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Abstract

We propose an online visual-object tracking method that

is robust even in an adversarial environment, where vari-

ous disturbances may occur on the target appearance, etc.

The proposed method is based on a delayed-Hedge algo-

rithm for aggregating multiple arbitrary online trackers

with adaptive weights. The robustness in the tracking per-

formance is guaranteed theoretically in term of “regret”

by the property of the delayed-Hedge algorithm. Roughly

speaking, the proposed method can achieve a similar track-

ing performance as the best one among all the trackers to be

aggregated in an adversarial environment. The experimen-

tal study on various tracking tasks shows that the proposed

method could achieve state-of-the-art performance by ag-

gregating various online trackers.

1. Introduction

Visual-object tracking is still an active research

topic [22] and is classified into two types: offline tracking

and online tracking. Offline tracking provides the location

of the target object at individual frames after obtaining all

the frames. Offline tracking usually relies on a global opti-

mization over all frames and therefore the location at frame

t is determined not only by the past frames but also by the

future frames. Accordingly, it is robust to large variations in

the target appearance due to variations such as illumination

changes, geometric deformation, and partial or complete

occlusion; however, offline tracking cannot realize real-time

tracking in principle.

Online tracking has the opposite properties. It can re-

alize real-time tracking; however, it is difficult to realize

an accurate and stable online tracker. Fig. 1 shows a rank-

ing histogram based on AUC of seven state-of-the-art on-

line trackers for 50 different image sequences. This his-

togram proves experimentally that there is no almighty on-

line tracker, which never becomes lower-ranked.

One remedy to improve the robustness of online track-

ing is to use multiple online trackers. By aggregating them

appropriately, it should be possible to realize a more robust
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Figure 1. No “almighty” tracker — the raking histogram based

on AUC of state-of-the-art online trackers for all 50 sequences of

OTB2013 [26]. A smaller rank means better performance.

online tracker. As an example, assume that there are two

online trackers; one is robust to illumination changes and

the other is robust to geometric deformations of the target.

If we can select one of them by predicting appearance vari-

ation, we can expect a more robust tracking result. We can

also develop hard-switching or soft-switching algorithms;

the former selects one tracker at each frame and the lat-

ter merges trackers with weights that are updated at every

frame or after a certain number of frames.

However, in general, it is still difficult to realize a ro-

bust online tracker using the above simple aggregation algo-

rithms. In the practical situation, we cannot know which on-

line tracker will show good performance due to the essential

difficulty of predicting the future environment. The weak-

ness will be more enhanced when we consider an adver-

sarial environment [21]. Roughly speaking, the adversarial

environment is defined as the worst situation for most on-

line trackers as well as the simply aggregated tracker. This

adversarial environment seems very rare or even unrealis-

tic; however, it is still important to theoretically understand

the fact that a simple aggregation algorithm may not be able

to avoid serious errors. Moreover, if we want to develop a

mightier tracker that works in arbitrary situations (i.e., arbi-

trary videos), it is worthy to have some theoretical guarantee

by understanding the worst-case performance of the tracker.

In this paper, we propose an aggregation-based online

tracking method, called delayed-Hedge online tracking.

The performance of the proposed method is theoretically

guaranteed even in adversarial environments and based on

a weighted aggregation of N arbitrary online trackers. Its
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Figure 2. The overall process of the proposed delayed-Hedge

online tracking method. (a) N arbitrary online trackers (i.e., ex-

perts) estimate the location of the target f t

1, . . . , f
t

N at frame t.

(b) Our online tracking result using adaptive expert aggregation

with weights wt

1, . . . , w
t

N . (c) If the current frame t is an an-

chor frame, the true or a near-true target trajectory yu+1, . . . , yt

is given as the feedback from the “environment” (see Sec. 2 for its

definition), where u is the last anchor frame. (d) The loss ℓ that

evaluates the performance of each expert. (e) The weight of each

expert is updated according to the loss. (f) The best expert over all

frames and the regret of our online tracking result are determined

in hindsight.

aggregation scheme relies on the delayed-Hedge algorithm,

which was originally developed for the problem called

adaptive expert aggregation1(AEA) [23]. In our case, each

expert is an online tracker that estimates the location of the

target at frame t based on its strategy, as shown in Fig. 2(a).

