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Abstract

Generating 3D point clouds is challenging yet highly de-

sired. This work presents a novel autoregressive model,

PointGrow, which can generate diverse and realistic point

cloud samples from scratch or conditioned on semantic con-

texts. This model operates recurrently, with each point

sampled according to a conditional distribution given its

previously-generated points, allowing inter-point correla-

tions to be well-exploited and 3D shape generative pro-

cesses to be better interpreted. Since point cloud object

shapes are typically encoded by long-range dependencies,

we augment our model with dedicated self-attention mod-

ules to capture such relations. Extensive evaluations show

that PointGrow achieves satisfying performance on both

unconditional and conditional point cloud generation tasks,

with respect to realism and diversity. Several important ap-

plications, such as unsupervised feature learning and shape

arithmetic operations, are also demonstrated.

1. Introduction

Recently 3D generative model has attracted enormous

research interests because it directly promotes the develop-

ment of emerging applications, such as virtual/augmented

reality [44, 46] and self-driving cars. For example, it is

capable of completing the LIDAR scans that might suffer

from occlusion issues [63]. Therefore, intelligent systems

that are able to automatically generate realistic and diverse

3D shapes are highly desired.

3D shapes are usually represented as triangle meshes or

point clouds due to their light-weight nature and simple

form. Such shape representations are flexible for rendering,

but impose a problem when applying computer vision tech-

niques for processing, because most standard operations are

designed based on regular grid-based formats (e.g. image),

while meshes and point clouds are fundamentally irregular:

∗corresponding author.

vertex or point positions are continuously distributed in the

space, and any permutation of their face or point ordering

does not change the spatial distribution. Therefore, one ma-

jor line of 3D research discretizes a continuous shape repre-

sentation onto a 3D grid [5, 30, 57, 58]. But such volume-

based representations consume significant memory and in-

troduce quantization artifacts, making it difficult to generate

high-res 3D shapes and retain fine-grained surface details.

Therefore, it is more desirable to design a framework spe-

cific to raw shape representations, rather than relying upon

intermediate representations. In this paper, we choose to

represent shapes using point clouds, because they comprise

the output of most existing 3D sensing technologies, show-

ing more application values but with less complexity.

The vast majority of existing learning-based works for

3D point clouds generation rely on two types of distance

metric between point sets, Chamfer Distance (CD) and

Earth Mover’s Distance (EMD) [12], to handle the irregu-

larity problem of point clouds. Serving as the loss function,

these distance metric penalizes the dissimilarity between

the generated and ground truth point sets, and help deep

generative models learn to produce visually-plausible 3D

shapes for various types of inputs [14, 28, 2, 13, 21, 62, 17].

However, the generative process is hard to interpret due to

the intrinsic limitation of inter-set distance metric.

In this work, we seek to explore a different approach to

better understand and interpret the point cloud generative

process. We begin by observing that the points constituting

a 3D shape have correlations. For example, most man-made

shapes are symmetric, such as the four legs of a table; also,

points are distributed in a correlated way to form different

parts of a shape (e.g. to produce an airplane, some points

form its wings, while others have to form its body structure).

To explicitly learn and utilize such inter-point correlations

for shape generation, we adopt a probabilistic approach to

jointly model the spatial distribution of all the points of a

shape in an n dimensional space, where n is the number

of points in a point cloud. Underpinned by a joint point

distribution reflecting the underlying inter-point correlation
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in the data, a high joint probability value should correspond

to the point set distribution of a plausible 3D shape, while a

low value should indicate an implausible one. In this way,

the point cloud generation process can be cast as a sampling

process in an n dimensional point space.

Furthermore, since a joint probability can be decom-

posed by chain rule as the product of a series of condi-

tional probabilities, the joint point set probability can be ex-

pressed by a series of conditional point probabilities, where

each point is conditioned on its previously generated ones.

This property naturally enables us to visualize the shape

generative process and interpret inter-point correlations in

a point-by-point manner during the point sampling process,

as shown in Figure 1.

