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Abstract

This paper proposes an end-to-end iris recognition

method designed specifically for post-mortem samples, and

thus serving as a perfect application for iris biometrics in

forensics. To our knowledge, it is the first method specific

for verification of iris samples acquired after demise. We

have fine-tuned a convolutional neural network-based seg-

mentation model with a large set of diversified iris data (in-

cluding post-mortem and diseased eyes), and combined Ga-

bor kernels with newly designed, iris-specific kernels learnt

by Siamese networks. The resulting method significantly

outperforms the existing off-the-shelf iris recognition meth-

ods (both academic and commercial) on the newly collected

database of post-mortem iris images and for all available

time horizons since death. We make all models and the

method itself available along with this paper.

1. Introduction

Identification of deceased subjects with their iris pat-

terns has recently moved from the science-fiction realm into

scientific reality thanks to ongoing research that has been

happening in this field for several years now. Despite some

popular claims, researchers have shown that post-mortem

iris recognition can be viable under favorable conditions,

such as cold storage in a hospital morgue [1, 22, 21, 23],

but challenging in outdoor environment, especially in the

summer [4, 18]. A method for detecting presentation at-

tacks employing cadaver eyes has been also proposed [24],

as well as experiments comparing machine and human at-

tention to iris features in post-mortem iris recognition pro-

ceedings [25].

However, an end-to-end iris recognition method de-

signed specifically for forensic applications has not yet been

proposed, and all published experiments that assess fea-

sibility of post-mortem iris matching are based on meth-

ods designed for samples acquired from live subjects. This

may significantly underestimate the true performance due to

multiple factors related to post-mortem eye decomposition

not considered in off-the-shelf iris matchers. In this paper

we make an attempt at improving the efficiency of iris repre-

sentation by introducing data-driven kernels that are learnt

from post-mortem iris images. A shallow (incorporating

only one convolutional layer, as in dominant Daugman’s iris

recognition algorithm) Siamese network is employed for

learning a novel descriptor in a form of two dimensional

filter kernels that can be further used in any conventional

iris recognition pipeline. An open-source OSIRIS imple-

mentation has been chosen to demonstrate the superiority

of the newly designed kernel set, not only over the original

approximations of Gabor kernels, but also over an example

commercial iris recognition method. In addition, we fine-

tuned the convolutional neural network (CNN) designed for

post-mortem iris segmentation [26] with more diverse train-

ing data, which allowed for further increase in the overall

recognition accuracy.

Thus, this paper offers the first known to us and complete

method designed specifically for post-mortem iris recogni-

tion, with the following contributions:

• a new, post-mortem iris-specific feature representation

method comprising filters learned from post-mortem

data, offering a significant reduction of recognition

errors when compared to methods designed for live

irises,

• analysis of false non-match rates at different false

match thresholds suitable for a forensic setting,

• an updated CNN-based iris segmentation model, fine-

tuned with more diverse iris samples, offering bet-

ter robustness against unusual deviations from the

ISO/IEC 19794-6 observed in post-mortem iris data,

• source codes for iris-specific filter training experi-

2307



ments, trained filter kernels, and new CNN iris seg-

mentation model – everything necessary to fully repli-

cate the experiments1.

2. Related Work

2.1. Oneshot recognition and Siamese networks

Recent advancements in deep learning allowed CNN-

based image classifiers to achieve performance superior to

many hand-crafted methods. However, one of the down-

sides of deep learning is the need for large quantities of la-

beled data in case of supervised learning. This becomes

a problem in applications where prediction must be ob-

tained about the data belonging to an under-sampled class,

or about a class unknown during training.

Siamese networks, on the other hand, perform well in the

so called one-shot recognition tasks, being able to give re-

liable similarity prediction about the samples from classes

that were not included in the model training. Koch et al.