At each frame, a weighted aggregation of the N online

trackers is performed to obtain the final tracking result, as

shown in Fig. 2(b).

The delayed-Hedge algorithm updates the weight of each

expert adaptively, if the current frame t is an anchor frame.

We assume that, at an anchor frame, the true or a near-true

target trajectory from the last anchor frame is given as the

feedback (from the environment), as shown in Fig. 2(c). Us-

ing the feedback, the loss of each expert is calculated to

evaluate the performance of the expert between the current

and the last anchor frames, as shown in Fig. 2(d). Then, the

loss is fed to the experts to update their weight, as shown

in Fig. 2(e). Note that the term “delayed” in the delayed-

Hedge algorithm refers to the fact that the weight updating

is kept waiting (i.e., delayed) until we have an anchor frame.

As noted above, the proposed method has a very impor-

1In the field of theoretical machine learning, adaptive expert aggrega-

tion is called online prediction with expert advice (e.g., [23]). In this paper,

we do not use this term because the term “online prediction” reminds us

of real-time forecasting techniques. This technique has also been called

online learning (e.g., [21]), but we also do not use this term because it can

be confused with various learning techniques with iterative updating. Note

that AEA is an active topic in the field of theoretical machine learning.

tant property that is its performance is theoretically guar-

anteed even in an adversarial environment with arbitrary

online trackers by the adaptive expert aggregation theory.

Roughly speaking, the worst-case performance of the pro-

posed method is bounded in terms of regret. The regret is

the difference between the result given by the proposed ag-

gregation method and the best online tracker (i.e., the best

expert) of the N trackers, as shown in Fig. 2(f). In other

words, even the worst-case performance of the proposed

method is still not far away from the best expert and there-

fore we can expect better performance by employing state-

of-the-art online trackers as experts.

It may be surprising that the performance of the proposed

method is still guaranteed in terms of regret, even though

the best tracker and the regret are determined only after we

get all T image frames. This fact proves that the proposed

method makes an optimal decision at each frame even when

the environment is totally unpredictable. Different from

typical online tracking methods that often make various as-

sumptions about their target and environment to keep their

performance reasonable, the proposed method optimizes its

result without any assumption and still guarantees the accu-

racy of the result, thanks to the theory behind AEA.

Our main contributions are summarized as follows.

• We propose a new online tracking method based on the

delayed-Hedge algorithm. To the authors’ best knowl-

edge, this is the first trial to introduce this algorithm,

which was developed in the field of theoretical ma-

chine learning, to a computer-vision problem.

• The proposed algorithm can aggregate any online

trackers and therefore its performance will be im-

proved continuously by incorporating future state-of-

the-art trackers.

• Although it is not guaranteed that the proposed method

always outperforms online trackers to be aggregated,

it is theoretically guaranteed that its performance is al-

ways bounded by the regret term arbitrary image se-

quences. This theoretical bound is very meaningful for

the practical purpose. In fact, our experiments on vari-

ous image sequences show that the proposed method

achieves near-best performance more frequently and

stably than other trackers.

In this paper, we focus on the scenario of tracking a single

target to evaluate the performance of the proposed method

with a simple task; however, it is not difficult to extend our

framework to deal with multiple-object tracking scenarios.

2. Related work

2.1. Adaptive expert aggregation (AEA)

Theoretical background In the theoretical machine

learning research, the AEA problem is described as a re-
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peated game between an algorithm and an adversarial envi-

ronment as follows. At each round t = 1, . . . , T , (i) N ex-

perts make predictions f t
1, . . . , f

t
N , (ii) the algorithm makes

its prediction pt (based on the experts’ predictions), (iii) the

environment returns a feedback yt, and (iv) the algorithm

incurs a loss ℓ(pt, yt) ∈ [0, 1] . In our tracking application,

f t
i and pt represent the location of the target object at frame

t, and yt represents the true (or a near-true) location.

The goal of the algorithm is to minimize the “regret,”

which is defined as the performance difference between the

algorithm and the best expert, that is:

RT = E

[

∑T

t=1
ℓ(pt, yt)

]

−mini=1,...,N

∑T

t=1
ℓ(f t

i , y
t).

