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Abstract

State-of-the-art methods for action recognition com-

monly use two networks: the spatial stream, which takes

RGB frames as input, and the temporal stream, which takes

optical flow as input. In recent work, both streams are 3D

Convolutional Neural Networks, which use spatiotemporal

filters. These filters can respond to motion, and therefore

should allow the network to learn motion representations,

removing the need for optical flow. However, we still see

significant benefits in performance by feeding optical flow

into the temporal stream, indicating that the spatial stream

is “missing” some of the signal that the temporal stream

captures. In this work, we first investigate whether motion

representations are indeed missing in the spatial stream,

and show that there is significant room for improvement.

Second, we demonstrate that these motion representations

can be improved using distillation, that is, by tuning the spa-

tial stream to mimic the temporal stream, effectively com-

bining both models into a single stream. Finally, we show

that our Distilled 3D Network (D3D) achieves performance

on par with the two-stream approach, with no need to com-

pute optical flow during inference.

1. Introduction

Motion is often a necessary cue for recognizing actions.

For example, it may be difficult to tell two actions apart

from a single frame, like “open a door” and “close a door”,

because the interpretation of the action depends on the di-

rection of motion. To handle this, recent work treats recog-

nition from motion as its own task, in which a “temporal

stream” observes only a hand-designed motion representa-

tion as input, while another network, the “spatial stream”,

observes the raw RGB video frames [28]. However, when

the spatial stream is a 3D Convolutional Neural Network, it

has spatiotemporal filters that can respond to motion in the

video [4, 41]. Conceptually, this should allow the spatial
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Figure 1. Distilled 3D Networks (D3D). We train a 3D CNN (the

student) to recognize actions from RGB video while also distilling

knowledge from a network (the teacher) that recognizes actions

from optical flow sequences. The teacher network is only used

during training, so optical flow is not needed for inference.

stream to learn motion features, a claim echoed in the lit-

erature [34, 20, 23]. However, we still see strong gains in

accuracy by including a “temporal” 3D CNN which takes

an explicit motion representation, typically optical flow, as

input. For example, we see a 6.6% increase in accuracy on

HMDB-51 when we ensemble a 3D CNN that takes RGB

frames with a 3D CNN that takes optical flow frames [4]. It

is unclear why both streams are necessary. Is the temporal

stream capturing motion features which the spatial stream

is missing? If so, why is the 3D CNN missing this infor-

mation? In this work, we examine the spatial stream in 3D

CNNs to see what motion representations they learn, and we

introduce a method, depicted in Figure 1, that combines the

spatial and temporal streams into a single RGB-only model

that achieves comparable performance.

Because 3D CNNs include temporal filters, we hypoth-

esize that they should be able to produce motion represen-

tations such as optical flow. Recent work has shown that it

is possible for 3D CNNs to learn optical flow, but in these

studies, the network structure is designed specifically for

this purpose [22]. Instead of designing a network specif-
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ically for learning motion representations, we study a net-

work that is designed for action recognition, and we test

whether it is capable of producing motion representations.

To do this, we train 3D CNNs on an optical flow predic-

tion task, described in Section 3.1, and we demonstrate ex-

perimentally that 3D CNNs are indeed capable of learning

motion representations in this way.

However, while 3D CNNs are capable of learning motion

representations when optimized for optical flow prediction,

it is not necessarily true that these motion representations

will arise naturally when 3D CNNs are trained to perform

other tasks, such as action recognition. To answer whether

this is the case, we evaluate the same state-of-the-art 3D

CNNs on the optical flow prediction task, but we use models

with fixed spatiotemporal filters that are trained on an action

recognition task. We find that these models underperform

those that are fully fine-tuned for optical flow prediction,

suggesting that 3D CNNs have much room for improvement

to learn higher-quality motion representations.

To improve these motion representations, we propose to

distill knowledge from the temporal stream into the spatial

stream, effectively compressing the two-stream architecture

into a single model. In Section 4, we train this Distilled 3D

Network (D3D) by optimizing an auxiliary loss which en-

courages the spatial stream to match the temporal stream’s

output, a technique often used for model compression [14].

During inference, we only use the distilled spatial stream,

and we find that D3D achieves improved performance on

the optical flow prediction task. This suggests that distilla-

tion improves motion representations in 3D CNNs.

We apply D3D to five datasets using three backbone ar-

chitectures, and we find in Section 5 that D3D strongly

outperforms single-stream baselines, achieving accuracy on

par with the two-stream model with only a single stream.

