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Abstract

360◦ images represent scenes captured in all possible

viewing directions and enable viewers to navigate freely

around the scene thereby providing an immersive experi-

ence. Conversely, conventional images represent scenes in

a single viewing direction with a small or limited field of

view (FOV). As a result, only certain parts of the scenes are

observed, and valuable information about the surroundings

is lost. In this paper, a learning-based approach that re-

constructs the scene in 360◦ × 180◦ from a sparse set of

conventional images (typically 4 images) is proposed. The

proposed approach first estimates the FOV of input images

relative to the panorama. The estimated FOV is then used as

the prior for synthesizing a high-resolution 360◦ panoramic

output. The proposed method overcomes the difficulty of

learning-based approach in synthesizing high resolution

images (up to 512×1024). Experimental results demon-

strate that the proposed method produces 360◦ panorama

with reasonable quality. Results also show that the pro-

posed method outperforms the alternative method and can

be generalized for non-panoramic scenes and images cap-

tured by a smartphone camera.

1. Introduction

Images are limited to the boundaries of what the camera

can capture. An image with a narrow field of view (FOV)

sees only a small part of a given scene. After the scene

is captured, the viewer obtains no information on what

lies beyond the image boundary. A 360◦ panoramic im-

age overcomes this limitation through an unlimited FOV.

As a result, all information on scenes across the horizontal

and vertical viewing directions are captured. This imagery

provides viewers with an outward-looking view of scenes

and freedom to shift their viewing directions accordingly.

Furthermore, the images are widely used in many fields,

such as virtual environment modeling, display system, free-

viewpoint videos, and illumination modeling.

Generating a scene with a large FOV from a smaller one

is a long-standing task in computer vision domain. Given an

Figure 1: Overview of the proposed method to synthesize

360◦ panorama from partial input. The inputs are captured

in 4 perpendicular and horizontal viewing directions with-

out overlapping.

image with small FOV, humans can easily expect what the

image looks like in a larger FOV because of the human ca-

pability to estimate the scene outside of the viewing bound-

ary [13] that is learned during a lifetime. However, for a

computer vision task, an image with small FOV contains

minimal information about the surrounding scene, making

it an ill-posed problem and highly challenging task.

Conventional algorithms [7, 26] reconstruct a panoramic

image with a large FOV by stitching multiple images and

heavily rely on accurate homography estimation and feature

matching over significantly overlapped regions of input im-

ages. Therefore, these algorithms only synthesize a partial

panorama or many images are needed to synthesize a full

360◦ panorama.

By contrast, our study aimed to solve the problem of

synthesizing full 360◦ panoramic images from only a se-

quence of 4 images without any overlap. These sequences

are partial observations of scenes captured from 4 viewing
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directions as shown in Figure 1. Note that the camera focal

length and FOV are assumed to be unknown.

Learning-based methods rooted in deep neural net-

works (DNN) have achieved remarkable success and are

widely used to solve various computer vision tasks [1, 36,

24, 3]. The DNN encodes millions of parameters that are

suitable for handling tasks that require complex data mod-

eling. In this study, A learning-based method is adopted

to train the proposed model to significantly extrapolate and

interpolate scenes to form full panoramic images. The net-

work learns the statistics of various general outdoor scenes

to model their true distribution.

The proposed approach consists of two processing stages

that are developed based on convolutional neural network

(CNN) with generative adversarial framework. The first

stage is FOV estimation stage in which the main task is to

predict input images’ FOV relative to the full panoramic

images. This is an essential preprocessing step before the

actual panoramic synthesis. The estimated FOV from the

input sequence is mapped into the panorama FOV, which

we refer as relative FOV. The second stage is the panorama

synthesis, in which the output from the first stage is fed as

the input to synthesize 360◦ × 180◦ panorama.

To the best of our knowledge, the proposed method is the

first one to address the problem of relative FOV estimation

and synthesis of 360◦ panoramic images from a sparse set of

images without any overlap. The contribution of this paper

can be summarized as follows.

