes an in-
formation loss (dead neuron), which is resolved by defining
a linear function corresponding to negative input, having a
small predefined constant slope, to leak some information
[18]. However, Leaky ReLU does not give any notable re-
sults on performance experimentally. Further, a parametric
rectified linear unit (PReLU) has been proposed [8] which
uses a learnable slope parameter instead of a constant slope
as in Leaky ReLU [18] for negative inputs. PReLU gives
better performance than ReLU in many cases. On the sec-
ond thought, the slope parameter can be randomly sampled
from a uniform distribution as used in Randomized Leaky
Rectified Linear Unit (RReLU) [35] which reduces the risk
of overfitting in the training phase. ELU [3] is also same as
ReLU for positive input while it behaves similarly to sat-
urated exponential function for negative inputs. Further,
Parametric ELU (PELU) is a scaled version of ELU hav-
ing a learnable scaling parameter [34]. Most of the above
discussed ReLU variants are based on the experiments over
the negative inputs of ReLU.

There are few other works in which new activation func-
tions are proposed, such as Maxout (maximum over K affine
functions), Softplus, and Adaptive Piecewise Linear (APL)
[6, 36, 1]. The APL consist of many non-differentiable
points that scale linearly with the number of hinge func-
tions. This will increase the model complexity and affect
the parameter updates during back-propagation [14]. In the
same manner, Maxout take maximum over multiple fea-
ture maps. Softplus is the smooth approximation of ReLU,
which is differentiable everywhere.

In this work, we have focused on leveraging benefits
from the multiple non-linear activation functions simulta-
neously. To the best of our knowledge, this is the first work
that considers a mixture of non-linear activation functions
in the initial few epochs. We have also presented an abla-
tion study and feature visualization to support the proposed
approach.

3. Cooperative Network Design (Phase-1)

Nowadays, deep networks consist of huge depth due to
the presence of multiple convolutional layers. These con-
volutional layers are followed by an activation function,
which operates on the feature maps (output) of these layers.
The training process will update weight parameters using
back-propagation. This update solely depends on the be-
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Figure 1. Cooperative design for a particular layer in deep network during Phase-1 training time (Best viewed in color).

havior of the activation function, i.e., ReLU never updates
the weight parameter corresponding to negative inputs. Re-
stricting these weights from an update in the initial phase
of training may hurt the performance of the deep network
later.

To overcome these issues in the network, researchers
have proposed various activation functions, which have
their advantages and disadvantages. In this work, we have
proposed a cooperative design having multiple activation
functions, helping each other in the initial update of param-
eters in such a way that all set of weight parameters get an
opportunity to contribute to the performance. These activa-
tion functions cooperate to overcome their drawbacks and
improve the update process for all sets of weight parame-
ters in the initial epochs of training.

In Figure 1, we have shown a block diagram of a layer,
where the convolution operation is same as of standard
CNN, but we have used k activation functions instead of
one activation function. The input feature maps for the
given layer are represented as F'M; in Figure 1, which are
then convolved using convolutional filters shown in green
color. The output feature maps F'M,, generated by convolu-
tion operation are passed to each activation function, which
operates over each element of the given feature maps. This
results in the generation of k different sets of feature maps
corresponding to each activation function, as shown in Fig-
ure 1. The Final output Feature Maps (F'F'M,) are the re-
sult of the weighted average of these k feature maps as given
by the following equation:

FFM, = B1Fi(FMy)+ BoFo(FMy)+...+ B Fi (FM,);

where F, Fy, ... F}, are the activation functions applied on
the F'M, feature map. The final output feature maps
(F'F M,) are the weighted average of outputs from these ac-
tivation function when applied to input feature maps (shown
in red color). The corresponding weights for averaging
are (1, fo, ..., B where 1,2, ...,k represents the k activa-

tion functions. We assume that each activation contributes
equally in the update process (improvement) of the weight
parameters by assigning equal weight to each parameter
(Bi = 1/k).

We have presented an ablation study to shown empiri-
cally that even if we train the model completely by using
a mixture of activation functions, it will results in substan-
tial performance improvement as compare to the individual
activation function.