We train and evaluate D3D on Kinetics [18], and we show

that the weights learned by distillation also transfer to

other tasks, including HMDB-51 [19], UCF-101 [29], and

AVA [13]. D3D does not require any optical flow compu-

tation during inference, making it less computationally ex-

pensive than two-stream approaches. D3D can also benefit

from ensembling for better performance, still without the

need for optical flow. We compare D3D to a number of

strong baselines, and D3D outperforms these approaches.

In summary, we make the following contributions:

1. We investigate whether motion representations arise

naturally in the spatial stream of 3D CNNs trained on

action recognition.

2. We introduce a method, Distilled 3D Networks (D3D),

for improving these motion representations using

knowledge distillation from the temporal stream.

3. We demonstrate that D3D achieves competitive results

on Kinetics, UCF-101, HMDB-51, and AVA, without

the need to compute optical flow during inference.

2. Related Work

We broadly categorize video action recognition methods

into two approaches. First, there are 2D CNN approaches,

where single-frame models are used to process each frame

individually. Second, there are 3D CNN approaches, where

a model learns video-level features using 3D filters. As

we will see, both categories of methods often take a two-

stream approach, where one stream captures features from

appearance, and another stream captures features from mo-

tion. Our work considers Two-Stream 3D CNNs.

2D CNNs. Many approaches leverage the strength of

single-image (2D) CNNs by applying a CNN to each in-

dividual video frame and pooling the predictions across

time [28, 6, 27]. However, naı̈ve average pooling ignores

the temporal dynamics of video. To capture temporal fea-

tures, Two-Stream Networks introduce a second network

called the temporal stream, which takes a sequence of con-

secutive optical flow frames as input [28]. The outputs of

these networks are then combined by late fusion, or in other

approaches by early fusion, by allowing the early layers of

the spatial and temporal streams to interact [8]. Other meth-

ods have taken different approaches to incorporating motion

by changing the way the features are pooled across time, for

example, with an LSTM or CRF [6, 27]. These approaches

have proven very effective, particularly in the case where

video data is limited and therefore training a 3D CNN is

challenging. However, recently released large-scale video

datasets have spurred advances in 3D CNNs [18].

3D CNNs. Single-frame CNNs can be generalized to video

by expanding the filters to three dimensions and applying

them temporally, an approach called 3D CNNs [16]. Con-

ceptually, 3D filters should allow CNNs to model motion,

but this comes at a cost; 3D CNNs have more parameters

and therefore require more data to train. Large-scale video

datasets such as Sports-1M enabled the first 3D CNNs, but

these were often not much more accurate than 2D CNNs

applied frame-by-frame, calling into question whether 3D

CNNs actually model motion [17]. To compensate, many

3D CNN approaches use additional techniques for incor-

porating motion. In C3D, motion is incorporated using

Improved Dense Trajectory (IDT) features, which leads to

a substantial improvement of 5.2% absolute accuracy on

UCF-101 [34, 38]. In I3D, S3D-G, and R(2+1)D, using

a two-stream approach leads to absolute improvements of

3.1%, 2.5%, and 1.1% on Kinetics, respectively [4, 41, 36].

The fact that 3D CNNs benefit from a hand designed mo-

tion representation suggests that they do not learn to model

motion naturally when trained on action recognition tasks.

More evidence has shed light on this, for example recent

work discovered that 3D CNNs are largely unaffected in

accuracy on Kinetics when their input is reversed [41]. In

addition, it has been shown that using only a single frame

from Kinetics videos with C3D achieves only 5% lower ac-
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curacy than using all frames [15]. These results suggest that

3D CNNs do not sufficiently model motion, a hypothesis we

explore further in this work.

Why Optical Flow? If 3D CNNs do not model mo-

tion when trained on action recognition, we naturally ask

whether motion is even necessary for this task, and if not,

what other benefits optical flow may offer. Recent work

has explored several possible explanations for why optical

flow is so effective for 3D CNNs [26]. One hypothesis

is that optical flow is invariant to texture and color, mak-

ing it difficult to overfit to small video datasets. To sup-

port this, recent work demonstrates that action recognition

performance is not well correlated with optical flow accu-

racy, except near motion boundaries and areas of small dis-

placement [26]. This work, as well as others, have shown

that better or cheaper motion representations can be used

in place of optical flow, suggesting that, while motion rep-

resentations are important, optical flow itself is not cru-

cial [7, 43, 44, 10, 26]. However, optical flow has been

shown to be useful as a source of additional supervision,

which is shown by ActionFlowNet [22]. This work, like

ours, trains a 3D CNN to incorporate motion by using an

auxiliary task. However, our work uses a different auxiliary

task, distillation, which we show is more effective.