• We proposed a model and network to estimate the rela-

tive FOV from a sparse set of images with an unknown

FOV and no overlap (Sec. 3.1).

• We designed a novel deep neural network to synthe-

size full 360◦ × 180◦ panoramic images with high-

resolution up to 512×1024 (Sec. 3.2).

2. Related Work

2.1. FOV Prediction

DeepFocal [30] estimates the horizontal FOV of a single

image using pre-trained features on AlexNet [17] architec-

ture. The network takes input of images pixels directly and

finetuned to estimate the FOV. It treated as a regression task

by replacing the fully connected layers with a single node

output.

2.2. Image Inpainting and Completion

Inpainting methods interpolate missing or occluded re-

gions of input by filling these regions with plausible pixels.

Most algorithms rely on neighboring pixels to propagate the

pixel information to target regions [4, 6]. These methods

generally handle images with narrow holes and do not per-

form well on large holes [5, 18]. Liu et al. [20] recently

proposed to solve arbitrary holes by training CNN. To solve

an inpainting task, a partial convolution with a binary mask

is used as prior for the missing holes.

2.3. Novel View Synthesis

This method generates images with different viewing di-

rections. The task includes generating different poses trans-

formed by a limited rotation [27]. Dosovistsky [8] proposed

a learning-based approach to synthesize diverse view vari-

ations. This method is capable of rendering different mod-

els of inputs. Zhou et al. [35] proposed appearance flow

method to synthesize object with extreme view variations,

but this method is limited to a single object with a homo-

geneous background. These existing studies handled ob-

jects with limited shape variances and inward-looking view,

while the proposed work handles outward-looking views

with relatively diverse scenes.

2.4. Beyond Camera Viewpoint

Framebreak [34] yielded impressive results in generat-

ing partial panorama from images with a small FOV. The

method requires the manual selection of reference images

to be aligned with input images. Guided patch-based tex-

ture synthesis is used to generate missing pixels. The pro-

cess requires reference images with high similarity with the

input.

Xiao et al. [31] predicted the viewpoint of a given

panoramic observation. The prediction generated rough

panorama structure and compass-like prediction in deter-

mining the location of the viewpoint in 360◦. Georgoulis et

al. [9] estimated environmental map from the reflectance

properties of input images by utilizing these properties from

a foreground object to estimate the background environ-

ment in a panoramic representation. By contrast, the pro-

posed method does not rely on reference images as the in-

put, and it synthesizes actual panoramic imagery.

2.5. Generative Models

Generative models enjoy tremendous success in the im-

age synthesis domain. The generative adversarial network

(GAN) [10] synthesize images from noise instance and

works well on images with low resolutions but mainly strug-

gles on images with high-resolution and suffers from insta-

bility problem during training. During the last few years,

several architectures and variants [2, 21, 22, 14, 28, 15]

have been proposed to overcome these major limitations

and improve the results. Following the success of these

models, recent image inpainting based on generative mod-

els [12, 24, 32] are widely utilized to fill in the missing

regions. Wang et al. [29] handled the outpainting task by

generating full images from smaller input by propagating

the learned features from the small size images.
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Figure 2: The architecture of the proposed network. We show the visualization of the relative FOV estimation network (top)

and panorama synthesis network (bottom). The network takes sequence of 4 input images to estimate the equirectangular

panorama with missing pixels. This equirectangular panorama is then used as the input for the panorama synthesis network.

The synthesis process is done on each scale on small, medium, and large.

3. Proposed Approach

We designed and utilized a CNN with GAN-based

framework to address the estimation and synthesis problem,

as shown in Figure 2. The input to the proposed network

is an ordered sequence of 4 images. Each observation is

performed onto 4 cardinal directions of the compass rose:

north, west, south, and east, as shown in Figure 3.1 The

viewing directions of 4 inputs only need to be roughly per-

pendicular. As an ideal case, if 4 images are captured to

each perpendicular direction with a 90◦ FOV and 1:1 as-

pect ratio, a complete horizontal panorama can be formed

simply by concatenating them together.