[11] introduced a deep convolutional model architecture

consisting of two convolutional branches sharing weights

and joined by a merge layer with L1 cost function describ-

ing distance between the two inputs x1, x2 :

L1(x1, x2) = |f(x1)− f(x2)| (1)

where f denotes the encoding function. This is com-

bined with a sigmoid activation of the single neuron in the

last layer, which maps the output to the range of [0, 1].

The applications of Siamese networks include many areas,

most importantly one-shot image recognition, with good

benchmark performances achieved on well-known datasets

such as Omniglot (written characters recognition for multi-

ple alphabets, 95% accuracy) and ImageNet (natural image

recognition with 20000 classes, 87.8% accuracy) [27], but

also object co-segmentation [14], object tracking in video

scenes [3], signature verification [5], and even matching re-

sumes to job offers [12].

2.2. Datadriven image descriptors

Several approaches to learning feature descriptors for

image matching have been explored, mostly in the field of

visual geometry and mapping for image stitching, orienta-

tion detection, and similar general-purpose approaches.

Simo-Serra et al. [19] presented a novel point descrip-

tor, whose discriminative feature descriptors are learnt from

the real-world, large datasets of corresponding and non-

corresponding image patches from the MVS dataset, con-

taining image patches sampled from 3D reconstructions of

the Statue of Liberty, Notre Dame cathedral, and Half Dome

in Yosemite. The approach is reported to outperform SIFT,

while being able to serve as a drop-in replacement for it.

1http://zbum.ia.pw.edu.pl/EN/node/46

The method employs a Siamese architecture of two coupled

CNNs with three convolutional layers each, whose outputs

are patch descriptors, and an L2 norm of the output dif-

ference is minimized between positive patches and max-

imized otherwise. A similar approach was demonstrated

by Zagoruyko and Komodakis [29], who train a similarity

function for comparing image patches directly from the data

employing several methods, one of them being a Siamese

model with two CNN branches sharing weights, connected

at the top by two fully connected layers.

Yi et al. introduced a method that is intended to serve

as a full SIFT replacement, not only as a drop-in descrip-

tor replacement [28]. The deep-learnt approach consists of

a full pipeline with keypoint detection, orientation estima-

tion, and feature description, trained in a form of a Siamese

quadruple network with two positive (corresponding) input

patches, one negative (non-corresponding) patch, and one

patch without any keypoints in it. Hard mining of difficult

keypoint pairs is employed, similarly to [19]. DeTone et al.

[7] proposed a so-called SuperPoint network and a frame-

work for self-supervised training of interest point detectors

and descriptors that are able to operate on the full image as

an input, instead of image patches. The method is able to

compute both interest points and their descriptors in a single

network pass.

Moving to the field of iris recognition, Czajka et al.

[6] have recently employed human-inspired, iris-specific bi-

narized statistical image features (BSIF) from iris image

patches derived from an eye-tracking experiment, during

which human iris examiners were asked to classify iris im-

age pairs. Data-driven BSIF filters were also studied by

Bartuzi et al. for the purpose of person recognition based

on thermal hand representations [2].

Current literature seems not to offer any iris-driven fil-

ters, which would be designed specifically to address post-

mortem iris recognition.

3. Proposed methodology

3.1. Iris recognition benchmarks

Previous works assessing post-mortem iris recognition

accuracy [22, 21, 23] have employed several iris recognition

matchers, including the open-source OSIRIS [16], and three

commercially available products: VeriEye [15], MIRLIN2

[20], and IriCore [9].

In this paper we employ a popular open-source imple-

mentation of Daugman’s method (OSIRIS), as well as the

IriCore commercial product, which was shown to offer the

best performance when confronted with post-mortem, heav-

ily degraded iris samples in previous papers [23]. The rea-

soning behind this choice of iris matchers is to be able to

compare the proposed approach against the method that

2discontinued by the manufacturer
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Figure 1: Aligning the polar-coordinate polar iris images

based on eye corner location to compensate rotation of the

camera during image acquisition.

Figure 2: Scheme for iris patch curation.

was to date the best performing one in the post-mortem iris

recognition setup.