(1)

Here, the best expert is i∗ that gives the minimum for the

second term on the right-side in Eq. 1. If the performance

of the algorithm is closer to the best expert, the algorithm

achieves a smaller regret after T rounds.

Hedge algorithm and its applications Hedge [6] algo-

rithm is designed for the AEA problem and achieves a

small regret bounded by O(
√
M∗ logN), where M∗ is

the cumulative loss of the best expert after T rounds (i.e.

M∗ = mini=1,...,N

∑T

t=1
ℓ(f t

i , y
t). This strong theoreti-

cal result holds in adversarial environments; that is, it is not

necessary to make any assumption about the experts. One

well-known real-world application of the Hedge is an adap-

tive disk spin-down problem [10]. Its goal is to minimize

the energy cost of disk spin-down by aggregating experts

that suggest different spin-down timings.

Delayed-Hedge algorithm There is another AEA prob-

lem setting where the environment provides feedback with

delay [13, 20] (we define the details of the delay in Sec. 4).

There are several algorithms for various delayed settings

(see, e.g., [20]), and we refer to the Hedge algorithm for

our delayed setting as delayed-Hedge, which is the key tech-

nique used in this paper. The delayed-hedge algorithm and

other AEA algorithms (including the hedge algorithm) have

been examined only in theoretical research and applied no

real-world task, except for a cloud computing task [18].

2.2. Online tracking and offline tracking

As noted in Sec. 1, visual-object-tracking methods can

be classified into online tracking and offline tracking.

Online tracking Recent online tracking methods mostly

employ some machine learning framework, such as Siamese

networks. Bertinetto et al. [3] used a fully convolutional

Siamese network for balancing accuracy and speed. Li et

al. [15] introduced the regional proposal network (RPN)

for Siamese network. Zhu et al. [30] proposed a Siamese

network-based tracker that focuses on the semantic distrac-

tors for long-term tracking. Wang et al. [25] proposed an

object tracking method with semi-supervised video object

segmentation (VOS) based on Siamese network. Zhipeng

et al. [29] introduced residual modules to improve the ro-

bustness and accuracy of Siamese network based tracker. In

addition to them, Danelljan et al. [4] used the discriminative

correlation filter (DCF) for tracking.

Ensemble online tracking The idea of ensembling (i.e.,

aggregating) online trackers has already been proposed with

various strategies. Grabner et al. [7] and Avidan et al. [1]

used AdaBoost to ensemble trackers. Babenko et al. [2] pre-

sented a novel online boosting algorithm based on multiple-

instance learning framework. Such most ensemble meth-

ods take advantage of the correlations of experts to cancel

out independent errors and increase the performance of the

method. Thus, it is not straightforward for ensemble meth-

ods to incorporate arbitrary online trackers who do not cor-

relate with each other. Wang et al. [24] recently provided

an ensembling method which achieves the state-of-the-art

performance. In contrast to the aforementioned ensembling

trackers, their method treats the experts as black boxes, and

use only bounding boxes of the output of the experts for the

aggregation (i.e., it can be used for aggregating arbitrary

trackers). They showed that their aggregating method suc-

ceeded empirically when employing some specific experts

and use their key strategy for updating the experts. How-

ever, the empirical or theoretical performance when aggre-

gating arbitrary experts has not been shown yet.

Offline tracking Most offline tracking problems are for-

mulated as a path optimization problem and solved by a

global optimization technique. Especially, recent methods

are formulated as a network flow problem [5, 11, 28] and

can track multiple objects at the same time. The proposed

method is an online tracking method, and therefore this pa-

per focuses on it; however, in the proposed method, offline

tracking plays an important role to provide feedback, which

is an accurate target trajectory between two anchor frames.

Online tracking with regret minimization One excep-

tional trial of using the term “regret” for tracking is Li

et al. [16], where a regret minimizing algorithm is used

for the target appearance adaption problem in a formula-

tion of multiple-instance learning. Qi et al. [19] proposed

Hedged Deep Tracking (HDT). They considered the ensem-

bling method based on the Hedge algorithm which aggre-

gates the experts defined by CNN features from different

layers. In common with the aforementioned ensembling

methods, their approaches can only employ some specific

experts, but not arbitrary experts.