To this end, we propose an autoregressive framework

dubbed PointGrow to generate every point recurrently.

Specifically, PointGrow estimates a conditional distribu-

tion of the point under consideration given all its preceding

points. However, the irregularity of point clouds imposes

difficulties when aggregating meaningful information from

a given point set, especially when such information is con-

tained by distant points. Therefore, we further propose two

point cloud-based self-attention modules to dynamically ag-

gregate long-range dependencies from available points. Our

experiments show that those two modules can improve in-

formation flow between points, and successfully capture

meaningful semantic information.

The contributions of our work are summarized as below:

• We propose a novel autogressive model, PointGrow,

for point cloud generation, which models the joint 3D

spatial distribution in a point-by-point manner. Point-

Grow has two appealing properties: 1) it is capable of

generating diverse and realistic 3D clouds, 2) it consti-

tutes an interpretable 3D shape generative process.

• Two self-attention modules are carefully designed to

capture long-range dependencies and semantic corre-

lations between points, facilitating the generation of

plausible part configurations within 3D objects.

• Besides point cloud generation, our framework also

enables several important applications, such as diverse

shape completions, unsupervised feature learning and

shape arithmetic operations.

2. Related Work

While 3D data processing and generation has a long his-

tory, here, we only discuss the directly related work of us-

ing deep networks to analyze 3D shapes, autoregressive net-

works, and self-attention.

Figure 1. The point cloud generation process in PointGrow (best

viewed in color). Given i − 1 generated points, our model es-

timates a conditional distribution of coordinate zi, indicated as

p(zi|s≤i−1), and then samples a value (indicated as a red bar) ac-

cording to this distribution. The process is repeated to sample yi

and xi with previously sampled coordinates as additional condi-

tions. The ith point (red point in the last column) is obtained as

{xi, yi, zi}. Note that x512 shows a symmetric wing shaped con-

ditional distribution.

2.1. Shape Analysis

Volumetric Methods. 3D shape recognition and genera-

tion has been studied using 3D voxel grids [5, 10, 30, 57,

58, 47]. Voxelization often produces a sparsely-occupied

3D grid, which limits resolution and introduces quantiza-

tion artifacts. Recent frameworks have been proposed to

reduce spatial complexity of volumetric shape representa-

tions, [16, 18, 39, 45, 49, 55], though these generally suffer

from high computation costs.

Mesh-Based Methods. 3D meshes are a lightweight ap-

proach for geometric modelling via a set of vertices and

triangular or quad primitives. Recent work has extended

standard convolutions to mesh surfaces for aggregating

and propagating local features [4, 6, 29, 61]. Relevant

work reconstructing 3D shapes as 3D meshes is found in

[54, 2, 41, 22, 25, 33, 34, 20, 48].

Point Cloud-Based Methods. PointNet [36] is the pio-

neering work in applying deep neural nets to point sets,

using a symmetric function to aggregate feature vectors

for all points in a permutation-invariant manner. Point-

Net’s successors explore ways to accumulate local infor-

mation in the spatial [37, 43, 24, 35] and embedded fea-

ture domains [56, 27, 50] to achieve high performance.

To address point cloud generative tasks, [12] introduced

two symmetric distance metrics, CD and EMD, to mea-

sure the distance between two point sets. These metrics

are order-invariant, which makes them suitable as loss func-

tion operated directly on point clouds. By taking advan-

tage of these metrics, models have been proposed to ad-

dress point cloud synthesis problems under different set-

tings [14, 28, 2, 13, 21, 62, 60, 17, 63]. However, existing
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Figure 2. The proposed model architecture and context awareness operations to estimate conditional distributions of point coordinates. ⊗:

element-wise production, ⊕: concatenation.

generative approaches focus on measuring inter-set dissim-

ilarity, and the inter-point relationship within a point set is

not well understood.

