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Abstract

Efficient automated print defect mapping is valuable

to the printing industry since such defects directly influ-

ence customer-perceived printer quality and manually map-

ping them is cost-ineffective. Conventional methods consist

of complicated and hand-crafted feature engineering tech-

niques, usually targeting only one type of defect. In this

paper, we propose the first end-to-end framework to map

print defects at pixel level, adopting an approach based on

semantic segmentation. Our framework uses Convolutional

Neural Networks, specifically DeepLab-v3+, and achieves

promising results in the identification of defects in printed

images. We use synthetic training data by simulating two

types of print defects and a print-scan effect with image pro-

cessing and computer graphic techniques. Compared with

conventional methods, our framework is versatile, allow-

ing two inference strategies, one being near real-time and

providing coarser results, and the other focusing on offline

processing with more fine-grained detection. Our model is

evaluated on a dataset of real printed images.

1. Introduction

The absence of print defects is one of the most significant

factors that influence customer satisfaction when experienc-

ing a printer product. For this reason, mapping such defects

before the final revision in preparation for market launch is

extremely important to the manufacturing printer industry.

In large-scale quality control processes, print defect de-

tection still requires human experts in an approach that is

repetitive, time-consuming, and prone to human error and

subjective evaluation [18]. In order to improve the efficacy

and efficiency of that process, automated methods to map

print defects are highly desired.

There is a wide variety of print defects that may arise

in the printing process, such as streaks, banding, spots, and

patches. The causes of each of them vary according to the

printer technology type. In this paper, we mainly focus

on banding and streaks, since they are easier to be synthe-

sized, and are both common to inkjet and laser electropho-

tographic printers.

In inkjet printers, banding is generally caused by small

electromechanical or chemical problems in the printer com-

ponents, such as damaged nozzles in the print heads, or ink

density variation [3]. Streak defects, on the other hand, can

be a result of misaligned or contaminated print heads.

In laser printers, the non-uniform line spacing observed

in banding defects is mainly caused by fluctuations in the

velocity of the optical photoconductor (OPC) drum [6].

Moreover, imperfections in the cleaning mechanism on the

intermediate transfer belt (ITB), damages in the belt surface

itself, or the color cartridges may generate streak artifacts

on printings.

Some works have proposed automated intelligent sys-

tems for assessing print quality [17]. Conventionally

adopted approaches [16, 18, 19, 20] focus on print qual-

ity defect detection using standard machine vision methods,

coarsely indicating the location of print defects. However,

none of these solutions employ defect detection at the pixel

level and map different types of defects in a single model.

In this work, we specifically attack this problem, which we

refer to as print defect mapping.

Since 2012, deep convolutional neural networks (DC-

NNs) have achieved remarkable results in many computer

vision tasks, including image classification, object detec-

tion, and semantic segmentation [4, 11, 14]. In this pa-

per, we employ semantic segmentation to detect and map

print artifacts at the pixel level. We use DeepLab-v3+ [5]

as the backbone of our framework. We chose this partic-

ular architecture because of its potential to simultaneously

retrieve rich contextual information and sharp object bound-
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aries, which are essential for characterizing print defects.

While deep learning techniques show impressive results

in multiple computer vision tasks, they usually require large

annotated datasets. Manually collecting and annotating data

can be both expensive and time-consuming. When it comes

to acquiring well-annotated data for training semantic seg-

mentation models, which requires fine-grained label maps,

that task becomes even more difficult and costly [23].

To overcome that problem, we create artificial print arti-

facts samples with image processing techniques to generate

our training dataset. We initially collect a set of digital im-

ages with diverse content and add the dark streaks and the

color bandings. In addition, we simulate the effect of print-

ing and scanning documents by estimating color transfor-

mations from real devices. With that, we aim to make our

training data close to real use cases.

Inspired by works in image quality assessment [2, 7],

we also implement two different paradigms for print defect

mapping: No-Reference (NR) and Full-Reference (FR). In

the first one, the framework receives only the printed im-

ages, not requiring the original printable image. In the

second paradigm, both the printed and the original digital

images form the input, which may give additional cues to

where the defects may occur.