3.1. Relative FOV Estimation

We define the scene in 4 cardinal directions as I =
[In, Iw, Is, Ie] for the northern, western, eastern and south-

ern direction, respectively. Images with smaller FOVs only

present a smaller portion of the scenes, as illustrated in Fig-

ure 4. The typical scene captured with standard camera nor-

mally have a FOV less than 90◦. As a result, they do not

1NWSE direction is just for explanation and can be a ‘random’ 4 direc-

tions as long as they are roughly 90◦ apart.

Figure 3: FOV visualization. The triangles are observa-

tion FOV looking from the vertical center viewpoint. Solid

triangles are observation with 90◦ FOV. Dashed triangles

are observations with less than 90◦ FOV which form partial

panorama.

form any connection or overlapping when concatenated. I

forms disconnected partial panorama on the horizontal axis

and is used as the input.

CNN architecture is utilized to solve the FOV estimation

task. Images from the same scene captured with 90◦ FOV

are shown in Figure 4(a) and smaller FOV in Figure 4(b).
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(a) (b) (c) (d) (e)

Figure 4: The meaning of relative FOV. (a) shows image with 90◦ FOV. The blue line shows scene coverage of different FOV.

(b) and (c) shows images at captured in 45◦ and 67.5◦ FOV. The outputs of our FOV estimation network are shown in (d) and

(e). The black region is the empty pixel, and image in the center is rescaled to match the panorama FOV.

The network takes smaller FOV images as the inputs and

estimates the relative FOV (Figure 4(d)). The input is pro-

cessed on the multi-stream layers before joining them to-

gether, followed by encoder and decoder structure. In the

bottleneck layer, the network outputs nodes representing the

relative FOV angle, which is treated in a similar manner

with classification task. Softmax cross-entropy loss is used

as the objective function for the classification task,

Hφ = −
N∑

i

{ỹi log(yi) + (1− ỹi) log(1− yi)}, (1)

where ỹ is the predicted FOV angle and y is the ground-

truth. Note that this approach does not estimate the actual

FOV. The angle of the FOV is relative to the size of the

images, thus by rescaling these images, the estimated rela-

tive FOV which corresponds to each viewing directions can

be obtained. The main goal of this network is to estimate

the relative FOV served as a constraint to help the synthesis

process.

The decoder layers synthesize mask-like image structure

in horizontal panorama format Ĩmask. The purpose of the

mask image synthesis is solely for guiding the FOV esti-

mation. We used L1 loss objective function for the image

structure synthesis, defined as follows,

Lmask = ||Imask − Ĩmask||1, (2)

where Imask is the ground truth horizontal panorama mask.

The full objective function of the relative FOV estimation is

defined as,

Lfov = Hφ + λmaskLmask, (3)

We processed the input images using the estimated relative

FOV angle φ by rescaling the image size and adding the

zero padding. Before the input is fed into the panorama

synthesis stage, the processed input is warped to equirect-

angular format. The final output from this estimation stage

is formulated as,

Ii = M(p(I, φ)) (4)

where p(·) is the scaling and padding function and M(·)
is the warping function from horizontal panorama to

an equirectangular panorama. Ii is the equirectangular

panorama with missing pixel region.

3.2. Panorama Synthesis

The panorama synthesis problem is treated with a hierar-

chical approach. Images with high resolution have more

information distribution in space than images with lower

resolution, making the training progress difficult. Instead

of aiming for the global minimum in a single run, we en-

forced the network to learn step by step in achieving the lo-

cal minimum on each hierarchy. This step can be regarded

as providing soft guidance to help the network converge.

Similar to the image pyramid, the task is decomposed

into synthesizing images with different scales. To this end,

we decomposed the input images into three hierarchies,

namely, small, medium, and large scale. The large scale

is the target panorama with 512 × 1024 resolution. The

medium scale is downsampled by the scale factor of 2 from

the original scale with 256×512 resolution. The small scale

is downsampled again by the scale factor of 2 with 128×256
resolution.