Incorporating Motion in 3D CNNs. Many other ap-

proaches incorporate motion information into 3D CNNs us-

ing changes to the network architecture. Motion Feature

Networks, Optical Flow-Guided Features, and Representa-

tion Flow all accomplish this by introducing modules into

the network which explicitly compute motion representa-

tions [20, 32, 23]. Alternatively, several approaches have

proposed to replace the optical flow inputs for the temporal

stream with a CNN which produces a learned motion rep-

resentation. For example, Hidden Two-Stream and TVNet

use a motion representation that is trained end-to-end for

action recognition [7, 44]. In our work, we show that dis-

tillation is more effective at improving accuracy than these

architectural changes. However, distillation is not in con-

flict with these changes, and can in fact be applied in com-

bination with any network architecture. Furthermore, the

approaches which introduce new modules do not answer

whether “vanilla” 3D CNNs are capable of learning mo-

tion representations. In our work, we present a study which

demonstrates that 3D CNNs do have this ability, and show

that distillation improves these representations.

Distillation. In this work we propose to incorporate motion

representations into 3D CNNs using distillation. Distilla-

tion was first introduced as a way of transferring knowl-

edge from a teacher network to a (typically smaller) student

network by optimizing the student network to reconstruct

the output of the teacher network [2, 14]. Recent work on

distillation has demonstrated that this technique is widely

applicable and can be used to transfer knowledge between

different tasks or modalities [9, 43, 25, 21, 11]. Our work

is related to Motion Vector CNNs, which distill knowledge

from the temporal stream into a new motion stream which

uses a cheaper motion representation in place of optical

flow [43]. By contrast, our work distills the temporal stream

into the spatial stream, which allows us to avoid using hand-

designed motion representations altogether.

The most similar work to ours is concurrent work on

Motion-Augmented RGB Streams (MARS) [5]. This work

proposes a similar distillation approach, but ours presents

several additional analyses which shed light on the method.

Specifically, in Section 3, we propose a flow prediction task

to study the motion representation capacity of 3D CNNs,

and we demonstrate the effect of distillation on this abil-

ity. In addition, we show that our approach can transfer

to spatio-temporal action localization (Section 5.5) as well

as different backbone architectures (Table 7). Finally, in

our ablation studies in Section 5.6 we propose and evaluate

some alternatives to distillation, and we show that distilla-

tion outperforms these alternatives.

3. Motion Representations in 3D CNNs

Two-stream methods rely on optical flow, a hand-

designed motion representation, in order to learn features

from motion. This begs the question: are 3D CNNs capable

of learning sufficient motion representations on their own?

To answer this, we train a spatial stream 3D CNN to pro-

duce optical flow. If the spatial stream is able to produce

optical flow, it suggests that the temporal stream is unnec-

essary, since it does not have access to any information that

the spatial stream cannot learn to produce on its own. On

the other hand, if the 3D CNN is not able to produce opti-

cal flow, it could be due to one of two possibilities. First,

it could be a fundamental limitation of 3D CNNs, that is,

they are unable to learn optical flow from video. Second, it

could suggest a limitation in the training procedure, that is,

they are able to learn optical flow, but do not.

We will show that the second possibility is true: 3D

CNNs do not learn motion representations such as optical

flow naturally, and the issue lies with the training proce-

dure. Specifically, we demonstrate that 3D CNNs do not

learn sufficiently accurate optical flow when trained on ac-

tion recognition, and that they can learn much more accu-

rate optical flow when trained explicitly to do so.

3.1. Optical Flow Decoder

To predict optical flow, we use the hidden features from

an intermediate layer in a 3D CNN and pass them through

a decoder, as depicted in Figure 2. Since our goal is to eval-

uate the motion representations in the hidden features, we

constrain the decoder such that it is unable to learn motion

patterns beyond what is already learned by the 3D CNN.

Specifically, the decoder contains no temporal convolutions,
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Figure 2. The network used to predict optical flow from 3D CNN

features. We apply the decoder at hidden layers in the 3D CNN

(depicted here at layer 3A). This diagram shows the structure

of I3D/S3D-G, where blue boxes represent convolution (dashed

lines) or Inception blocks (solid lines), and gray boxes represent

pooling blocks [4, 41]. Layer names are the same as those used in

Inception [33].

and operates on a single frame at a time.

In our experiments, the optical flow decoder is designed

to mimic the optical flow prediction network from PWC-

Net [31], but without the cost volume and warping layers.

For more details on the architecture of this decoder, please

refer to the supplementary materials.