Our main contributions are as follows:

• We present an end-to-end deep learning framework for

pixel-wise print defect mapping. To the best of our

knowledge, this is the first work to map print defects at

the pixel level.

• We propose a pipeline for simulating a print-and-scan

effect and to artificially create print artifacts in di-

verse background images for two types of defects—

dark streaks and banding. The proposed pipeline also

leverages automatic pixel annotation, resulting in cost-

free data in terms of human annotation.

• Our framework supports two input modes, Full-

Reference (FR) and No-Reference (NR), that can be

interchangeably used with small changes to its archi-

tecture. Moreover, it also adopts two inference strate-

gies: Resized image and Patch-based, taking a trade-

off between speed and quality into account.

2. Literature Review

2.1. Print Defect Mapping

Previous approaches to Print Defect Mapping focus only

on the coarse detection of defects. Generally, no more than

one defect type is targeted, eliminating the need for map-

ping each input to a category. Furthermore, the detection

task usually relies on the application of a set of standard

image operations and similarity measures.

Wang et al. [18] investigated the detection of local print

defects in the form of spots and patches by analyzing the

standard deviation of pre-extracted regions of interest. For

each region, they use the valley-emphasis threshold to find

potential local defects. Then, a set of hand-crafted features,

such as edge strength and average RGB value, are extracted

and fed into an SVM model to determine whether the over-

all quality of the printed imaged is good enough. They eval-

uate their model in terms of accuracy for global quality pre-

diction, instead of localized defect detection as we propose.

Zhang et al. [21] adopted a similar approach to detect

light streaks in printer test images. Firstly, they pre-process

standard print test pages in order to select only the smooth

areas of the image. They divide these areas into blocks and

compute the projection of the distance between each pixel

within a block and the average pixel value in the block to de-

tect streaks. Finally, they use logistic regression to remove

false-positives from the previous step.

Spivakovsky et al. [16] proposed a SSIM-based compar-

ison between printable images and their scanned versions

to detect defects. Similarly, Xiao et al. [19] aligned ref-

erence and scanned images with feature-based registration,

and compared them based on color difference distribution

to detect text fading. Yangping et al. [20] proposed a sys-

tem based on grayscale and gradient differences for tem-

plate matching.

While standard image processing techniques may work

when detecting a specific type of artifact, it is challenging to

cover multiple occurrences of different print defect types in

the same image. Unlike conventional methods, our frame-

work takes full advantage of deep neural networks, which

have proved to generalize remarkably well in several com-

puter vision tasks, to map both dark streaks and color band-

ing defects pixel-wise.

2.2. Semantic Segmentation

Semantic segmentation is a computer vision task that

consists of assigning a label to every pixel in an im-

age. Results on public benchmarks have considerably im-

proved with the use of fully-convolutional DCNNs, such

as FCN [11], U-Net [14], and DeepLab [4]. Applications

of semantic segmentation are diverse, including medical

image analysis [14], remote sensing [22] and autonomous

driving [15]. In this work, we also employ semantic seg-

mentation techniques, specifically DeepLab-v3+, to the

problem of print defect mapping.

The motivation behind the application of semantic seg-

mentation to print defect mapping is the precision gains in

locating and identifying the defective patterns using a more

detailed inspection. Besides, this approach would provide

better generalization since the model will focus on devia-

tions of the ideal printer operation rather than on specific

characteristics of the defect.
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2.3. Print Defect Simulation

Obtaining real data to train a print defect mapping algo-

rithm is hard for several reasons. One would first need to

use multiple defective printers and print several documents

in order to obtain a good range of defects and backgrounds.

Additionally, carefully annotating defect locations in the

images would take a long time. As deep learning meth-

ods require significant amounts of labeled data, we generate

synthetic training data using image processing techniques.

That consisted in simulating the actual print defects and also

the overall look of a printed-and-scanned page. We detail

the implementation in the next section.

We based our artifact model in [6], where the authors cre-

ated a framework to reproduce defects from laser printers.

They estimate parameters from actual print defects and use

both geometrical modeling and scanned templates. How-

ever, their approach still depends on printing the pages to

achieve realism.