3. Delayed-Hedge tracking with arbitrary on-

line trackers

3.1. Overview

As already shown in Fig. 2, the proposed delayed-Hedge

tracking method assumes N arbitrary online trackers as

multiple experts and determines the target location at frame
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Algorithm 1 The delayed-hedge online tracking algorithm

1: Inputs:

N arbitrary online trackers.

2: Outputs:

Target trajectory p1, . . . , pt, . . .
3: Initialize:

w1
1 = · · · = w1

N = 1/N . u = 0.

η ∈ ℜ+. // Initialize η with an arbitrary value.
4: for t = 1, . . . do

5: Estimate the current target locations f t
1, . . . , f

t
N

at the frame image by N online trackers.

6: if frame t is determined as an anchor frame

by having a reliable target location yt then

7: Update η using the doubling trick.

8: Obtain the feedback yu+1:t = yu+1, . . . , yt

by the offline tracking result between yu and yt.
9: Determine the current target location: pt = yt.

10: Calculate the loss between anchor frames:

Lu+1:t
i =

∑t

k=u+1
ℓ(fk

i , y
k). (2)

11: Update each weight:

wt+1

i =
wt

i exp
(

−ηLu+1:t
i

)

∑N

j=1
wt

j exp
(

−ηLu+1:t
j

)
. (3)

12: u = t.
13: else

14: Determine the current target location:

pt =
∑N

i=1
wt

if
t
i . (4)

15: end if

16: end for

t by AEA, that is, a weighted aggregation of the estimated

target locations by the experts at t. The weight of each ex-

pert is updated at an anchor frame by evaluating its per-

formance in the interval between the present and the last

anchor frames. For the evaluation, the feedback (from the

environment) and the loss play an important role. The feed-

back (Fig. 2(c)) is the true or a near-true target trajectory be-

tween two anchor frames and the loss (Fig. 2(d)) is the dif-

ference between the expert’s estimation and the feedback.

The best expert (Fig. 2(f)) is defined as the expert with the

minimum accumulated loss over all the T frames. The pro-

posed method aims to aggregate experts for minimizing the

regret Eq. (1), that is, its difference from the best expert.

The feedback affects the loss evaluation and thus should

be as close as possible to the true target trajectory. Since

it is practically impossible to get the true target trajectory,

we employ an offline tracker to get an accurate trajectory

between two anchor frames as detailed in Sec. 3.3. Since

the interval between the anchor frames is often not too large,

the computational cost for the offline tracker is small and the

proposed method still realizes real-time tracking (> 30 fps).

As emphasized above, arbitrary online trackers can be

used as experts. Since it is guaranteed that the performance

of the proposed method is similar to the best expert, the use

of accurate experts is always appreciated. In other words, if

a promising new online tracker is proposed, we can employ

it as an expert to improve the performance of the aggregated

online tracker in adversarial environments. Fortunately, as

proved in Sec. 4, the proposed method allows us to use a

large number of arbitrary experts without careful selection.

3.2. The detailed algorithm

Algorithm 1 shows the delayed-Hedge online tracking

method. At each frame t, N online trackers give their

estimation of the current target locations as f t
1, . . . , f

t
N .

Then the current target location pt is determined by their

weighted aggregation of Eq. (4), where
∑N

i=1
wt

i = 1, if

the current frame is not an anchor frame.

When the current frame is an anchor frame, we receive

the feedback from the environment. As shown in Fig. 2(b),

the feedback is determined by an offline tracker as a near-

true target trajectory. The offline tracker gives the trajectory

from yu to yt, i.e., from the target location at the last anchor

frame u to that at the current frame t.
Using the feedback yu+1:t = yu+1, . . . , yt, the loss

Lu+1,t
i over the interval [u+1, t] is simply calculated using

Eq. (2). The function ℓ(, ) ∈ [0, 1] is an arbitrary function

that evaluates the difference between two locations fk
i and

yk, such as the Euclidean distance ‖fk
i − yk‖ or IoU of ob-

ject bounding boxes centered at fk
i and yk.