The output of the decoder is a motion representation in-

troduced by Im2Flow [10], which consists of three channels

that encode optical flow: (mag, sin θ, cos θ), where mag
and θ are the magnitude and angle, respectively, of the flow

vector at each pixel. The decoder is trained to minimize

the squared error between the predicted and target optical

flow. For numerical stability, we weight the loss for the

sin θ, cos θ channels by mag. This encoding and training

procedure have been shown in prior work to be more effec-

tive than directly regressing the optical flow vectors.

To match prior work, we use TV-L1 optical flow [42] as

the motion representation [10, 37, 24]. TV-L1 optical flow

is commonly used as the input to the temporal stream in

many two-stream approaches [4, 26]. Therefore, it is known

to be a useful motion representation for action recognition,

and reconstructing it with a 3D CNN demonstrates how well

the 3D CNN can capture useful motion representations.

3.2. Evaluation Metrics

After training the optical flow decoder, we evaluate the

learned optical flow using endpoint error (EPE), a common

metric that is adopted in prior work [10, 37, 24].

We evaluate in two settings. In the first setting, we freeze

the 3D CNN and train the decoder. This setting tests what

motion representations are learned by the 3D CNN natu-

rally by training on action recognition. In the second set-

ting, we fine-tune decoder and 3D CNN end-to-end. This

setting tests what motion representations can be learned by

a 3D CNN when optimized specifically for this purpose.

In Section 5.2, we demonstrate much better results in

the second setting than in the first, suggesting there is room

for improvement in the training procedure for spatial stream

3D CNNs. We also demonstrate that our proposed distilled

method achieves improvements in this direction.

4. Distilled 3D Networks

Our goal is to incorporate motion representations from

the temporal stream into the spatial stream. We approach

this using distillation, that is, by optimizing the spatial

stream to behave similarly to the temporal stream. Our ap-

proach uses the learned temporal stream from the typical

two-stream pipeline as a teacher network, and the spatial

stream as a student network. During training, we distill the

knowledge from the teacher network into the student net-

work, as depicted in Figure 1. This is accomplished by

introducing a new loss function, which penalizes the out-

puts of the spatial stream if they are dissimilar to those of

the temporal stream. More concretely, we train the network

parameters θ to minimize the sum of two losses La and Ld,

L(θ) = La(θ) + λLd(θ) (1)

where the action classification loss La is the cross-entropy

and the distillation loss Ld is the mean squared error be-

tween the pre-softmax outputs of the spatial stream fs(x; θ)
and that of the fixed temporal stream ft(x), i.e.

Ld(θ) =
1

N

N−1∑

i=0

(fs(x
(i); θ)− ft(x

(i)))2, (2)

where {x(0), ..., x(N−1)} are the video clips. The hyperpa-

rameter λ allows us to flexibly rescale the contribution of

the distillation loss. In our experiments, we find that λ = 1
conveniently serves as a good setting in many cases. Note

that we use a mean squared error loss, as opposed to the

cross-entropy loss proposed in prior work [14]. We find

that this approach achieves similar results, and can be more

flexibly applied to intermediate layers in the network.

We refer to a spatial stream fs trained using distillation

as a Distilled 3D Network (D3D). For inference, we discard

the temporal stream ft, skipping the optical flow step and

relying only on RGB input. As we show in Section 5, D3D

is able to achieve accuracy on par with two-stream meth-

ods without the need for two separate spatial and temporal

streams. In addition, unlike other approaches for incorpo-

rating motion representations, we add no additional compu-

tational overhead to the spatial stream [23, 40, 32, 20]. We

use S3D-G as the backbone architecture for both the spatial

and temporal stream, since it achieves comparable accuracy

at lower computational cost than competing architectures

such as I3D and Non-local I3D [4, 40].

4.1. Implementation Details

We train D3D in two steps. First, we train the temporal

stream using TV-L1 optical flow inputs. Second, we train

the spatial stream using the distillation procedure described

in Section 4. For inference, we discard the temporal stream.
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When training the temporal stream, we use the same hy-

perparameters as those described in prior work [41]. When

training the spatial stream, we also use the same hyperpa-

rameters as prior work, with the only change being the addi-

tion of our distillation loss. We use scaling parameter λ = 1
unless otherwise specified. We train the model for 140k

steps on 56 GPUs with a batch size of 6 clips per GPU. For

more details, please refer to prior work on S3D-G [41].

5. Experiments

We train and evaluate D3D on several datasets, and we

demonstrate that D3D outperforms single-stream models

and achieves accuracy on par with that of two-stream mod-

els that require explicit optical flow computation.