4. Standard Network Design (Phase-2)

In Phase-2, the network use only a single activation func-
tion, i.e., ReLU activation for each layer in the model, in-
stead of the mixture of activation functions. In the training
process of phase-1 design, our focus is to shift the model in
a stable state where all sets of model parameters are in a bet-
ter state than a randomly initialized state. The phase-1 net-
work design is trained for a few epochs such that the mix-
ture of activation functions will overcome the drawbacks of
each other by cooperation in the update process of weight
parameters. All the k activation functions will get different
gradients and averaging them give a regularization effect,
which updates all sets of parameters uniformly without un-
dermining others.

In Phase-2, We use only one activation function, so we
opt to use only ReL.U as our activation function. ReL.U is
a linear (identity) mapping for all positive values and zero
values for all negative values. ReLU activation shows a
sparse behavior as all negative inputs are mapped to zero.
After getting into a better state from phase-1, we often de-
sire to make feature maps sparse enough, which is easily
possible with ReLLU as it possesses many deactivated neu-
rons, giving a regularized effect to the model. Sparsity
results in concise models that often have better predictive
power and fewer chances of overfitting/noise. In a sparse
network, all neurons cannot be activated simultaneously in
a model. Only those set of neurons get activated which are
responsible for a particular aspect of the given task, e.g.,
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there are a given set of neurons which gets activated for
a face like structure in a human detecting task while the
same set of neurons are inactive for other parts of the body.
That’s the reason standard ReLU seems to be less prone
to overfitting vs. leaky ReLU with modern architectures.
We have also presented an ablation study to empirically
show that ReLU in Phase-2 will results in substantially im-
proved performance as compare to other possible options.
Hence ReL.U is competing with all other non-linear activa-
tion functions in Phase-2.

5. Training Method

The proposed training framework is divided into two
phases corresponding to the two network design phases. For
Phase-1 (Cooperative) training, we use 20% of epochs used
in standard (Phase-2) training with a mixture of non-linear
activation functions (having equal weight). We have pre-
sented an ablation on the number of epochs used in Phase-1
training to validate the choice mentioned above.

In the phase-1 training process, gradient calculation in
the back-propagation algorithm [15] is the aggregate of the
gradient calculated for each activation function. This gives
a regularized effect on the gradient and provides equal op-
portunity for all weight parameters to optimize. Phase-2
training is the same as the standard training of the model
with only one non-linear activation function (ReL.U). Please
note that a mixture of activation functions is used in only
Phase-1 training, while Phase-2 has only ReLU at every
layer. Further details are provided in the experimental sec-
tion.

6. Experiments and Results

In this section, we have evaluated the performance of
the proposed approach on classification and detection task.
Our experimentation uses the state-of-art CNN architec-
tures such as ResNet [9], and VGG-16 [24] for various acti-
vation functions. All these models are trained over three
standard benchmark datasets: CIFAR10, CIFAR100 [12]
and ImageNet [13] dataset. We have also performed ex-
periments using SSD [17] on PASCAL VOC [5] for object
detection.

In these experiments, we have used four most promi-
nently used non-linear activation functions (ReLU, PReLU,
ELU, and SoftPlus). We have preferred PReLU to resolve
the issue of dying ReL.U; however, someone may also pre-
fer Leaky ReLU. ELU has an exponential function for neg-
ative input, which is contrary to ReLU. This behavior of
ELU pushes the mean to the neighborhood of zero, similar
to the case of batch normalization [11]. This shift of mean
toward the vicinity of zero accelerate the training of net-
work (fast convergence). ELU also guarantees more robust-
ness towards the noise. These are the few reasons we have

selected ELU in the mixture of activation functions. The
behavior of ReLU and Softplus [36] is almost similar, ex-
cluding near the periphery of zero, where the softplus is dif-
ferentiable and smooth. Softplus has privilege over ReLU
due to differentiability in the entire domain, and it saturates
less.

The scope of activation functions depends on the prob-
lems. We have selected ReLLU, PReLLU, ELU, and SoftPlus,
which are the most widely used non-linear activation func-
tions in image classification and object detection problems.

In our experiments, baselines (using activation function
ReLU/PReLU/ELU/SoftPlus) have been reproduced using
a standard training procedure in PyTorch [23] framework.
We trained these models using 300 and 90 epochs for CI-
FAR and ImageNet dataset respectively.

6.1. CIFAR 10 and CIFAR 100

The CIFAR-10 and CIFAR-100 [12] are the datasets hav-
ing tiny natural images. CIFAR10 datasets have 10 dif-
ferent image classes, while CIFAR-100 datasets have 100
classes. There are 50,000 training images and 10,000 test
images, where all images are RGB images with a dimen-
sion of 32x32.