Finally, the weights wt+1

1 , . . . , wt+1

N are updated by

Eq. (3). This updating formula is simple but the key idea

of the delayed-Hedge algorithm. As shown in Sec. 4, it

achieves a strong theoretical regret bound with arbitrary on-

line trackers even in any adversarial environments. Note

that η in the formula is automatically updated via the dou-

bling trick, which is described in Sec. 4, and its initial value

is not very important. Therefore, Algorithm 1 is practically

free from any hyper-parameter.

3.3. Anchor frames

Anchor frames are determined in an online manner; at

each frame, we need to determine whether the frame can

be an anchor frame or not without watching future frames.

Considering that the feedback relies on the target location

at each anchor frame, determination of the anchor frame is

crucial in practice. In other words, we need to determine

the frame t as an anchor frame only when the target object

is detected with sufficiently high confidence. In Sec. 5.2, we

show a practical approach for obtaining accurate feedback.

Note that it is possible to detect the target without any

doubt, in special situations. For example, if an ID-tag is at-

684



tached to the target object and then detected by a tag sensor,

the target will be detected when it lies in front of the sensor.

Another example is a team sport player who wears a jersey

with an ID number. If the ID number of the target player is

detected at frame t (by scene text OCR), it can provide an

anchor frame with the true location of the target.

4. Why does the delayed-Hedge online track-

ing achieve a small regret? — Theoretical

guarantee of the proposed method

In this section, we show that the proposed method has

strong theoretical support from regret analysis. Assume we

have Q anchor frames as u1, . . . , uq, . . . , uQ. As we saw in

Algorithm 1, the feedback for the interval [uq−1 + 1, uq] is

given at the anchor frame uq . It should be emphasized that

this is a delayed feedback because we need to wait for the

feedback to the frame t ∈ [uq−1 + 1, uq − 1] until t = uq .

We denote the total delay as D =
∑Q

q=1

∑uq−uq−1

t=1 t,
where u0 = 0. For example, if the total number of frames

T = 100 and the environment provides the feedback at an-

chor frames {u1, . . . , u10} = {10, 20, 30, . . . , 100}, then

D = (1 + · · · + 10) × 10 = 550. If all frames are anchor

frames (Q = T ), there is no delay (D = T ). In this case, the

delayed-hedge algorithm is reduced to the standard AEA.

Even for AEA with delayed-feedback, it is known that

we can achieve a small regret using the delayed-Hedge al-

gorithm [20]2, which achieves the following regret bound:

Theorem 1 (Theorem A.5 of [20]). Assume that a loss func-

tion ℓ takes values in [0, 1]. The regret of the delayed-Hedge

algorithm with a learning rate η ∝
√

lnN/(T +D) after

T frames is bounded as follows:

RT = O
(

√

(M∗ +DM∗/T ) lnN
)

,

where M∗ is the minimum cumulative loss of the N experts.

Note that M∗ can be replaced by T because M∗ is upper-

bounded by T [20]. Theorem 1 states that the regret may

become larger when D becomes larger. Especially, if there

is no feedback (i.e., no anchor frame) until the final frame

T , D achieves its maximum as (T/2)(T + 1) = O(T 2). In

this worst case, the regret increases linearly with T and the

performance of the proposed method may be different from

the best expert.

In a realistic case, however, we can have the delayed-

feedback at multiple anchor frames and thus have a much

better bound than the worst-case. Specifically, if we have

2This study reports that the online mirror descent algorithm achieves a

good regret bound. The Hedge algorithm is known to be a special version

of the online mirror descent algorithm (see, e.g., [8]), and therefore we can

apply this regret bound to the Hedge algorithm. The detailed discussion

can be found in the supplementary material.

feedback with a constant probability r at each frame, we

can derive the following regret bound that says the regret

can be upper bounded by O(
√
T ):

Theorem 2. Assume that feedback from the environment

comes with probability r ∈ (0, 1] on each frame. The expec-

tation of the regret of the delayed-Hedge is then bounded as

follows:

Er[RT ] = O
(

√

(M∗ +M∗/r) lnN
)

.