3.2. Image segmentation

It has been shown that a significant fraction of post-

mortem iris recognition errors can be attributed to the

badly executed segmentation stage [21, 23]. Trokielewicz

et al. [26] proposed an open-source CNN-based semantic

segmentation model for predicting binary masks of post-

mortem iris images (trained with iris images obtained from

cadavers, elderly people, as well as ophthalmology pa-

tients), which in this paper has been further fine-tuned with

more diverse datasets, including ISO-compliant images, as

well as low quality, visible-light iris samples. In addition

to the databases used for training the previous model, we

have also employed several iris datasets with their corre-

sponding ground truth masks, including the Biosec base-

line corpus [8] (1200 images), the BATH database3 [13]

(148 images), the ND0405 database4 (1283 images), the

UBIRIS database [17] (1923 images), and the CASIA-V4-

Iris-Interval database5 (2639 images). This allowed to ob-

tain more coherent, smoother predictions, as shown in Fig.

3. The model was trained with the SGDM optimizer with

3http://www.bath.ac.uk/elec-eng/research/sipg/

irisweb/
4https://cvrl.nd.edu/projects/data/
5http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

(a) Example segmentation re-

sult for the original model [26].

(b) The same sample processed

with the new model.

Figure 3: Segmentation results for an example iris using the

model from earlier works and the new, refined model.

momentum = 0.9, learning rate = 0.001, L2 regularization =

0.0005, for 120 epochs with batch size of 4.

3.3. Training data

To train our new, post-mortem-aware iris feature de-

scriptor, we use NIR iris images from publicly avail-

able Warsaw-BioBase-Postmortem-Iris-v1.1 and Warsaw-

BioBase-Postmortem-Iris-v2 databases, which were pro-

cessed with the new segmentation model (cf. Sec. 3.2) and

normalized to come up with polar iris images 512× 64 pix-

els in size. Normalization stage included Hough Transform-

based circle fitting to approximate inner and outer iris

boundaries, and all pixels annotated by the segmentation

model as non-iris texture pixels inside the iris annulus were

discarded from feature extraction.

3.4. Evaluation data

For evaluation of the proposed method an in-house,

newly collected database of post-mortem iris images is

used. It comprises post-mortem images taken from 40 sub-

jects with a total of 1094 near-infrared images and 785

visible-light images, collected up to 369 hours since demise.

This dataset is subject-disjoint to the data used both in the

training of the segmentation CNN model, and it was col-

lected following the same acquisition protocol as in collect-

ing the Warsaw data.

3.5. Preprocessing of the training data

The first step in preparing the training data is to ensure

spatial correspondence between iris features in multiple im-

ages of the same eye. Note that post-mortem iris images

can have arbitrary orientation, as the cadavers may be ap-

proached by the operator taking the scans from different di-

rections, for instance, depending on the crime scene layout.

Leaving these pictures unaligned would end up with forcing

the network to learn inappropriate kernels. This is done by

doing within-class alignment of normalized iris images by

canceling the mutual horizontal shifts between images that

reflects eyeball rotation in the Cartesian coordinate system,

Fig. 1. We performed here the image alignment procedure,
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Figure 4: Shallow Siamese network used for learning the iris-specific feature representation.

which involved manual annotations of the eye corners. This

allowed to calculate a relative rotation of the eyeball repre-

sented in the two images, and in turn the amount of pixels,

by which the polar image must be shifted. Iris recognition

methods typically shift iris codes in the matching stage to

compensate for eyeball rotation, instead of shifting images.

Therefore there is no justification to make the neural net-

work learn how to discriminate between irises that are not

ideally spatially aligned.

The resulting aligned polar iris images were then sub-

ject to examination in respect to the amount of occlusions

caused by eyelids or eyelashes. This is done to ensure that

the network will use iris-specific and not occlusion-specific

regions in development of kernels. Thus, to ensure good

quality of the training data, we divide each polar iris im-

age into two patches. Since in our data eyelid occlusions

are only present either on the left or on the right portion of

the polar iris image (this is specific to post-mortem data ac-

quisition protocol in our collection), this enables discarding

such samples while at the same time saving the other, unaf-

fected patch, Fig. 2. A total of 1801 patches were extracted

for training.