2.2. Autoregressive Networks

Autoregressive networks model current values as a func-

tion of their own previous values, and have been adopted

to model the joint distribution of image pixels [31, 52, 40]

and audio samples [51]. The joint distribution is cast as a

product of conditional distributions, and each condition dis-

tribution is modeled using a deep neural network that takes

as input previously generated values and outputs a distribu-

tion for the value currently under consideration. But it is

not trivial to adapt autoregressive frame to point cloud due

to the irregularity problem of point clouds.

2.3. SelfAttention

Attention is a flexible mechanism to capture information

in a self-adaptive manner such that accumulated important

information is weighted highly. It improves performance

in tasks including image recognition [26, 11] and natural

language processing [9, 53, 3]. Recently, self-attention has

been adopted into generative tasks, such as image gener-

ation [64]. In our experiments, we demonstrate that self-

attention modules can be extended to process unordered

point sets and capture inter-point correlations.

3. PointGrow

This section introduces the formulation and implementa-

tion of PointGrow (and its conditional version), a point-by-

point generative model for 3D point clouds.

Unconditional PointGrow. A point cloud, S, that consists

of n points is defined as S = {s1, s2, ..., sn}, with its ith

point si = {xi, yi, zi} in 3D space. Our goal is to assign

a probability p(S) to each point cloud. We do so by factor-

izing the joint probability of S as a product of conditional

probabilities over all its points:

p(S) =

n∏

i=1

p(si|s1, ..., si−1) =

n∏

i=1

p(si|s≤i−1) (1)

The value p(si|s≤i−1) is the conditional probability of the

ith point si given all its previously generated points, and

computed as a joint probability over its coordinates:

p(si|s≤i−1) = p(zi|s≤i−1)·p(yi|s≤i−1, zi)·p(xi|s≤i−1, zi, yi),
(2)

where each coordinate is conditioned on available coordi-

nates. To facilitate the generation process, we sort training

points according to their z coordinates to encourage a shape

to be generated mainly along its primary axis during testing

(like 3D printing), hoping that semantic information can be

better captured to produce consistent shapes (e.g. a rear

car body to be generated has to match an existing front).
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But since our model is sampling-based, the generated coor-

dinates are not strictly larger than their previous ones and

processing modules (introduced later) should be invariant

to point permutation. Here, we model the conditional prob-

ability distribution of each coordinate using a deep neural

network. Prior art [31] shows that a softmax discrete distri-

bution is more flexible than a continuous one to model any

arbitrary distribution. So we discrete point coordinates by

scaling them into the range [0, 1] and quantizing them to d

uniformly distributed values. Note that different from many

existing voxel-based methods generating tensors of size d3

and operating on 3D volumes, our model outputs tensors

of 3× n× d (usually much smaller than d3 considering the

resolution of shape volumes) and operates directly on sparse

point representation. We set n = 1024 and d = 200 as a

trade-off between generative performance and quantization

artifacts. Larger n and d can be used to achieve better visual

results but at the cost of slower performance.

Context Awareness Operation. Context awareness im-

proves model inference. For example, in [36] and [56], a

global feature is obtained by applying max pooling along

each feature dimension, and then used to provide context

information for solving semantic segmentation tasks. Simi-

larly, we obtain context-aware features for all sets of gener-

ated available points in the point cloud generation process,

as illustrated in Figure 2 (bottom left). Each row of resul-

tant context-aware features aggregates the context informa-

tion of all the previously generated points dynamically by

fetching and averaging. This Context Awareness (CA) op-

eration is implemented as a plug-in module in our model,

and mean pooling is used in our experiments.

Self-Attention Context Awareness Operation. The CA

operation accumulates point features in a fixed manner via

pooling. Improving this, we propose two learning-based

operations to determine the weights for aggregating point

features self-adaptively. We define these as Self-Attention

Context Awareness (SACA) operations, and the weights as

self-attention weights.

Figure 2 shows the first SACA operation, SACA-A. To

allow each input point feature to understand its importance

in context and later determine its weight, we associate it

with its context-aware feature obtained after a CA module.