3. Methodology

3.1. Synthetic data

The ability to create realistic synthetic artifacts has many

advantages. First, it can generate large amounts of training

data, which is a demand for deep neural networks. Second,

it can produce different types of artifacts, such as fine pitch

banding and streaks, that generally occurs uniformly on the

printed page; or repetitive artifacts, like spots, which may

occur randomly across the page.

We address two frequent types of print defects: dark

streaks and color bandings. They essentially result in hor-

izontal or vertical lines with an excess or lack of a certain

color component. Dark streaks are usually thinner textured

lines, while color bandings are rectangular regions with near

homogeneous drop or excess in a color channel. Figure 1

shows examples of such defects.

(a) (b)

Figure 1: Print defect examples: (a) color banding with an

increase in the magenta channel, and (b) dark streak.

To simulate dark streaks, we blend a random thin rectan-

gular image region with a dark-colored texture pattern. This

texture pattern was procedurally generated by applying Per-

lin noise to create a gray level perturbation. The pattern

varies the color intensity, randomly along the streak length,

and the edges are set to be lighter than the center. Figure 2

shows an example of a simulated dark streak.

When simulating color banding, on the other hand, we

first convert the input image to CMYK, which is the color

space adopted in the printing process. After that, we overlay

rectangular regions that affect each color channel separately

and have slight variations in color. Pixel intensities can

be either decremented/incremented to simulate lack/excess.

The amount of pixel intensity modification varies across the

band’s width, being either brighter or darker in the middle.

This variation is subject to a bimodal Gaussian distribution,

as shown in Figure 2.

The last step in our synthetic data pipeline is to imitate

the appearance of printing and scanning an image. This pro-

cess consists of learning the RGB tone curves of printer and

scanner devices. We printed and scanned test pages in dif-

ferent devices and modeled the color transformation as a

polynomial, whose coefficients are determined by applying

a linear least square (LLS) regression between the original

digital image and its respective printed-and-scanned version

on a real device.

F (x, y,R,G,B) = a0+a1y+a2x+a3R+a4G+a5B

+ a6yR+ a7yG+ a8yB + a9xR+ a10xG+

a11xB + a12RG+ a13RB + a14GB + a15RGB (1)

The input variables of the polynomial function shown in

Equation 1 are, respectively, the normalized image x and

y coordinates, and its respective red, green, and blue color

channels. Figure 2 shows an example result of the print-

scan simulation process.

3.2. Network architecture

As mentioned in Section 2, considering the potential of

print defect mapping using a semantic segmentation ap-

proach, we investigated some DCNN architectures, partic-

ularly U-Net [14] and DeepLab-v3+ [5], since both attain

state-of-art results in other tasks. In our preliminary ex-

periments, DeepLab-v3+ outperformed U-Net when seg-

menting thinner lines. For this reason, we decided to use

DeepLab-v3+ architecture as a base for our model.

DeepLab-v3+ [5] combines the benefits of two methods:

an atrous spatial pyramid pooling (ASPP) module [4] and

an encode-decoder structure. In encoding-decoding con-

figurations, the network constructs a feature representation

of the image in lower resolution and then applies trained

fractionally-strided convolutions to recover label maps in

higher resolution. The low-resolution intermediary repre-

sentation provides good context understanding but hinders

the detection of small or thin objects. In order to compen-

sate for this issue, the ASPP module, based on dilated or

3553



0 25 50 75 100 125 150 175 200
length

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

in
te
ns

ity

(a)

width

0
1

2
3

4length

0
50

100
150

200

in
te
ns

ity

0.0

0.2

0.4

0.6

(b) (c)

width

0.0 0.2 0.4 0.6 0.8 1.0
length0.0

0.2
0.4
0.6
0.8
1.0

in
te
ns

ity

0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) (e)

Figure 2: Examples of pixel intensity profile of dark streak and color banding simulations. Dark streak: (a) intensity profile

across the defect length, (b) 3D intensity profile and (c) the corresponding simulated defect. Color banding: (d) 3D intensity

profile and (e) color banding defect applied to the magenta channel. Best viewed on screen.

(a) (b)

Figure 3: Print-scan simulation example: (a) original image

and (b) result after the effect is applied.

atrous convolutions, leverages its increased receptive field

to avoid sacrificing spatial resolution, and recovers labeled

pixels by applying bilinear upsampling. Less use of down-

sampling helps fine-grained detection, but the context un-

derstanding is not as broad as in encoder-decoder networks.