The proof of Theorem 2 is included in supplementary ma-

terials.

Moreover, Theorems 1 and 2 say that we may use a large

number of experts without the risk of performance degra-

dation because the regret bound only depends on lnN . In

other words, we do not need to select the set of experts care-

fully in advance.

The learning rate η cannot be estimated prior to the be-

ginning of the tracking because T +D is unknown in gen-

eral. However, we can use a doubling trick technique [20]

to set η adaptively. Specifically, if the current t+D is larger

than an initial parameter T +D of η at frame t, we reset the

parameter η =
√

lnN/2(T +D) from t+1, and therefore

we can retain the aforementioned theoretical performance.

This upper bound of the performance difference between

the algorithm and the best expert represents that the pro-

posed method achieves similar accuracy to the best expert.

Thus, this guarantee implies that the proposed method ap-

propriately aggregates multiple trackers and yields robust

performance.

5. Experimental results

We evaluate the proposed method by comparison with

state-of-the-art online tracking methods on OTB2013 [26],

OTB2015 [27], VOT2018 [14], and TColor128 [17]. We

mainly focus on two standard performance measures, AUC

score of success plots, and average distance precision (DP)

on 20 pixels3.

5.1. Online trackers as experts and competitors

We employ seven (N = 7) state-of-the-art fast on-

line trackers as experts of the proposed method. They

are: SiamMask [25], SiamFC Res22 [29], SiamRPN [15],

SiamFC [3], DaSiamRPN [30], MCCT-H [24], and ECO-

H [4]. We also use the above trackers as competitors for

performance comparison. Moreover, as an ablation study,

we compare with the following baselines that aggregate

arbitrary trackers, namely the above trackers. “Baseline

3The performance on VOT2018 is often evaluated in supervised exper-

iment where it is allowed for the failed tracker to restart from the correct

position. However in our experiment, we evaluate it in unsupervised ex-

periment as same as other datasets.
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Tracker
OTB2013 OTB2015 VOT2018 TColor128

FPS
AUC DP AR AUC DP AR AUC DP AR AUC DP AR

SiamMask 0.608 0.840 5.94 0.623 0.841 5.37 0.478 0.682 3.77 0.529 0.740 5.88 62

SiamFC Res22 0.627 0.830 5.45 0.612 0.817 5.60 0.334 0.464 6.92 0.538 0.742 5.58 55

SiamRPN 0.641 0.855 5.37 0.630 0.837 5.49 0.478 0.687 4.10 0.533 0.736 5.82 86

SiamFC 0.585 0.775 6.45 0.575 0.762 6.39 0.348 0.515 6.65 0.509 0.690 6.09 126

DaSiamRPN 0.660 0.885 4.94 0.649 0.861 5.07 0.473 0.664 3.82 0.546 0.753 5.19 82

MCCT-H 0.597 0.781 6.08 0.596 0.797 6.00 0.365 0.509 6.38 0.535 0.712 5.65 15

ECO-H 0.639 0.841 4.94 0.631 0.836 5.09 0.350 0.485 6.27 0.559 0.750 5.10 17

Baseline(Average) 0.576 0.740 5.04 0.584 0.743 4.76 0.328 0.420 6.10 0.492 0.641 5.43 15

Baseline(MCCT) 0.576 0.744 6.20 0.563 0.750 6.45 0.299 0.438 6.80 0.487 0.658 6.19 13

Ours 0.675 0.884 4.59 0.662 0.875 4.78 0.469 0.663 4.20 0.613 0.826 4.06 12

Table 1. Performance comparison with the state-of-the-arts on several benchmark datasets. The best tracker is indicated with red

bold and the second is indicated with blue italic. AUC: average area-under-curve score, DP: average distance precision, AR: average rank

based on AUC, and FPS: average speed. Bigger AUC and DP, and smaller AR mean better performance
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Figure 3. Success and precision plots on OTB2013, OTB2015,

VOT2018, and TColro128. The legends of the plots mean area-

under-curve scores and average distance precisions, respectively.