The combined feature vector is then passed into a Multi-

Layer Perception (MLP) to learn self-attention weights.

Given an n × f point feature matrix, F, with its ith row,

fi, representing the feature vector of the ith point, we com-

pute the ith self-attention weight vector, wi, as below:

wi = MLP (Mean
1≤j≤i

{fj} ⊕ fi), (3)

where Mean{·} is mean pooling, ⊕ is concatenation, and

MLP (·) is a sequence of fully connected layers. The self-

attention weights encode information about context changes

due to each newly generated point, and are unique to that

point. Next, we conduct element-wise multiplication be-

tween input point features and self-attention weights to ob-

tain weighted features, which are then accumulated sequen-

tially to generate corresponding context features. The pro-

cess to calculate the ith context feature, ci, is summarized

as:

ci =

i∑

m=1

fm ⊗ wm =

i∑

m=1

fm ⊗MLP (Mean
1≤j≤m

{fj} ⊕ fm),

(4)
where ⊗ is element-wise multiplication. Finally, we shift

context features downward by one row, because for the ith

point, si, only its previous points, s≤i−1, are available. A

zero vector of the same size is attached to the beginning

as the initial context feature, indicating no a-priori context

knowledge is available.

Figure 2 also shows the other SACA operation, SACA-

B. SACA-B differs from SACA-A in the way to com-

pute and apply self-attention weights. In SACA-B, the ith

context-aware feature after CA operation is shared by all the

first i point features to obtain self-attention weights, which

are used to compute ci. This process is described as:

ci =

i∑

m=1

fm ⊗ wm =

i∑

m=1

fm ⊗MLP (Mean
1≤j≤i

{fj} ⊕ fm)

(5)

Compared to SACA-A, SACA-B self-attention weights en-

code the importance of each point feature under a common

context. Their differences are highlighted in Eq. (4) and

(5).

In Figure 3, we visualize the attention fields during gen-

erative processes by visualizing Euclidean distances be-

tween the context feature of a query point and the point

features before the SACA operation of its previously gen-

erated points.

Model Architecture. Figure 2 top shows the proposed

network to output conditional coordinate distributions.

The top, middle and bottom branches model p(zi|s≤i−1),
p(yi|s≤i−1, zi) and p(xi|s≤i−1, zi, yi), respectively. Note

that the input points in the latter two cases are masked so

that the network cannot see information not-yet-generated.

During training, points are available to compute all the con-

text features, thus coordinate distributions can be estimated

in parallel. During the generative phase, the point coordi-

nates are sampled according to the estimated softmax prob-

ability distributions. This occurs sequentially, since each

sampled coordinate needs to be fed as input back into the

network, as shown in Figure 1. Our proposed autoregressive

architecture models point coordinate distribution categori-

cally, thus a simple cross-entropy loss is sufficient to handle

the shape learning process efficiently without requiring the

use of a computationally-intensive set-to-set distance loss

function.
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Figure 3. Visualize generated shapes by PointGrow (for each two-column shape set, Left: SACA-A; Right: SACA-B). The bottom part

additionally shows self-attention fields, measured by Euclidean distance in feature space, for query locations (red points). Note that the

attention modules capture not only spatial but also semantic correlations. For example, when generating wing structure points, the model

attends more on other available wing structure points, and some are spatially far but semantically close.

Conditional PointGrow. Given a condition or embedding

vector, h, we intend to generate a shape satisfying the latent

meaning of h. To achieve this, Eq. (1) and (2) are adapted

to Eq. (6) and (7), respectively, as below:

p(S) =

n∏

i=1

p(si|s1, ..., si−1, h) =

n∏

i=1

p(si|s≤i−1, h) (6)

p(si|s≤i−1, h) = p(zi|s≤i−1, h) · p(yi|s≤i−1, zi, h)

· p(xi|s≤i−1, zi, yi, h) (7)

The additional condition, h, affects the coordinate distribu-

tions by adding biases and potential constrains in the gen-

erative process. We implement this by changing the opera-

tion between adjacent fully-connected layers from xi+1 =
f(Wxi) to xi+1 = f(Wxi + Hh), where xi+1 and xi are

feature vectors in the i+ 1th and ith layer, respectively, W

is a weight matrix, H is a matrix that transforms h into a

vector with the same dimension as Wxi, and f(·) is a non-

linear activation function. In this paper, we experimented

with h as an one-hot categorical vector which adds class

dependent bias, and an high-dimensional embedding vector

of a 2D image which imposes geometric constraints.