5.1. Datasets

Kinetics. Kinetics is a large-scale video classification

dataset with approximately 500K 10-second clips annotated

with one of 600 action categories [18, 3]. Kinetics has two

variants: Kinetics-600 is the full dataset, and Kinetics-400

is an approximate subset containing 400 categories.

Kinetics consists of publicly available YouTube videos,

which can be deleted by their owners at any time. Thus,

Kinetics, like similar large-scale Internet datasets, gradu-

ally decays over time. Our experiments were conducted

on a snapshot of the Kinetics dataset captured in Octo-

ber 2018, when Kinetics-400 contained 226K of the orig-

inal 247K training examples (-8.4%) and Kinetics-600

contained 369K of the original 393K training examples

(-6.1%). The change in both training and validation sets

generates a small discrepancy between experiments con-

ducted at different times. We explicitly denote results on

the original Kinetics dataset with an asterisk (*) in all tables

and provide the list of videos available at the time of our

experiments to enable others to reproduce our results.

HMDB-51 and UCF-101. HMDB-51 and UCF-101 are

action classification datasets composed of brief video clips,

each containing one action [19, 29]. HMDB-51 contains

7,000 videos from 51 classes, and UCF-101 contains 13,320

videos from 101 classes. For both datasets, we report clas-

sification accuracy on the first test split.

AVA. AVA is a large-scale spatiotemporal action localiza-

tion dataset that consists of 430 15-minute movie clips [13].

Each clip contains bounding box annotations at 1-second

intervals for all actors in frame, and each actor is annotated

with one or more action labels. In our experiments, we train

on AVA v2.1, and report results on the validation set.

5.2. Predicting Optical Flow

In this experiment, we decode optical flow from the in-

termediate layers of a 3D CNN as described in Section 3.1.

For the 3D CNN, we use the spatial stream of S3D-G, which

is pretrained on Kinetics-400 and takes RGB videos as in-

Features Modality EPE

All zeros - 2.92

S3D-G RGB 2.08

D3D RGB 1.76

S3D-G+FT RGB 1.34

S3D-G Flow 0.63

Table 1. Effect of feature extractor on optical flow prediction. “All

zeros” is a trivial decoder. “S3D-G” and “S3D-G+FT” refer to the

3D CNN with and without end-to-end fine-tuning. We add the op-

tical flow decoder to the “3A” layer of S3D-G and train it to predict

optical flow. Fine-tuning vastly improves performance, showing

that motion representations can be improved during training.
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Figure 3. Predicting optical flow from multiple layers in S3D-G

and D3D. The horizontal axis indicates which layer (see Figure 2)

is used as input to the decoder. D3D features are able to more

accurately reproduce optical flow across the board. Fine-tuning

S3D-G end-to-end for flow prediction (indicated “ft”) serves as a

lower bound.

puts. We train the decoder on 2 GPUs with a batchsize of

6 clips per GPU for 100K iterations, and otherwise use the

same hyperparameters as S3D-G [41]. We measure perfor-

mance using endpoint error (EPE) between the predicted

and ground truth optical flow.

Fixed vs. Finetuning In Table 1, we demonstrate that the

decoder can reproduce optical flow, but also that there is

significant room for improvement. To bracket performance,

we evaluate three baselines: (1) a trivial flow model that

predicts “All zeros”, (2) a decoder that is trained end-to-end

with the 3D CNN, and (3) a decoder trained on the activa-

tions of a temporal stream model, which is provided TV-

L1 flow as input. Compared to the baselines, the decoder

trained on spatial stream S3D-G is able to approximately es-

timate optical flow. However, we find that the decoded flow

is improved by finetuning the model end to end, meaning

that motion representations could be improved by changing

the training procedure of the 3D CNN.

Distillation and Flow Prediction In Figure 3, we compare

the flow prediction performance of S3D-G and D3D when

the decoder is applied at earlier layers. We observe lower

error across the board when attempting to predict optical

flow from D3D activations versus S3D-G activations.