3.6. Model architecture and filter learning

For learning the iris-specific filters we use a shallow

Siamese architecture composed of two branches, each re-

sponsible for encoding one image from the image pair be-

ing compared, comprising a single convolutional layer with

6 kernels of size 9 × 15 (the size of the smallest OSIRIS

filter), as shown in Fig. 4. In our experiments, the 9 × 15
OSIRIS kernels resulted in better post-mortem iris recogni-

tion performance than either 9×27 or 9×51 (also found in

(a) Filter kernels (b) Example iris codes

(c) Mean iris code value distributions

Figure 5: Learnt kernels from the Siamese network (a), an

example set of iris codes they produce (b), and distributions

of mean iris code values across the data set (c). The kernel

no. 6 is discarded as it produces iris codes with almost all

elements equal to 0.

OSIRIS). The weights are shared between the two branches.

Following the convolutional layers is a merge layer calculat-

ing the L1 distance (1) between the two sets of features from

2310



the convolutional layer. A single neuron with a sigmoid ac-

tivation function is then applied to yield a prediction from

the range [0, 1], with 0 being a perfect match between the

two images, and 1 being a perfect non-match.

The training data is passed to the network in batches con-

taining 32 pairs of iris patches, out of which 16 are genuine,

and 16 are impostor pairs, randomly sampled without re-

placement from the dataset during each training iteration,

with a total of 20000 iterations. ADAM optimizer [10] is

used with the learning rate lr = 0.0006 to minimize the

loss function.

3.7. Filter set optimization

The learnt filter kernels, together with example iris codes

that they produce, as well as distributions of mean iris code

values produced by each of them are illustrated in Fig. 5.

By analyzing the distributions of mean iris code values ob-

tained by each of the new filters, we see that codes produced

by the sixth filter do not represent the iris well, as most of

the texture information is lost during encoding, resulting in

a mostly zeroed iris code. This filter is discarded from all

further experiments.

Notably, employing only iris-specific filter kernels in-

stead of those found in OSIRIS did not yield better re-

sults – perhaps due to the fact that regular iris texture is

well represented using the conventional Gabor wavelets,

and the newly learnt filters are necessary to boost the per-

formance for difficult, decay-affected samples. To utilize

these new filters, and to offer an advantage over the base-

line method, a modification of the OSIRIS Gabor filter bank

was performed to propose a hybrid filter bank comprising

a combination of Gabor wavelets and the post-mortem-iris-

specific kernels.

The filter selection was solved by using Sequential

Feature Selection, with a combination of Sequential For-

ward Selection (SFS) and Sequential Backward Selection

(SBS), which involve adding the most discriminant fea-

tures to the classifier, while removing the least discrimi-

natory ones. During the feature selection procedure, post-

mortem-specific filters were added to the original OSIRIS

filter bank, whereas those OSIRIS filters, which do not con-

tribute to decreasing the error rates were removed. The er-

ror metric minimized during the feature selection is the EER

obtained for samples acquired up to 60 hours post-mortem.

The feature selection procedure can be enclosed in

the following steps, starting with the original, unmodified

OSIRIS filter bank comprising six Gabor wavelets:

Step 1. Calculate the performance obtained using the

current filter bank and each of the Siamese filters added

independently.

Step 2. Perform SFS by adding the most contribut-

ing filter to the filter bank.

Step 3. Calculate the performance obtained using the

filter bank obtained in the previous step with each of

the OSIRIS filters removed independently.

Step 4. Perform SBS by removing the least con-

tributing filter from the filter bank.

Step 5. → Go back to Step 1 and repeat until the error

metric stops improving.