4. Experiments

Datasets. We evaluated our framework on the ShapeNet

[7] CAD dataset. We used a subset consisting of 17,687

models across 7 categories: airplanes, cars, tables, chairs,

benches, cabinets and lamps. To generate corresponding

point clouds, we sampled 10,000 points uniformly from

each mesh file, and then used farthest point sampling to

select 1,024 points representing the shape. Each category

follows a split ratio 0.9/0.1 to separate training from testing

sets. ModelNet40 [58] and PASCAL3D+ [59] are used for

additional analysis and demonstration.

4.1. Unconditional point cloud generation

We first evaluate unconditional PointGrow by addressing

the following questions: (1) Can the model generate visu-

ally plausible 3D shapes in an interpretable manner? (2)

Can the model generate diverse shapes? (3) Is the proposed

self-attention module important for shape generation? (4)

Does the model learn meaningful feature representation?

(1) Generative Process Interpretability and Shape Qual-

ity. We start evaluation by showing qualitative results of

generated point clouds of unconditional PointGrow, shown

in Figure 3. Fine-detailed structures can be observed from

the generated shapes, such as the jet engine of airplanes and

legs of furniture (e.g. table and chair). In the bottom part of

Figure 3, we additionally show attention fields when gener-

ating corresponding query points in the process. It can be

observed that the model focuses on different regions when

generating points for different parts, and the focused areas

are usually semantically related no matter their spatial dis-

tances. For example, when generating airplane wing points,

the model aggregates structural knowledge from available

wing part points; when generating points close to table legs,

other previously generated leg points contribute most; when
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Figure 4. Shape completion results generated by PointGrow.

generating torchiere shade points for the lamp, the model

considers both existing torchiere shade and base areas for

a proper structural match. We also show a sampled gen-

erative process for an airplane in Figure 1. Note that the

model produces different conditional distribution for points

at different parts (e.g. in the second row of Figure 1, the

network model outputs a roughly symmetric distribution

along the X axis, describing the airplane’s wings). From

the above investigation, the interpretability of the proposed

generative process is demonstrated. In this experiment, we

train our model for each category separately, because an un-

conditional model lacks knowledge about the target shape

when sampling from scratch. In later experiments, we show

that when a categorical condition is given, it is possible to

train the model across multiple shape categories and gener-

ate plausible shapes.

Next, we quantitatively evaluate the quality of generated

shapes. The negative log-likelihood is commonly used to

evaluate autoregressive models for image and audio gen-

eration [31, 51]. However, we observed inconsistency be-

tween this value and the visual quality of generated 3D

shapes. This is validated by comparing two baseline mod-

els: CA-Mean and CA-Max, where the SACA operation is

replaced with the CA operation implemented by mean and

max pooling, respectively. In Figure 5, we report negative

log-likelihoods in bits per coordinate on ShapeNet testing

sets of airplane and car categories, and visualize their rep-

resentative results. Despite CA-Max shows lower negative

log-likelihood values, it gives less visually plausible results

(i.e. airplanes lose wings and cars lose rear ends).

Figure 5. Negative log-likelihood for CA-Max and CA-Mean

baselines on ShapeNet airplane and car testing sets.