(Average)” is a simple aggregation method which averages

the prediction of the experts at every frame . “Baseline

(MCCT)” aggregates the above trackers by evaluating the

experts at every frame using the key technique of [24] (see

details in Sec. 3.3 of the paper). Note that what we want to
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Figure 4. Correlation between AUC and anchor frame ratio of the

proposed method for image sequences in OTB2015, VOT2018 and

TColor128.

demonstrate in the experiments is the tracking performances

“in the wild”. Therefore, for all methods (and experts) we

did not use any tuned hyper-parameter specialized in par-

ticular datasets. For all datasets, we employed the default

parameters recommended by the authors, and thus the re-

sults we provide may be slightly different from the results

in the original papers.

5.2. Anchor frames and feedback

As mentioned in Section 3.3, we should properly de-

termine anchor frames online (i.e., at each frame) for get-

ting the delayed-feedback. Since the object location at the

anchor frame should be accurate as possible, we use the

following careful steps at each frame t: [Step 1] We crop

N bounding boxes given as the tracking results of the N
experts. [Step 2] We convert each bounding box into a

512-dimensional feature vector by using the bottleneck of

ResNet-18 [9] trained with ImageNet. [Step 3] We calcu-

late N cosine similarities between the feature vectors and

the feature vector of the template image (i.e., the object im-

age in the first frame). [Step 4] If the maximum among

N cosine similarities is larger than a threshold θ, the cur-

rent frame t is determined as an anchor frame. We fixed

θ = 0.74 in the experiments. The bounding box that gives

the maximum becomes the reliable target location, yt (in

Algorithm 1).

The delayed-feedback, yu+1, . . . , yt, is given by
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the state-of-the-art offline-tracker [28], which gives the

globally-optimal tracking result between the anchor frames

based on network flow. For Eq. (2), we use the fol-

lowing IoU-based loss function between the target bound-

ing box Bf by an expert and By by the feedback y ∈
{yu+1, . . . , yt} : ℓ(f, y) = 1− (Bf ∩By)/(Bf ∪By).

Fig. 4 shows the relationship between the AUC by the

proposed method and the anchor frame ratio for (Q/T ) all

image sequences. This figure reveals that the anchor frame

ratio is more than 0.8 for many image sequences. This

means that at least one expert is very confident of its track-

ing result at each frame and our tracker could utilize it. Note

that even if two consecutive frames t− 1 and t become an-

chor frames, our algorithm still can update the weights of

the experts by utilizing yt−1 and yt as feedbacks.

Another, more important fact shown in Fig. 4 is that there

is neither positive nor negative correlation between the AUC

and the anchor frame ratio. This proves that our delayed-

hedge algorithm works very reasonably. If there is any pos-

itive correlation, we can improve the performance just by

increasing the anchor frame ratio. However, our algorithm

did not do it because we cannot get reliable anchor frames

frequently in some image sequences and the algorithm au-

tomatically decides to wait for a reliable anchor frame. In

other words, the algorithm optimizes the anchor frame ra-

tio according to each image sequence and could get the best

compromise on its performance.

5.3. Comparison with state­of­the­arts

Fig. 3 represents the success and precision plots of the

proposed method and state-of-the-art trackers, and Table 1

shows the results of our tracking performance of them. In

addition to AUC and DP, we show the average ranking (AR)

of AUC for each tracker. The ranking result is a very im-

portant measure for the proposed method because our theo-

retical motivation is to achieve similar accuracy to the best

expert on each image sequence. We show the performance

and the frequency of rank of the trackers in Fig. 5.

Table 1 also shows the speed (FPS) of the individual

methods. Since the speed of the proposed method depends

on the speed of the slowest expert (i.e., MCCT-H in the ex-

periments), our current FPS is nearly real-time (12 FPS).

Of course, if we employ only real-time tracking experts, the

proposed method runs in real-time. More importantly, we

have to emphasize that the overhead for determining anchor

frames, calculating delayed-feedback by the offline tracker,

and aggregating experts, is very small.

Evaluation on OTB2013 and OTB2015 In addition to

Table 1, Fig. 3 also shows that the proposed method outper-

forms the state-of-the-art trackers. In Fig. 5, we can see that

various experts equally contributes to the proposed method.