3.2.1 Unified Generator

The generator consists of three sub-networks, namely Gs,

Gm, and Gl, each corresponding to a different scale. These

sub-networks contain both the input-output bridge. The in-

put bridge is used to facilitate the connection on a different

scale, while the output bridge is used to map the output from

high dimensional channels to RGB channels. The smallest

scale generator is utilized as the base generator for the entire

training process.

The training process is performed separately on each

scale starting from the smallest scale. To train the next hi-

erarchy, the base generator Gs is unified with the generator

Gm. Weight parameters learned from the previous scale are

reused and fine-tuned at each increased scale. This training

process is repeated until the original scale is reached. As a

result, the generator Gl is unified with both Gm and Gs at
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the largest scale to form a single generator.

We proposed short- and long-term connection for the

network architecture. The short-term connection is em-

ployed with residual blocks [11] in the base generator and

the input bridge for the large scale images. The long-term

connection is used to maintain the feature connectivity be-

tween layers. Unlike [33] where the attention map is used

in its current layer, the attention map is propagated by con-

catenating them from early blocks with last blocks as the

long-term connection.

3.2.2 Multiscale Residual

The base generator takes an input from small-scale image

and outputs small-scale panorama. For the medium-scale,

this output is used as the residual by performing upsam-

pling operation and is added to the medium-scale panorama

output subsequently. The same rule follows for training the

large-scale images by keeping the input bridge of the small-

and medium-scale images, followed by the residual from

the output bridge. The function is defined as,

Î lp = Gl(I li) + f(Împ ), (5)

Împ = Gm(Imi ) + f(Îsp), (6)

Îsp = Gs(Isi ), (7)

where Î∗p is the panorama output and I∗i is the input at each

scale. G∗ and f denote the network function and the up-

sampling operation, respectively.

3.2.3 Network Loss

For each image scale, multiple patch discriminators are em-

ployed, that is Ds, Dm, and Dl. They have identical ar-

chitecture with encoder-like structure across all scales. At a

small scale, only single discriminator Ds is used. Both Ds

and Dm are used at the medium scale and use all three dis-

criminators at the large scale. For the medium and large

scales, the output images from the current resolution are

downscaled to match the resolution at each scale.

Conditional GAN has a discriminator network D which

takes both input and output from the generator. We utilized

the conditional architecture with LSGAN [23] loss as the

adversarial loss for the synthesis problem. The objective

function for the adversarial loss is defined as,

L∗̇

adv(G,D) =
1

2
EIp [(D(Ii, Ip)− 1)2]+

1

2
E

Ii,Îp
[(D(Ii, Îp]))

2], (8)

where Ladv ∗̇ denotes the adversarial loss at a specific scale.

The independent loss function at the largest scale is defined

as

Ll
adv = Lṡ

adv + Lṁ
adv + Ll̇

adv, (9)

where L∗

adv denotes the total adversarial loss from the dis-

criminators.

Pixel loss is employed to supervised loss to facilitate the

synthesis task. We used L1 loss to minimize the generated

output with the ground truth panorama. The network objec-

tive function is defined as,

L∗

pix = E
Ip,Îp

[||I∗p − Î∗p ||1], (10)

where Ii and Îp are the input image and the output from the

generator G(Ii), respectively. The pixel loss is defined as

the L1 distance between the ground truth panorama Ip and

Îp. To further improve the realism of the generated output,

we added the perceptual loss obtained from the pre-trained

weight of VGG networks, which are defined as,

L∗

vgg =
∑

i

Xi(I
∗

p )−Xi(Î
∗

p ), (11)

where X is the extracted i-th features from the VGG net-

work. The overall loss for the network is defined as,

L∗ = argmin
G

max
D

L∗

adv + λL∗

pix + λL∗

vgg, (12)

which is the total adversarial GAN loss, with the pixel loss

scaled by λ constant factor.