To actually evaluate the generated shape quality, we ar-

gue that if generated 3D shapes contain consistent seman-

tic features as real shapes, a classification model trained on

real shapes should perform well on generated ones, and vice

versa. Therefore, after training on ShapeNet sets, we gen-

erate 300 point clouds per category (2,100 in total for 7 cat-

egories), and conduct two classification tasks: one training

on original ShapeNet training sets and testing on generated

shapes, the other training on generated shapes and testing

on original ShapeNet testing sets. Here, PointNet [36], a

widely-uesd model, is used as the point cloud shape clas-

sifier. We implement another two GAN-based competing

methods and report classification results in Table 1, together

with model complexity using number of model parameters.

In the first classification task, our SACA-A model outper-

forms existing models by a relatively large margin, while in

the second task, SACA-A and SACA-B models show simi-

lar performance.

Methods SG GS # parameters

3D-GAN [57] 82.7 83.4 22.53M

Latent-GAN [1] 81.6 82.7 15.78M

Baseline (CA-Max) 71.9 83.4 0.23M

Baseline (CA-Mean) 82.1 84.4 0.23M

Ours (SACA-A) 90.3 91.8 0.29M

Ours (SACA-B) 89.4 91.9 0.25M

Table 1. Classification accuracy using PointNet [36]. SG: Training

on ShapeNet sets and testing on generated shapes; GS: Training

on generated shapes and testing on ShapeNet sets.

(2) Shape Diversity. To demonstrate PointGrow can gener-

ate diverse shapes, we conducted a shape completion task.

Given an initial set of points, our model is capable of com-

pleting shapes in multiple ways. Figure 4 visualizes exam-

ples. The input points are sampled from ShapeNet testing

sets, which are not seen during the training process. The

shapes generated by our model are different from the orig-

inal ground truth point clouds, but still look plausible. A

current limitation of our model is that it works only when

the input point set is given as the beginning part of a shape

along its primary axis, and in future work we will investi-

gate how to complete shapes when partial point clouds are

given from any directions.

(3) Ablation Study on Self-Attention Module. We con-

duct an ablation study to investigate the importance of the

Self-Attention module in shape generation process. To

quantitatively evaluate generated shapes and inspired by

Fréchet Inception Distance (FID) [19, 64], a metric widely

used to measure the visual quality of generated images, we

provide a similar metric, “PointNet Distance” (PND), to

66



measure the geometric quality of generated point clouds.

PND follows the same assumption and formula as FID, ex-

cept that the features from a point cloud is obtained from the

global feature of a PointNet model pre-trained on Model-

Net40 with a global feature dimension of 128. Three model

architectures are considered: without the second CA mod-

ule (No CA), CA-Mean baseline, and SACA-A. We gener-

ate 200 point clouds per category for each model architec-

ture. The PND is computed for each category and reported

in Table 2. We observe a large performance improvement

by gathering context information with self-attention sup-

ported.
airplane car table chair bench cabinet lamp Avg.

No CA 54.08 58.30 219.54 181.18 104.38 318.89 165.52 157.41

CA-Mean 7.05 4.33 12.83 27.47 6.09 20.67 88.14 23.79

SACA-A 1.92 0.53 2.40 4.61 1.24 3.67 8.34 3.24

Table 2. The PointNet Distance (PND) for each category. A lower

score signifies a better model.

Methods SVM SL

SPH [23] 68.2 -

LFD [8] 75.2 -

T-L Network [15] 74.4 -

VConv-DAE [42] 75.5 -

3D-GAN [57] 83.3 -

Latent-GAN-EMD [1] 84.0 -

Latent-GAN-CD [1] 84.5 -

MTN [14] - 86.4

Ours (SACA-A) 85.8 86.3

Ours (SACA-B) 84.4 85.3

Table 3. The comparison on classification accuracy between our

models and other unsupervised methods on ModelNet40 dataset

using linear SVM classifier and single layer classifier (SL).

(4) Unsupervised Feature Learning. To prove the

model actually learns meaningful representations, we ex-

tract learned features and use them for classification tasks.