While distillation improves optical flow prediction, it

does not improve it to the same extent as full end-to-end

fine-tuning. This shows that the two objectives, flow predic-
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RGB frame Optical flow

S3D-G predicted flow D3D predicted flow
Figure 4. Examples of optical flow produced by S3DG and D3D

(without fine-tuning) with the decoder applied at layer 3A. The

color and saturation of each pixel corresponds to the angle and

magnitude of motion, respectively. Optical flow is displayed at

28× 28px, the output resolution of the decoder. Both S3D-G and

D3D miss fine details, but D3D makes fewer mistakes.

tion and distillation, are complimentary but not completely

overlapping. As we will show in Section 5.6, distillation im-

proves action recognition accuracy while fine-tuning does

not. This result leads to an important finding: improv-

ing motion representations directly does not improve action

recognition performance, but improving action recognition

performance does improve motion representations. There-

fore, in order to improve action recognition performance, it

is not sufficient to optimize directly for better optical flow

prediction. Distillation takes an alternative approach. By

imitating the behavior of the temporal stream, we are able

to capture the motion features that are used by the temporal

stream while ignoring those that are not.

In Figure 4, we give examples of optical flow estimates

given using our method. Both S3D-G and D3D can capture

coarse motion, but miss fine details. Results using D3D

appear to have slightly more accurate motion boundaries,

a quality which is known to be useful for temporal stream

action recognition [7, 26], explaining the quantitative im-

provements in Table 1 and Figure 3. We provide more qual-

itative examples in the supplementary materials.

These results confirm our original hypothesis: 3D CNNs

provided with RGB input have a limited natural tendency

to capture the motion signal present in optical flow when

trained on action classification. The ability to capture mo-

tion signal can be significantly enhanced with modified

training objectives, such as distillation loss or by fine-tuning

for optical flow prediction.

5.3. Distillation on Kinetics

Kinetics-400. In Table 2, we compare D3D with several

competitive baselines. We report accuracy for I3D and

Method Modality Kinetics-400

ARTNet [39] RGB+Flow 72.4*

TSN [35] RGB+Flow 73.9*

R(2+1)D [36] RGB+Flow 75.4*

NL I3D [40] RGB 77.7*

SAN [1] RGB+Flow+Audio 77.7*

I3D [4] RGB 70.6 / 71.1*

I3D [4] Flow 62.1 / 63.9*

I3D [4] RGB+Flow 72.6 / 74.1*

S3D-G [41] RGB 74.0 / 74.7*

S3D-G [41] Flow 67.3 / 68.0*

S3D-G [41] RGB+Flow 76.2 / 77.2*

D3D RGB 75.9

D3D+S3D-G RGB 76.5

Table 2. D3D on Kinetics-400. All numbers given are top-1 accu-

racy on the validation set. “D3D+S3D-G” refers to an ensemble

of D3D and S3D-G. Numbers marked with an asterisk (*) are re-

ported on the full Kinetics-400 set, those without are reported on

the subset available as of October 2018 as described in Section 5.1.

Method Modality Kinetics-600

I3D [3] RGB 73.6 / 71.9*

S3D-G [41] RGB 76.6

S3D-G [41] Flow 69.7

S3D-G [41] RGB+Flow 78.6

D3D RGB 77.9

D3D+S3D-G RGB 79.1

Table 3. D3D on Kinetics-600. All numbers given are top-1 accu-

racy on the validation set. “D3D+S3D-G” refers to an ensemble

of D3D and S3D-G. Numbers marked with an asterisk (*) are re-

ported on the full Kinetics-600 set, those without are reported on

the subset available as of October 2018 as described in Section 5.1.

Results on I3D use different settings than in Table 2 [3].

S3D-G trained and evaluated on the reduced Kinetics-400

dataset described in Section 5.1. These replications were

run with code provided by the original authors and use iden-

tical settings to the published papers. Direct comparison

with S3D-G shows that the distillation procedure leads to

a 1.9% improvement in top-1 accuracy, without any addi-

tional computational cost during inference. Per-class accu-

racy is provided in the supplementary materials. Further-

more, we ensemble D3D with S3D-G (“D3D+S3D-G”) by

averaging their softmax scores, and achieve a small boost in

performance over the two-stream S3D-G approach which

uses optical flow. Our ensemble achieves better perfor-

mance than the two-stream equivalent, without the need to

compute optical flow.

Kinetics-600. In Table 3, we compare D3D with baseline

methods on Kinetics-600. Both the teacher and student net-

work are trained using Kinetics-600 in these experiments.