Another advantage of using DeepLab-v3+ architecture is

that it does not require huge datasets, as it was trained on

the Pascal VOC 2012 dataset [5].

To configure DeepLab-v3+ for print defect mapping, we

performed variations in the architecture hyperparameters

and evaluated their impact on the defect identification.

The ASPP module performs multiple pooling scales

through four parallel atrous convolutions using a set of 256

filters of size 1×1 or 3×3 in dilated configuration and using

depth-wise separable convolutions. The encoder-decoder

structure, in its turn, has a DCNN in the encoder backbone,

performing atrous convolution followed by the ASPP struc-

ture. In the decoder module, the DCNN output is concate-

nated with the bilinearly upsampled ASPP output. The con-

catenated result is convolved with a 3×3 filter and bilinearly

upsampled to the desired output.

We tested different output strides (8 and 16), a parameter

that controls the ratio of input image resolution to the output

image resolution. In general, an output stride of 8 gave bet-

ter results, but at the cost of slower training. In the DCNN,

we verified the use of ImageNet-pretrained ResNet-50 and

ResNet-101 models. The former achieved similar perfor-

mance while being faster to train.

ResNet-50 is composed of building blocks, each one

formed by stacked sets of 3 convolutional layers. We tested

different dilation values—[1, 1, 1], [1, 2, 1], and [1, 2, 4]—
in these 3 layers, achieving the best performances with

[1, 2, 1], and [1, 1, 1] in some cases.

3.3. No­Reference and Full­Reference metrics

We designed the framework of this work to support two

metrics used in Image Quality Assessment (IQA).

IQA is a broad research field that focuses on quantitative

representing the human perception of image quality. IQA is

generally divided into two areas: Full-Reference (FR) and

No-Reference (NR). FR explores metrics that quantify the

quality of a distorted image, given its reference image. On

the other hand, NR metrics measure the quality of distorted

images without requiring their reference image.

FR methods are usually based on image operations. The

existence of reference images provides useful information

about their distorted counterparts, resulting in a wide range

of evaluation possibilities. In contrast to that, having no

ground truth image to establish quality criteria makes NR

a more challenging problem, which has seen more recent

advances with the rise of deep learning [2, 8, 10, 12].

Both FR and NR extend their application to other fields

in which measuring output image quality is essential to im-

prove the end-user viewing experience, such as Image Cap-

turing and Image Processing. Since print defects are di-

rectly linked to the overall quality of printed images, we

added both sets of metrics.

3.4. Generating training data

Our training set consists of 2 949 digital images—

including documents, photos, and slides—with minimum

dimensions of 1920× 1080. The samples are preprocessed

online during training by a set of techniques, described in

Section 3.1, that generate their potentially defective printed

versions. Thus, the virtual number of training samples is

much higher than the raw number of digital images in the

dataset, since each image results in potentially infinite de-

fective versions of itself.
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We first simulate the appearance of printing and scan-

ning effects on digital images. Then, we randomly decide

if the image will be defective based on an assigned proba-

bility of 0.9. If so, we randomly add the artifacts described

in Section 3.1 to it. The probability of streaks occurrence

varied from 0.3 to 0.5, while the sum of channel banding

probabilities is its complementary. Finally, we generate the

ground truth mask indicating which pixels have artifacts.

We resized all processed images and their respective

masks to a common size of 1920× 1080 pixels using bicu-

bic interpolation, and keeping their aspect ratio. Their re-

spective masks are interpolated with nearest neighbors to

preserve label information.

3.5. Training pipeline

To train the NR network, we extract random patches of

513 × 513 pixels of the processed image and its respective

mask. Then, we feed this set into the network, which con-

siders the corresponding set of masks as the ground truth.

Figure 4a shows a diagram of the full training pipeline for

the NR network.

For FR, we extract random patches of 513 × 513 pixels

of the reference/defective images and the mask. We con-

catenate the extracted patches from reference and defective

images forming a 6-channel image, which is fed to the net-

work, as shown in Figure 4b. The change to the network

input introduces more weights in the first layer. To initialize

them, we simply copied the pretrained weights from the first

three channels, since the new channels also correspond to an

RGB image. We also tried to use the difference between the

reference and target images as the network input. However,

we found that concatenation provided better results.