After the SFS/SBS feature selection procedure involving

four iterations of SFS and SBS, Fig. 6, the EER was de-

creased by almost a third, from 6.40% obtained for the 60

hours post-mortem time horizon for the original OSIRIS fil-

ter bank, to 4.39% obtained for the new, hybrid filter bank,

Fig. 7. This filter bank is then used in the final testing of

our iris recognition pipeline with the new, subject-disjoint

data. The final set of filter kernels is shown in Fig. 6.

4. Results and discussion

4.1. Testing data and methodology

During testing, we generate all possible genuine and im-

postor scores between images that were captured up to a

certain time horizon after demise. Nine different time hori-

zons are considered, namely: up to 12, 24, 48, 60, 72, 110,

160, 210, and finally up to 369 hours post-mortem, which

encompasses all available testing data. Every one of these

9 experiments is repeated for comparison scores obtained

from (a) the original OSIRIS software, (b) the commercial

IriCore matcher, (c) the modified OSIRIS including the new

image segmentation, and finally (d) the modified OSIRIS,

which includes both the new segmentation and the new fea-

ture representation stage.

4.2. Recognition accuracy

Figures 8-10 present ROC curves obtained using the

newly introduced filter bank, compared against ROCs corre-

sponding to the best results obtained when only the segmen-

tation stage is replaced with the proposed modifications.

When analyzing graphs presented in Fig. 8, which corre-

spond to samples collected up to 12, 24, and 48 hours post-

mortem, we do not see considerable improvements in recog-

nition performance measured by the EER, which, compared

against those EERs obtained only with the modified seg-

mentation stage, are EER=0.76%→0.58%, 0.69%→0.68%,

and 2.57%→2.45%, respectively. However, the shapes of

the red graphs corresponding to the scores obtained with the

new filter bank show an improvement over the black graphs

in the low FMR registers, meaning that the proposed system

offers higher recognition rates in situations, when very few

false matches are allowed.

Moving to more distant post-mortem sample capture

time horizons, Fig. 9, the advantage of the proposed method
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Figure 6: Filter selection for the new filter bank using Sequential Forward Selection and Sequential Backward Selection. Iris

codes for an example iris produced by the proposed hybrid filter bank at different stages of filter selection are also shown.
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becomes clearly visible in both the decreased EER values,

as well as in the shapes of the ROC curves. Applying

domain-specific filters allowed to reduce EER from 6.40%

to 4.39%, 8.12%→5.86%, and 9.99%→7.78%, for samples

acquired less than 60, 72, and 110 hours post-mortem, re-

spectively.

Finally, Fig. 10 presents ROC curves obtained for sam-

ples collected during the three longest subject observation

time horizons, namely up to 160, 210, and 369 hours af-

ter death. Here as well, a visible improvement offered by

the new feature representation scheme is reflected in the

decreased EER values – 14.59%→11.88% for samples col-

lected up to 160 hours, 17.09%→14.98% for those captured

up to 210 hours, and 21.36%→19.27% for the longest and

most difficult set, encompassing images acquired up to 369

hours (more than 15 days).

4.3. False NonMatch Rate dynamics

Apart from ROCs, we have also calculated the False

Non-Match Rate (FNMR) values at acceptance thresholds

which allow the False Match Rate (FMR) values to stay be-

low certain values, namely 0.1%, 1% and 5%, Figs. 11,

12, 13, respectively. This is to reveal the dynamics of

the FNMR as a function of post-mortem time interval, and

therefore to know the chances for a false non-match with

increasing post-mortem interval. We plot this dynamics for

the two baseline methods: original OSIRIS and IriCore, as

well as for the CNN-based segmentation, and the proposed

iris representation, coupled with the new segmentation.

While acceptance thresholds allowing FMR of 5% or

even 1% can be considered as very relaxed for large-scale

iris recognition systems, such criteria make sense in a foren-

sic scenario. In such, the goal of an automatic system is

typically to aid a human expert by proposing a candidate

list, while minimizing the chances of missing the correct hit.