We achieve a 1.3% improvement in single-model perfor-
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Method UCF-101 HMDB-51

P3D [25] 88.6 -

C3D [34] 82.3 51.6

Res3D [35] 85.8 54.9

ARTNet [39] 94.3 70.9

I3D [4] 95.6 74.8

R(2+1)D [36] 96.8 74.5

S3D-G [41] 96.8 75.9

I3D Two-Stream [4] 98.0 80.7

ActionFlowNet [22] 83.9 56.4

MFNet [20, 23] - 56.8

Rep. Flow [23] - 65.4

MV-CNN [43] 86.4 -

TVNet+IDT [7] 95.4 72.6

Hidden Two-Stream [44] 97.1 78.7

D3D (Kinetics-400 pretrain) 97.0 78.7

D3D (Kinetics-600 pretrain) 97.1 79.3

D3D Ensemble 97.6 80.5

Table 4. Fine-tuning D3D on UCF-101 and HMDB-51. Our num-

bers are top-1 accuracy on test split 1 for both datasets. “D3D

Ensemble” refers to an ensemble of the two D3D models with dif-

ferent pretraining. No distillation is performed during fine-tuning.

mance using D3D, and further improvements by ensem-

bling D3D and S3D-G together, outperforming two-stream

S3D-G without the need for optical flow.

5.4. Transfer to UCF101, HMDB51

We demonstrate that D3D transfers to other action

recognition datasets by fine-tuning D3D on UCF-101 and

HMDB-51. For these experiments, we initialize the model

using D3D pretrained on Kinetics. However, during fine-

tuning, we use only the action classification loss, and not

distillation. This avoids the temporal stream altogether, dur-

ing both training and inference. While we could potentially

benefit from applying distillation during fine-tuning as well,

these experiments demonstrate that it is not necessary to do

so. Each model is fine-tuned for 10k steps on 10 GPUs with

a batch size of 6 per GPU, as described in [41].

In Table 4, we demonstrate that fine-tuning D3D outper-

forms many competitive baselines. The models in the top

section of the table are strong baselines based on 3D CNNs,

including S3D-G, which serves as a direct comparison to

show that the benefit of distillation during pretraining per-

sists after fine-tuning. The models in the middle section

of the table all specifically address the problem of learning

motion features without the use of optical flow. D3D out-

performs all baselines and achieves essentially equal perfor-

mance to Hidden Two-Stream when pretrained on Kinetics-

400. Hidden Two-Stream uses two I3D models plus an opti-

cal flow prediction network, so for fair comparison we also

ensemble two D3D models together, and show that this en-

semble outperforms Hidden Two-Stream [44].

Method Pretraining AVA

I3D w/ RPN [12] Kinetics-600 21.9

I3D w/ RPN + JFT [12] Kinetics-400 22.8

S3D-G w/ ResNet RPN [13] Kinetics-400 22.0

D3D w/ ResNet RPN Kinetics-400 23.0

Table 5. Performance on AVA using different backbone networks.

All numbers are frame-mAP on the validation set. Models with

“+ ResNet RPN” use a separate pretrained RPN stream based on

ResNet, while the others use the 3D features directly for the RPN.

The S3D-G baseline includes changes over the previously pub-

lished numbers, described in Section 5.5.

5.5. Transfer to AVA

We fine-tune D3D on the spatiotemporal localization

dataset AVA, and demonstrate that D3D transfers to this

new task. We use a similar approach to the baseline de-

scribed in the original AVA paper [13], but adopt some

changes introduced by a top entry in the 2018 AVA compe-

tition [12]. Like the AVA baseline, we use a Faster RCNN-

style approach, with a pretrained region proposal network

(RPN) based on ResNet, and video feature extractor back-

bone network based on 3D CNNs. Unlike this work, we

use D3D in place of I3D as the backbone network. We also

adopt the three key changes introduced in the competition

entry [12]. First, we regress only one set of bounding box

offsets per region proposal, rather than a different set of off-

sets per action class. Second, we train for 500k steps us-

ing synchronous training on 11 GPUs using a higher learn-

ing rate. Third, we add cropping and flipping augmentation

during training. Unlike [12], we do not remove the ResNet

RPN in either D3D or the S3D-G baseline.

In Table 5, we compare the use of D3D as a backbone

network with S3D-G and I3D. Our approaches use 50 RGB

frames and no optical flow. Direct comparison between

S3D-G and D3D shows that using D3D leads to a 1% im-

provement in Frame-mAP over S3D-G. We also see compa-

rable gains over I3D, and we still outperform the I3D-based

approach when it includes additional ResNet features pre-

trained on JFT, an internal Google dataset [30].

5.6. Ablation study

In the top section of Table 6, we experiment with two

alternative approaches to distillation, and demonstrate that

D3D outperforms both alternatives. In both cases, we make

slight modifications to prior work, described below, to allow

for fair comparison with distillation.