In the experiments with the CIFAR dataset, we perform
standard data augmentation methods of random cropping to
a size of 32 x 32 and random horizontal flipping. The op-
timization is performed using Stochastic Gradient Descent
(SGD) algorithm with momentum 0.9 and a minibatch size
of 64. In Phase-2 training, the initial learning rate is set to
0.1, which is decreased by a factor of 5 after every 50 epoch.
The models are trained from scratch for around 300 epochs.
For Phase-1 (Cooperative) training, we use only 20% of
epochs used in Phase-2 training with PReL.U, ReL.U, ELU,
and SoftPlus activation functions (having equal weight).
The learning rate is set to 0.1 and is decreased by a factor
of 5 after every 10 epoch in Phase-1 (Cooperative) training.
For evaluation, the validation images are used. The results
on the CIFAR-10/100 datasets for all the architectures have
been reproduced in the PyTorch framework.

The results are shown in Table 1, 2. We observe a con-
sistent improvement in accuracy for VGG-16 and ResNet-
56 over CIFAR. The model trained with our proposed two-
phase training procedure not only outperforms ReLU sig-
nificantly but also other non-linear activation functions such
as PReLLU, ELU, and SoftPlus, as shown in Table 1, 2.

6.2. ImageNet

ImageNet dataset [13] contains 1000 classes, each cat-
egory roughly having 1000 images. The dataset contains
about 1.2 million training images, 50,000 validation images,
and 100,000 test images (with no labels). The training is
performed on training data, whereas all evaluations are per-
formed on the validation set.
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Model Activation Function ~ Accuracy(%)
VGG-16 (Baseline) ReLU 93.6
VGG-16 (Baseline) PReLU 93.7
VGG-16 (Baseline) SoftPlus 90.5
VGG-16 (Baseline) ELU 92.3
VGG-16 (Ours) Mix (ReLU) 94.2
ResNet-56 (Baseline) RelLLU 93.5
ResNet-56 (Baseline) PReLU 94.0
ResNet-56 (Baseline) SoftPlus 92.0
ResNet-56 (Baseline) ELU 92.0
ResNet-56 (Ours) Mix (ReLU) 94.4

Table 1. Classification accuracies for CIFAR 10. All baselines
have been reproduced using corresponding activation function in
PyTorch framework. Activation Function: Mix (ReLU) means
model is trained using a mixture of Activation Functions in Phase-
1 (Cooperative) training and then in Phase-2 model is trained using
ReLU Activation Function.

Model Activation Function ~ Accuracy(%)
VGG-16 (Baseline) ReLU 72.0
VGG-16 (Baseline) PReLLU 72.5
VGG-16 (Baseline) SoftPlus 64.2
VGG-16 (Baseline) ELU 66.9
VGG-16 (Ours) Mix (ReLU) 74.0
ResNet-56 (Baseline) ReLLU 71.6
ResNet-56 (Baseline) PRelLU 71.9
ResNet-56 (Baseline) SoftPlus 69.3
ResNet-56 (Baseline) ELU 69.5
ResNet-56 (Ours) Mix (ReLU) 73.1

Table 2. Classification accuracies for CIFAR 100. All baselines
have been reproduced using corresponding activation function in
PyTorch framework. Activation Function: Mix (ReLU) means
model is trained using a mixture of Activation Functions in Phase-
1 (Cooperative) training and then in Phase-2 model is trained using
ReLU Activation Function.

Model Activation Function  Accuracy(%)
AlexNet (Baseline) ReLU 56.6
AlexNet (Baseline) PRelLLU 56.9
AlexNet (Baseline) SoftPlus 55.2
AlexNet (Baseline) ELU 56.6
AlexNet (Ours) Mix (ReLU) 57.2
ResNet-18 (Baseline) ReLU 69.8
ResNet-18 (Baseline) PReLLU 69.1
ResNet-18 (Baseline) SoftPlus 68.8
ResNet-18 (Baseline) ELU 68.2
ResNet-18 (Ours) Mix (ReLU) 70.8

Table 3. Classification accuracies for ImageNet.  The ac-
curacy is reported over validation set using Il-crop setting
(https://pytorch.org/docs/stable/torchvision/models.html).