Therefore, allowing a higher False Match Rate will make it

more likely for the correct hit to appear at the candidate list.

Notably, for each moment during the increasing post-

mortem sample capture time horizon, our proposed ap-

proach consistently offers an advantage over the other two

algorithms, allowing to reach nearly perfect recognition ac-

curacy for samples collected up to a day after a subject’s

death, as shown in Figs. 11, 12, and Fig. 13. This differ-

ence in favor of our proposed solution is even larger when

the acceptance threshold is relaxed to allow for 5% False

Match Rate – in such a scenario, we can expect no false

non-matches in the first 24 hours, and only approx. 1.5%

chance of a false non-match in the first 48 hours. The new

method for iris feature representation, on the other hand,

shows its greatest advantage in the acquisition horizons that

are longer than 48 hours, being able to reduce the errors by

as much as a third in the 60-hour and 72-hour capture mo-
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Figure 8: ROC curves obtained when comparing post-mortem samples with different observation time horizons: 12, 24, and

48 hours post-mortem, plotted for two baseline iris recognition methods OSIRIS (blue) and IriCore (green), OSIRIS with

CNN-based segmentation (black), as well as OSIRIS with both the improved segmentation and new filter set (red).
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Figure 9: Same as in Fig. 8, but for samples collected up to 60, 72, and 110 hours post-mortem.
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Figure 10: Same as in Fig. 8, but for samples collected up to 160, 210, and 369 hours post-mortem.

ments. To be fair, however, we need to stress that – to our

knowledge – neither OSIRIS nor IriCore were designed to

deal with post-mortem samples, so the lower performance

of these methods is understandable. This only demonstrates

that new iris methods capable to address post-mortem de-

composition processes need to be designed, if we want to

include iris into the basket of forensic identification tools.

5. Conclusions

In this paper we have introduced the novel iris feature

representation method, employing iris-specific image filters

learnt directly from the data, and thus optimized to be re-

silient against post-mortem changes affecting the eye during

the increasing sample capture time since death. By com-

bining typical Gabor wavelet-based iris encoding with the

new post-mortem-driven encoding we reduced recognition

errors by as much as one third, significantly outperforming

even the state-of-the-art commercial matcher. Source codes

for the experiments, trained iris filters, and the new segmen-

tation model are made available along with the paper.

This paper offers the first post-mortem iris-specific and

end-to-end recognition pipeline, open sourced and ready to

be deployed in forensic applications. However, the segmen-

tation model and the methodology of filter learning can be

directly applied to other challenging cases in iris recogni-

tion, as diseased eyes, or irises acquired from infants or el-

derly people.
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Figure 11: False Non-Match Rates (FNMR) as a function of post-mortem sample capture horizon for a set False Match Rate

(FMR) of 0.1%, plotted for OSIRIS (blue), IriCore (red), OSIRIS with new segmentation (yellow), and OSIRIS with both

new segmentation and new filter set (violet).
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Figure 12: Same as in Fig. 12, but for a set FMR=1%.
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Figure 13: Same as in Fig. 12, but for a set FMR=5%.

2314



References

[1] A. Sansola. Postmortem iris recognition and its application

in human identification, Master’s Thesis, Boston University,

2015.

[2] E. Bartuzi, K. Roszczewska, A. Czajka, and A. Pacut. Un-

constrained Biometric Recognition Based on Thermal Hand

Images. International Workshop on Biometrics and Foren-

sics (IWBF 2018), 2018.

[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. European Conference on Computer Vision (ECCV

2016), pages 850–865, 2016.

[4] D. S. Bolme, R. A. Tokola, C. B. Boehnen, T. B. Saul, K. A.

Sauerwein, and D. W. Steadman. Impact of environmen-

tal factors on biometric matching during human decomposi-

tion. IEEE 8th International Conference on Biometrics The-

ory, Applications and Systems (BTAS 2016), September 6-9,

2016, Buffalo, USA, 2016.

[5] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah.
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