That is, this result proves that the best expert drastically

changes over the image sequences in OTB and the proposed
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Figure 5. Performance histogram and ranking histogram based

on AUC in OTB2015, VOT2018, and TColor128. A smaller

rank means better performance.

method effectively performs even in such an adversarial sit-

uation for the experts.

Evaluation on VOT2018 In VOT2018, the AUC of the

proposed method cannot outperform the top-three trackers,

SiamMask, SiamRPN, and DaSiamRPN. We need to em-

phasize that this is not disappointing because the theory

behind the proposed method guarantees that the difference

from the best expert (i.e., regret) is bounded; that is, the

proposed method can achieve similar performance to the

best tracker. Since these three trackers competitively per-

form well over VOT2018, the proposed method can achieve

similar accuracy to them. More importantly, the proposed

method is not degraded by the others. In fact, as shown in

Fig. 5, the experts are divided to accurate and poor trackers

over VOT2018. Consequently, we can say that the proposed

method is really effective for the adversarial environment

where the best expert drastically changes for each image

sequence and less effective for the less adversarial environ-

ment where we have constantly-overwhelming experts.

Evaluation on TColor128 Table 1 and Fig. 3 shows that

the proposed method significantly outperforms state-of-the-
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Figure 6. Tracking examples. The top is “BlurBody” in OTB2015 and the bottom is “Hand” in Tcolor2018. For the picked-up frame, we

annotate ground truth (black), the proposed method (red), and only for anchor frames, we annotate the detected bounding box (white). The

expert which has the highest weight is also annotated. In the error and weight graph, gray vertical lines show anchor frames.

art trackers. As also shown in Fig. 5, the proposed method

averagely achieves high performance. The reason is the

same on OTB2013 and OTB2015; that is, the best ex-

perts drastically changes depending on the tracking tasks.

TColor128 may contain various kinds of tracking tasks and

that makes it difficult to have an expert overwhelming over

all the image sequences in the dataset; in contrast, the pro-

posed method adaptively follows the best expert for individ-

ual image sequences or even individual frames.

In the ranking histogram of Fig. 5, our method shows

significant robust performance on all four datasets. Remark-

ably, the proposed method achieved higher ranks for many

datasets. Moreover, while the other methods shared lower-

ranked performances as we introduced in Sec. 1, only our

proposed method did not. We can say that this robustness is

the result of our regret-minimization approach with theoret-

ical support.

5.4. Tracking examples

In this section, several tracking examples are shown to

observe how the proposed method aggregates the experts

to achieve similar performance to the best expert. Fig. 6

shows two examples of the tracking results with temporal

transitions of the overlap error of the proposed method and

experts, and the weights for the experts in Algorithm 1. In

“BlurBody”, SiamMask (the blue one) is the best expert,

and we can see that the proposed method gives the high-

est weight for it from early frames of the image sequence.

Moreover, the proposed method can keep the high weight

even after the weight updating at several anchor frames.

On the other hand, in “Hand”, we can see that the best-

performing expert drastically changes in this image se-

quence by observing the overlap error transition. More pre-

cisely, SiamFC Res22 achieves the best in the beginning

part but it degrades the performance in the middle part.

DaSiamRPN achieves the best in the second part, but in

the final part SiamFC Res22 achieves the best again. From

the perspective of our regret theory, it seems that the pro-

posed method cannot follow such changes but only follow

the “overall” best expert. However, in fact, it is theoretically

known that the Hedge algorithm follows such a “partial best

expert” adaptively for minimizing not only the standard re-

gret RT (of Eq. (1) but also shifting regret, which is another

regret measure considering the switching (see, e.g., [12]).

Thus, the proposed method can utilize the partial best ex-

perts adaptively even against such fluctuations within a im-

age sequence.

6. Conclusion

In this paper, we propose an online tracking method

based on the delayed-Hedge algorithm, which allows us to

aggregate arbitrary multiple online trackers. Its robustness

in the tracking performance is guaranteed theoretically in

term of “regret.” The experimental study on various track-

ing tasks shows that the proposed method could achieve the

state-of-the-art performance by aggregating various online

trackers especially for adversarial environments.
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