We obtain the feature vector of a shape by applying differ-

ent types of “symmetric” functions as illustrated in [36] (i.e.

min, max and mean pooling) on features of each layer be-

fore the SACA operation, and concatenate them all. Follow-

ing [57], we pre-train our model on 7 categories from the

ShapeNet dataset, and then use this model to extract feature

vectors for both training and testing shapes from the Model-

Net40 dataset. We experimented with both linear SVM and

single layer classifiers, following the same settings as [57]

and [14], respectively. We report our best results in Table

3. The SACA-A model achieves the best performance using

SVM classifier, and performs slightly worse than MTN [14]

using single layer classifier.

4.2. Conditional Point Cloud Generation

To evaluate conditional PointGrow, we answer the fol-

lowing questions: (1) Can the model be trained across

multiple categories? (2) Can the model generate plausible

shapes for image conditions?

(1) Conditioned on Category Label. We first experiment

with category-conditional modelling of point clouds, given

an one-hot vector h with its nonzero element hi indicating

the ith shape category. The one-hot condition provides cat-

egorical knowledge to guide the shape generation process,

enabling the model to be trained across multiple categories.

Figure 6 shows generated shape examples. Failure cases

are also observed: generated shapes present interwoven ge-

ometric properties from other shape types. For example,

the airplane misses wings and generates a car-like body; the

lamp and the car develop chair leg structures.

Figure 6. Generated point clouds of PointGrow conditioned on dif-

ferent one-hot categorical labels. Right part shows failure cases.

(2) Conditioned on 2D Image. Next, we experiment with

image conditions for point cloud generation. Image con-

ditions add additional constrains to the point cloud genera-

tion process such that the geometric structures of sampled

shapes match their 2D projections. In our experiments, we

obtain an image condition vector through an image encoder,

and optimize it together with the rest model components

from scratch. The model is trained on synthetic ShapeNet

dataset, and one out of 24 views of a shape (provided by

[10]) is selected as the image condition input. The trained

model is also tested on foreground objects of real images

from the PASCAL3D+ dataset to prove its generalizability.

The PASCAL3D+ dataset is challenging because the im-

ages are captured in real environments. Testing examples

are shown on Figure 7 upper left.

We quantitatively evaluate the conditional generation re-

sults in terms of mean Intersection-over-Union (mIoU) [10]

and point-wise 3D Euclidean distance [28]. Here we ob-

tain ground truth points as voxel centers of 3D volumes

from [10], and only consider shapes containing more than

500 occupied voxels, with 500 of them uniformly sam-

pled to describe the shape. To compensate for the sam-

pling randomness of PointGrow, we align generated points

to their nearest voxels within a neighborhood of 2-voxel

radius. When calculating surface-to-surface 3D Euclidean

distance metric, we further remove interior points with 26

non-empty neighbors for fair comparison when selecting

ground truth points. As shown in Table 4 and Table 5, Point-

Grow achieves above-par performance on conditional 3D

shape generation.

Further, we demonstrate that intermediate 3D shapes can

be generated from linearly interpolated embedding vectors

of image pairs (Figure 7 bottom), and compositive shapes

can be generated by applying arithmetic on embedded im-

age condition vectors (Figure 7 upper right).
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Figure 7. Upper left: Generated point clouds conditioned on synthetic testing images from ShapeNet (first 4 columns) and real images from

PASCAL3D+ (last 2 columns). Upper right: Examples of image condition arithmetic for chairs. Bottom: Examples of image condition

linear interpolation for cars. Condition vectors from leftmost and rightmost images are used as endpoints for the shape interpolation.

airplane bench cabinet car chair monitor lamp speaker firearm couch table cellphone watercraft Avg.