4. Experimental Results

We encourage the readers to refer to the supplementary

material for more results on general scene, different input

setup, and the visualization of the panorama’s free view

point video. The training procedure is done separately on

the field of view estimation network and panorama synthe-

sis network. Our networks are built on convolutional blocks

followed with instance normalization and leaky ReLU ac-

tivation. The input bridge maps three RGB channels

onto 64-dimensional layers. The output bridge maps 64-

dimensional channels back to a RGB channels. ADAM [16]

optimizer is used with learning rate α = 0.0002, β1 = 0.5,

and β2 = 0.99. The input and output are normalized to

[−1, 1].

4.1. Dataset

For the training and evaluation of the proposed network,

outdoor panoramic images are used from the SUN360 [31]

dataset. The dataset was split into a training set (80%) and

a testing set (20%). The dataset contains approximately

40,000 images (512×1024) with various scenes rendered in

equirectangular format. To accommodate the data with the

proposed framework, we rendered the panorama to a cube

map format by warping it to the planar plane. The viewing

direction is split into the 4 horizontal sides of the cube. The

FOV angle is rendered randomly from 45◦ to 75◦ with iden-

tical angle on each NWSE direction. The vertical center is

located at 0◦, and the horizontal center is located at 0◦, 90◦

180◦, and 270◦.

2390



(a) (b) (c)

Figure 5: Synthesized panoramas in 512×1024. The input of 4 cardinal direction shown in upper left (a). The relative FOV

is estimated and warped into partial panorama in upper right (a). Ground truth is shown in bottom (a). We visualized our

synthesized 360◦ panoramas in (b). The results are compared with pix2pixHD [28] in (c). The proposed method produces

sharper panorama images while the baseline work produces smoother and blurrier results.

(a) (b) (c)

Figure 6: Synthesized panorama in 512×1024 from non-horizontal input. The input of 4 cardinal direction shown in upper

left (a). The relative FOV is estimated and warped into partial panorama in upper right (a). Bottom (a) shows a visualization

of the non-horizontal input. The output and ground truths are shown in (b) and (c).

4.2. Qualitative Evaluation

High resolution synthesis using conditional GAN is not

widely studied. pix2pixHD [28] is mainly presented to syn-

thesize images from semantic labels. However, the condi-

tional properties of GAN in the framework can be used as a

baseline approach in our case. The proposed method clearly

outperforms the baseline, as shown in Figure 5. Note that

the repetitive pattern at the bottom is due to the training

data which contains circular shape of watermark in it. Addi-

tional result on the case where the input is non-horizontally

aligned is shown in Figure 6.

The outdoor scene dataset also exhibits greater vari-

ance than the dataset of faces or road scenes in semantic-

to-image synthesis which makes the task more challeng-
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(a) (b) (c)

Figure 7: Results of smartphone images. The input of 4 cardinal direction shown in upper left (a). The relative FOV is

estimated and warped into partial panorama in upper right and bottom (a). We visualize our synthesized 360◦ panoramas in

(b). The results are compared with pix2pixHD [28] in (c).

Method Accuracy Error

DeepFocal [30] 0.56 0.33

Ours (w/ mask) 0.78 0.05

Ours (w/ pixel) 0.76 0.06

Table 1: Accuracy and error of the FOV estimation.

ing. The typical results from the baseline are synthesized

smoothly, but they appear cartoonish and lacking in detail,

whereas our result is relatively sharp. We believe that this

difference is achieved by hierarchical synthesis method that

we proposed.

4.3. Quantitative Evaluation

We measured the accuracy and the percent error of the

estimated FOV in Table 1. The error shows how different

the predicted value from the actual ground truth. It is shown

that the proposed method yields better accuracy with very

low error. The low error denotes that the FOV angle is off

by only a few degrees. The FOV estimation with pixel syn-

thesis can only generate rough image structure and presents

several improvements over the baseline, but have lower ac-

curacy compared to mask structure synthesis.

Generative model’s evaluation metrics are not well es-

tablished. Each metrics has advantages and disadvantages.