S3D-G with 3D CNN flow. Recent approaches, such as

TVNet and Hidden Two-Stream networks, improve the tem-

poral stream by learning their motion representations end-

to-end [44, 7]. To compare, we use the first few layers of

S3D-G as an optical flow prediction network, and use this

learned flow as input to the temporal stream. We use the

optical flow prediction network as described in Section 3.1,
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Method Kinetics-400

S3D-G spatial stream 74.0

S3D-G temporal stream 67.3

S3D-G with 3D CNN flow 69.7

S3D-G with flow loss 74.3

D3D distilled at layer 2C 74.4

D3D distilled at layer 4C 74.5

D3D distilled from spatial stream 74.3

D3D 75.9

Table 6. Ablation studies. All numbers given are top-1 accu-

racy on the reduced Kinetics-400 validation set described in Sec-

tion 5.1. D3D using our proposed approach outperforms all other

approaches listed. See Section 5.6 for details.

and train this end-to-end with an S3D-G temporal stream.

we use S3D-G pretrained to predict actions from optical

flow. In our experiments, we find that this approach outper-

forms the temporal stream applied to TV-L1 optical flow,

but still underperforms the spatial stream and D3D.

S3D-G with flow loss. Similar to ActionFlowNet [22], we

use optical flow prediction as an auxiliary task to improve

the spatial stream. We use the flow prediction network de-

scribed in Section 3.1, but we optimize the model to jointly

minimize the flow prediction loss and action classification

loss. This is a more direct way of encouraging the network

to learn motion representations. However, we find that this

does not generally lead to better results on action classifica-

tion, and distillation gives significantly better results. This

is possibly due to the fact that the flow loss is dominated by

background pixels, which take up most of the field of view

but are not typically important cues for action recognition.

Distillation at other layers. The middle section of Table 6

demonstrates applying the distillation loss at intermediate

layers. We find that applying the distillation loss at inter-

mediate layers is not as effective as at the network outputs.

Distilling from the spatial stream. In the bottom section,

“D3D distilled from spatial stream” uses the S3D-G spa-

tial stream as the teacher network in place of the temporal

stream. This shows that distillation alone does not explain

the improvement of D3D over S3D-G. Crucially, we only

see benefits when distilling from the temporal stream.

Different backbones. Distillation is agnostic to the 3D

CNN architecture, and therefore can be used in combina-

tion with any architecture. In Table 7, we show that D3D

improves I3D, S3D-G, and a modified version of S3D-G

which includes 2 non-local blocks [40]. More details about

non-local S3D-G are given in the supplementary. In all

cases, we use S3D-G as the teacher network, showing that

distillation can still work with cross-model transfer.

Ensembling D3D with Spatial and Temporal Streams.

In Tables 2, 3, and 4, we demonstrate that it is beneficial

to ensemble D3D with an additional spatial stream model.

Method Modality Kinetics-400

I3D [4] RGB 70.6

S3D-G [41] RGB 74.0

NL S3D-G RGB 74.7

D3D (I3D) RGB 72.3

D3D (S3D-G) RGB 75.9

D3D (NL S3D-G) RGB 76.0

Table 7. Backbone architectures. All numbers given are top-1 ac-

curacy on the validation set. “D3D (I3D)” and “D3D (NL S3D-

G)” refer to D3D with I3D and Non-Local S3D-G as the back-

bone architectures, respectively. Distillation gives a boost in per-

formance in all architectures.

Method Modality Kinetics-600

S3D-G RGB 76.6

D3D RGB 77.9

D3D+S3D-G RGB+Flow 77.6

D3D+S3D-G RGB+RGB 79.1

Table 8. Ensembling. D3D benefits from ensembling with an ad-

ditional spatial stream, but not a temporal stream.

However, in Table 8, we find that there is no similar ben-

efit when ensembling D3D with a temporal stream model.

This suggests that D3D already captures the signal present

in S3D-G Flow, otherwise we would expect to see benefits

by performing this ensemble.

6. Conclusions

We introduce D3D, a distilled 3D CNN which does not

require optical flow during inference and still outperforms

two-stream approaches. D3D does not require any changes

to the network architecture, and therefore can be used in

combination with any backbone network. Furthermore, we

show that D3D transfers to other action recognition datasets

without the need for further distillation. Finally, we study

the ability to predict optical flow with 3D CNNs, and we

show that while 3D CNNs have some limited capacity to

learn motion representations, D3D improves these repre-

sentation, and distillation is a more effective objective than

directly optimizing for optical flow prediction. Our work

shows that the optical flow stream can be discarded during

inference for no penalty, calling into question whether opti-

cal flow is really necessary for action recognition. However,

further work in this area needs to be done to see whether op-

tical flow can be avoided during training as well.
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