For ImageNet experiments, we perform standard data
augmentation methods of random cropping to a size of
224 %224 and random horizontal flipping. For optimization,
Stochastic Gradient Descent (SGD) is used with momentum

Class SSD (Baseline) AP SSD Mix (ReLU) AP

aero 80.40 82.53
bike 82.95 82.54
bird 74.62 77.02
boat 71.61 72.45
bottle 50.49 51.36
bus 86.04 85.57
car 86.55 86.28
cat 88.02 86.91
chair 60.88 63.23
cow 83.10 81.58
table 77.87 78.35
dog 85.55 84.06
horse 86.68 87.79
mbike 84.14 85.85
person 78.26 79.29
plant 50.44 52.82
sheep 74.28 78.13
sofa 80.03 80.72
train 85.88 87.28
tv 75.49 77.15
mAP 77.16 78.05

Table 4. AP for each class with Baseline SSD-300 (using standard
training schedule) and SSD-300 Mix (ReLU) using our proposed
training schedule on VOC2007 test dataset. Training data, 07412
is the union of the VOC2007 and VOC2012 trainval dataset.

0.9 and a minibatch size of 256. For Phase-2 training, the
initial learning rate is set to 0.1, which is decreased by a fac-
tor of 10 after every 30 epoch. The models are trained for
around 90 epochs. The evaluation is done over validation
images are subjected to center cropping of size 224 x 224.
For Phase-1 (Cooperative) training, we use 20% of epochs
used in Phase-2 training with PReL.U, ReLU, ELU, and
SoftPlus activation functions (having equal weight). The
learning rate is set to 0.1 and is decreased by a factor of 10
after every 5 epoch in Phase-1 (Cooperative) training.

The results are shown in Table 3. We have consistent
improvement in accuracy for AlexNet [13], ResNet-18 [9]
over ImageNet dataset. The model trained with our pro-
posed two-phase training procedure not only significantly
outperforms ReLLU but also other non-linear activation func-
tion such as PReLLU, ELU, and SoftPlus (Table 3).

6.3. PASCAL VOC

We have performed experiments on the SSD model over
PASCAL VOC [5] dataset to validate our proposed ap-
proach for the object detection task. In this experiment, we
follow the same experimental setting and training schedule,
as described in [17] for Phase-2 training. For Phase-1 (Co-
operative) training, we have used 20% iterations of Phase-2
training with PReLLU, ReLLU, ELU, and SoftPlus activation
functions (having equal weight). The SSD [17] detection
model is a feed-forward convolutional network that pro-
duces a collection of fixed-size bounding boxes and predicts
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Model Activation Function ~ Accuracy(%)
ResNet-56 (Baseline) ReLU 93.5
ResNet-56 (Baseline) PReLLU 94.0
ResNet-56 (Baseline) SoftPlus 92.0
ResNet-56 (Baseline) ELU 92.0
ResNet-56 (Baseline-TPT) ReLU 93.6
ResNet-56 (Baseline-TPT) PReLLU 94.0
ResNet-56 (Baseline-TPT) SoftPlus 92.0
ResNet-56 (Baseline-TPT) ELU 92.1
ResNet-56 WNLA 40.0
ResNet-56 Mixture 94.3
ResNet-56 Mix (PReLU) 94.1
ResNet-56 Mix (SoftPlus) 93.1
ResNet-56 Mix (ELU) 93.2
ResNet-56 (Ours) Mix (ReLU) 94.4

Table 5. Classification accuracies for ResNet-56 on CIFAR 10.
Activation Function: Mixture means model is trained completely
using a mixture (ReLU, PReL U, ELU, and SoftPlus) of Activation
Functions. Activation Function: Mix (v) means model is trained
using a mixture of Activation Functions in Phase-1 (Cooperative)
training and then in Phase-2 model is trained using ~y Activation
Function. Baseline-TPT means baseline uses Two Phase Training.

#Epochs in Phase-1  Activation Function ~ Accuracy(%)

10% Mix (ReLU) 94.03
20% Mix (ReLU) 94.40
30% Mix (ReLU) 94.40
40% Mix (ReLU) 94.42

Table 6. The table shows results for changing the number of
Epochs in Phase-1 training for ResNet-56 model on CIFAR 10.

classification scores to represent the presence of object class
instances in these boxes, followed by a non-maximum sup-
pression which produces the final detections.