Several works on super resolution [19] and image syn-

thesis [25] using the generative model employ structural-

similarity (SSIM) and peak signal to noise ratio (PSNR).

For the sake of comparison, we evaluated the proposed

method on both SSIM and PSNR. The proposed method

yields better average SSIM and PSNR over the baseline,

shown in Table 2.

We further evaluated the performance of the proposed

method with a user study. The study is conducted with 50

blind pairwise comparisons on 20 participants. For the high

resolution output, our result is preferred by 89% of users

compared to the pix2pixHD [28]. For the small resolution

output trained with random mask, our result is preferred by

92% of users compared to SRN [29].

4.4. RealWorld Data in the Wild

Furthermore, we showed additional results for real-

world scenes taken with a smartphone, as shown in Figure 7.

Our capturing process is convenient as it only requires a

few seconds to capture 4 images in different view direc-

tions instead of capturing images continuously. The input

images are captured with a rough estimation of 4 cardinal

directions. There could be inaccuracy where the viewing

directions are not perpendicular to each other. However, a

visually plausible result can still be generated.

4.5. Ablation Study

Hierarchical structure (NH) We conducted an experi-

ment by training the network in two different manners,

namely the direct and hierarchical synthesis. The compared

network is built on a similar design without any changes

but trained without a hierarchical structure. The output is

shown in Figure 8. By learning from the lower scale im-

ages, the output trained in a hierarchical manner is synthe-

sized with better details compared with direct synthesis.

Short- and long-term connections (NC) We investigated

the effect of using the long-term connection on the training,

as shown in Figure 9. The long-term connection acts like

the prior input for the network. Features from early convo-

lutional blocks encode similar properties of the input which
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Metric Proposed Proposed-NH Proposed-NC Proposed-SD pix2pixHD [28]

SSIM 0.4528 0.3951 0.4452 0.4312 0.3921

PSNR 15.971 15.273 15.927 15.336 15.264

Table 2: Quantitative comparison with SSIM and PSNR (in dB) scores between the proposed method and the baseline. The

variant of proposed method is included without hierarchical structure (NH), without long-term connection (NC), and with a

single discriminator (SD).

(a) (b) (c) (d)

Figure 8: Ablation study: The effect of hierarchical synthesis. (a) Input, (b) Ground truth, (c) Hierarchical synthesis, (d)

Direct synthesis.

(a) (b) (c) (d)

Figure 9: Ablation study: The effect of long-term connection. (a) Input, (b) Ground truth, (c) With long-term connection, (d)

Without long-term connection.

(a) (b) (c) (d)

Figure 10: Ablation study: The effect of different discriminators. (a) Input, (b) Ground truth, (c) Multi discriminators, (d)

Single discriminator.

is particularly useful for our case where the network has a

deep architecture. Early features help guide the network to

maintain similar properties between the input and output.

Multiple discriminators (SD) During the experiments,

we found that using multiple discriminators can stabilize the

training process. The comparison between them is shown in

Figure 10. Output trained with multiple discriminators pro-

duces better output with less visible artifacts.

Quantitative result on all type of the ablation studies is

evaluated in the Table 2.

4.6. Limitations

Although the performance of the proposed method is

promising, it has a few limitations. First, the proposed

method struggles in synthesizing scene with highly com-

plex structure with many trees, foliage, and people. Sec-

ond, the FOV estimation network is limited to handle input

in an ordered non-overlapping sequence with an identical

FOV angle. Third, in order to use the synthesized panorama

in virtual reality equipment, the resolution should be much

higher than current maximum resolution (512×1024). We

hope that those limitations can be handled properly in the

further research.

5. Conclusion
In this study, the novel method is presented to synthe-

size 360◦ × 180◦ panorama from a sequence of wide base-

line partial images. The proposed method generated high-

resolution panoramic images by estimating the FOV and hi-

erarchically synthesizing panorama. Experimental results

showed that the proposed method produced 360◦ panorama

with good quality. Furthermore, it outperformed the con-

ventional method and extendable to non-panorama scenes

and images captured by a smartphone camera.
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