3D-R2N2 (1 view) 0.513 0.421 0.716 0.798 0.466 0.468 0.381 0.662 0.544 0.628 0.513 0.661 0.513 0.560

3D-R2N2 (5 views) 0.561 0.527 0.772 0.836 0.550 0.565 0.421 0.717 0.600 0.706 0.580 0.754 0.610 0.631

PointSetGen 0.601 0.550 0.771 0.831 0.544 0.552 0.462 0.737 0.604 0.708 0.606 0.749 0.611 0.640

Ours 0.742 0.629 0.675 0.839 0.537 0.567 0.560 0.569 0.674 0.676 0.590 0.729 0.737 0.656

Table 4. Conditional generation evaluation by per-category IoU on 13 ShapeNet categories. We compare our results with 3D-R2N2 ([10])

and PointSetGen [12].

airplane bench cabinet car chair monitor lamp speaker firearm couch table cellphone watercraft Avg.

3D-R2N2 (1 view) 3.207 3.350 1.636 1.808 2.759 3.235 8.400 2.652 4.798 2.725 3.118 2.202 3.592 3.345

3D-R2N2 (5 views) 2.399 2.323 1.420 1.664 1.854 2.088 5.698 2.487 4.193 2.306 2.128 1.874 3.210 2.588

PointSetGen (1 view) 1.301 1.814 2.463 1.800 1.887 1.919 2.347 3.215 1.316 2.592 1.874 1.516 1.715 1.982

Lin et al. (1 view) 1.294 1.757 1.814 1.446 1.886 2.142 2.635 2.371 1.289 1.917 1.689 1.939 1.813 1.846

MRTNet (1 view) 0.976 1.438 1.774 1.395 1.650 1.815 1.944 2.165 1.029 1.768 1.570 1.346 1.394 1.559

Ours (1 view) 0.615 1.726 1.201 0.416 1.775 1.937 2.235 1.998 1.300 1.405 1.974 0.765 0.865 1.401

3D-R2N2 (1 view) 2.879 3.697 2.817 3.238 4.207 4.283 9.722 4.335 2.996 3.628 4.208 3.314 4.007 4.102

3D-R2N2 (5 views) 2.391 2.603 2.619 3.146 3.080 2.953 7.331 4.203 2.447 3.196 3.134 2.734 3.614 3.342

PointSetGen (1 view) 1.488 1.983 2.444 2.053 2.355 2.334 2.212 2.788 1.358 2.784 2.229 1.989 1.877 2.146

Lin et al. (1 view) 1.541 1.487 1.072 1.061 2.041 1.440 4.459 1.706 1.510 1.423 1.620 1.198 1.550 1.701

MRTNet (1 view) 0.920 1.326 1.602 1.303 1.603 1.901 2.089 2.121 1.028 1.756 1.570 1.332 1.490 1.529

Ours (1 view) 0.914 1.531 1.564 0.732 1.857 1.789 1.732 2.020 1.166 1.381 1.744 0.869 1.070 1.413

Table 5. Single-image shape inference results. Top part: pred → GT errors; Bottom part: GT → pred errors, both scaled by 100. We

compare our results with 3D-R2N2 [10], PointSetGen [12], Lin et al. [28] and MRTNet [14].

5. Discussion and Conclusion

This work studies the problem of point cloud genera-

tion. Unlike previous work, which minimizes set-to-set dis-

tances for generative learning, our model builds upon an

autoregressive architecture and exploits point-to-point re-

lations during generation, allowing the generative process

to be better understood and interpreted. To further capture

long-range dependencies in a self-adaptive manner and ad-

dress the irregularity of point cloud data, two self-attention

models are integrated within our framework. Extensive ex-

periments validates the efficacy of this approach across a

wide range of tasks.

Though our model generates visually-plausible 3D

shapes, it faces two potential limitations. Firstly, due to

the iterative property intrinsic to autoregressive models, the

model scales poorly when generating large point sets. Re-

cent work [38, 32] has accelerated autoregression-based au-

dio generation. Similar techniques are also applicable here

(e.g. generating clouds in a hierarchical rather than sequen-

tial manner). Secondly, our model only generates a point

cloud along its primary axis as determined in training. This

does not hinder generation performance if the shape is sam-

pled from scratch, but limits its applicability to applications

like shape completion. Generating clouds more flexibly will

be an important topic for further research.
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