As shown in Table 4, our proposed approach is not lim-
ited to classification but also works well on object detection
task. We have a significant improvement (approx. 1%) in
mAP as compare to baseline by using our training proce-
dure.

7. Ablation Studies

As shown in Table 5, if we train a model without any
non-linear activation function (WNLA), the performance of
the model degrades massively since ResNet-56 is a deep
CNN model which is very hard to optimize without any
non-linear activation function. There is a performance boost
in the case of Mix (SoftPlus) and Mix (ELU) from their re-
spective baselines, but the overall performance scores are
significantly lower than Mix (ReLU). The key reason for the
significant difference in the performance can be due to the
sparse behavior of (ReLU) activation function in Phase-2
training. This sparsity is often desirable in the deep network
due to better predictive power and less overfitting/noise.

Although Mixture and Mix (ReLU) have similar perfor-
mance, Mix (ReLU) should be preferred because of the fol-

lowing reasons:

e Mixture will occupy more feature maps memory as
compare to Mix (ReLU) at run time because separate
feature maps will be generated for every non-linear ac-
tivation function. Mix (ReLU) will not increase in fea-
ture maps memory at a run time (GPU Memory).

e Mixture will add some delay at the inference time as
compare to Mix (ReLU) due to extra calculations per-
formed by multiple activation functions.

Hence, Mix (ReLU) is the most suitable combination
while considering all the other possibilities. Our proposed
approach uses Two-Phase Training (TPT), where Phase-1
training uses 20% of Phase-2 epochs. Therefore, one may
think that performance improvement is due to more train-
ing epochs (20%). Hence we also train baselines with the
same Two-Phase Training schedule (Baseline-TPT), except
in Phase-1, only a single activation function is used. As
shown in Table 5, Baseline-TPT has a similar performance
as the baseline. From Table 5, we can conclude that per-
formance improvement is not due to more training epochs
(20%) in Two-Phase Training (TPT) but because of cooper-
ative initialization in Phase-1.

We also conduct an ablation to decide the number of
Epochs in Phase-1 training. For Phase-1 (Cooperative)
training, we use 10-40% of epochs used in standard (Phase-
2) training. As shown in Table 6, 20% of Phase-2 epochs in
Phase-1 (Cooperative) training is the most suitable choice
because it gives significant performance improvement with
only 20% increase in overall training time.

8. Visualizing Last Layer Features on MNIST

In the Figure 2, we are plotting t-SNE [19] plots for
LeNet-like network on MNIST [16] dataset to visualize the
features learned for various non linear activation functions.
The LeNet-like network contains two convolutional layers
and one fully-connected layer. The convolutional layers
have 5x5 kernel size while the first and second convolu-
tional layer consists of twenty and thirty number of filters
respectively.

The t-Distributed Stochastic Neighbor Embedding (t-
SNE) is a dimensionality reduction technique that is heavily
used to visualize the high-level features learned by CNN.
The t-SNE is a commonly used technique to visualize fea-
ture representations in high-dimensional data into a space of
two or three dimensions. From Figure 2, we can visualize
the two-dimensional embeddings of the last layer. The fea-
tures corresponding to Mix (Relu) are more separable than
remaining other embeddings. The features corresponding to
Mix (ReLU) are well separated and discriminated enough,
as shown using corresponding representative points in Fig-
ure 2.
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Visualizing Last Layer (ReLU) Visualizing Last Layer (PReLU) Visualizing Last Layer (SoftPlus)
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Figure 2. Two-dimensional t-SNE visualization of trained flatten layer features for LeNet-like network on MNIST (Best viewed in color).

Cross-entropy Loss on training set (CIFAR-100)

Cross-entropy Loss on test set (CIFAR-100)
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Figure 3. ResNet-56 ReLU and ResNet-56 Mix (ReLU) training and test losses over CIFAR-100 dataset. ResNet-56 Mix (ReL.U) exhibits
improved optimisation/convergence characteristics and produces significant gain in performance (Best viewed in color).

9. Analysis

This section focused on the analysis of performance gain
from two different perspectives. The first perspective focus
on investigating the convergence of Mix (ReLU) and ReLU
on the ResNet-56 architecture. The convergence speed of
Mix (ReLU) is much faster as compared to ReLU, which
can be inferred in Figure-3. The second perspective for in-
vestigation is based on over-fitting aspects of the models
where Mix (ReLU) is more robust compared to ReLU based
on the empirical results.

The investigation is performed on the CIFAR-100
dataset using the ResNet-56 model. We used standard data
augmentation techniques such as random horizontal flip-
ping and random cropping to size 32 x 32. The optimiza-
tion is performed using Stochastic Gradient Descent (SGD)
with momentum set to 0.9 and weight decay as 0.0001. The

minibatch size of 64 is selected to perform experiments.
The initial learning rate is taken as 0.1, which is then de-
creased by a factor of 5 after every 50 epoch. The models
are trained from scratch for around 300 epochs.

9.1. Effect of using Mix (ReL.U) on convergence

We analyzed the convergence rate of Mix (ReLU) based
model, and we found that the convergence using Mix
(ReLU) is slightly better compared to ReLLU, which can be
inferred from their respective curves in Figure 3. The two
graphs of cross-entropy losses vs. the number of epochs for
training and test set in Figure-3, shows that the dropping
rate of cross-entropy losses is quite higher as compared to
the loss corresponding to ReLLU on the training set in the
experimental results shown in Figure-3.
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Figure 4. Training curves for ResNet-56 ReLU and ResNet-56 Mix (ReLU) models over CIFAR-100 dataset (Best viewed in color).

| Method

| Activation Function | Train Accuracy(%) | Test Accuracy(%) |

ResNet-56 Baseline (100% of training set) RelLLU 99.4 71.6
ResNet-56 (100% of training set) Mix (ReLU) 99.6 73.1
ResNet-56 Baseline (25% of training set) ReLU 99.9 51.3
ResNet-56 (25% of training set) Mix (ReLU) 99.9 60.8

Table 7. The table shows the results for ResNet-56 ReLU and ResNet-56 Mix (ReLU) over CIFAR-100 dataset in different setups.

9.2. Effect of Mix (ReLU) on over fitting

Our method utilize multiple activation functions in the
initial few training epochs of the deep network. The gra-
dient from these multiple activation functions gets accumu-
lated and gave a regularization effect to the gradient flow
in the model corresponding to the complete range of input
data (negative and positive ). This aggregation of gradi-
ents also helps in the regularization of weight parameters
while updating, which in effect knock-down the chances of
over-fitting issues. In support of our hypothesis, we have
performed some experiments in two different scenarios. In
the first scenario, experiments are performed out over the
complete dataset (100 % of training data), while the second
scenario of experiments is performed on only 25 % of the
training data.

The first scenario of experiments is performed on the
CIFAR-100 dataset using ResNet-56 architecture. The first
experiment with only ReLU achieved an accuracy of 71.6%
as presented in Table-7 while the second experiment uses
Mix (ReLU) and achieve 73.1% accuracy. From Table-7,
we can infer that Mix (ReLU) is more robust to overfitting
as the difference between test and training accuracy is 26.5,
which is lesser than the difference between test and training
accuracy of ReLU (27.8). In these experiments, the differ-
ence between test and training accuracy is not that much
significant for ReLU and Mix (ReLU), hence in the sec-
ond scenario, we have chosen only 25% samples from the
training images of CIFAR-100 dataset to perform various
experiments.

The second scenario of experiments is performed to train

the ResNet-56 ReLU model using only 25% train samples,
and we achieve accuracy of 99.9% and 51.3% correspond-
ing to train and test data respectively. The ResNet-56 Mix
(ReLLU), on the other hand, achieves 99.9% and 60.8% of
training and test accuracy respectively.

From Figure-4, We can conclude that the Mix (ReLU)
is less prone to overfitting issues, as the difference between
test and training accuracy is 39.1 while this difference is
quite higher than that of ReLU, i.e., 48.6.

10. Conclusion

We propose a Cooperative Initialization for training deep
networks to improve the performance. We have shown
experimentally that a mixture of the non-linear activation
function is beneficial for CNN in the initial phase of train-
ing, where we start from random initialization. Initially,
multiple activation functions regularize the gradient flow
corresponding to the positive and negative input of acti-
vation functions, thereby improving the update of weight
parameters, which is very crucial at the initial stage. Our
experimental results show that the proposed approach im-
proves the performances of state-of-the-art networks. Our
proposed approach also helps in reducing the overfitting
problem and does not increase the number of parameters,
inference (test) time in the final model while improving
the performance. Therefore, cooperative initialization is a
promising approach to improve the feature representation
and performance of deep networks.
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