We used the multi-class cross-entropy loss and weighted

pixels labeled as background with 0.05 to account for the

imbalance between background and defects. We explored

the intersection over union loss [1] but did not get better

results. We also tried to train a one-vs-all class setting, im-

plemented as the sum of the binary cross-entropy loss for

each class against all other classes but got worse results.

We used the Adam optimizer [9] with an initial learn-

ing rate of 10−4, and weight decay of 10−5. We adopted

a strategy of accumulating gradients between batches. This

allows us to achieve a larger effective batch size. We used a

batch size of 5, and accumulate gradients for 10 iterations,

resulting in an effective batch size of 50.

We employed online data augmentation during training

(90-degree clockwise and counter-clockwise rotation and

horizontal flipping). We normalized each image by sub-

tracting its mean and dividing by its standard deviation. We

randomly split the dataset into 90% for training and 10%
for validation. We also verified if we increased the number

of training samples to 11 102 would give better results, but

no significant improvement was observed.

3.6. Inference strategy

We evaluate our framework considering two approaches:

resized image and patch-based. In the first, we resize im-

ages down to a resolution of 1280× 720 with bicubic inter-

polation before feeding it to the model. In the second, we

extract patches of 513× 513 pixels from the original image

Simulate print/scan
and add artifacts

Resizing and
cropping

Image with/without
artifacts Mask

DeepLab-v3+

513x513x3 513x513x3

Input

Predicted
labels

(a)

Predicted
labels

Simulate print/scan
and add artifacts

Resizing and
cropping

Defect-free and
image with/without

artifacts
concatenated

Mask

DeepLab-v3+

513x513x6 513x513x3

Input

(b)

Figure 4: Training pipeline for (a) no-reference and (b) full-reference methods.
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7000x5000x3 
513x513x3 

7000x5000 
513x513 

Input
image
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Figure 5: Inference pipeline with resized image approach (top) and patch-based approach (bottom).

and run inference separately on each of them. In the end,

we combine the predictions from each image patch.

These inference strategies are supported by both FR and

NR pipelines and are illustrated in Figure 5.

4. Experiments

We evaluated our method on two datasets, one with semi-

synthetic defects and another with real samples from de-

fective printers, both on an Intel Xeon E5-2620 CPU and

NVIDIA Titan X Maxwell GPU. Due to differences be-

tween the two datasets, we trained two types of models for

evaluation, one considering banding defects with multiple

labels and the other associating banding with a single label.

Table 1: Evaluation on semi-synthetic and real data for

both inference strategies and full-reference (FR) and no-

reference (NR) methods. Values indicate the average and

standard deviation for four runs, to account for randomness.

Method mIoU
Time

(s /image)

Semi-synthetic data

Resized Image
FR 0.25± 0.02 2.5

NR 0.32± 0.01 1.8

Patch-based
FR 0.33± 0.05 20.5

NR 0.45± 0.04 20.5

Real data

Resized image
FR 0.35± 0.03 1.7

NR 0.43± 0.02 1.7

Patch-based
FR 0.37± 0.03 17.8

NR 0.49± 0.04 20.0

For the semi-synthetic dataset, we added synthetic arti-

facts to 103 background images using the process described

in Section 3.1, printed and scanned them at 600 dpi (around

7000 × 5000 pixels), and aligned the digitized and refer-

ence images with feature matching. After alignment, the

images had around 2000 × 3000 pixels. The printers and

scanners used in this dataset were the same used to design

our print-scan simulation described in Section 3.1. Man-

ual annotation was not needed as we recorded defect loca-

tions during artifacts generation. Multiple labels were used

for banding, depending on the affected color channel (cyan,

magenta, yellow, or black), allowing us to examine more

detailed predictions for this type of defect. Results for the

semi-synthetic dataset are shown in Table 1 and Figure 6.

The real dataset served as a benchmark of how well the

synthetic training data was translating to the real-world. It

has 30 scanned images with real banding and streaks de-

fects, collected from defective printers, and scanned at 600
dpi. We manually annotated the defects on each scanned

image and manually aligned the digitized and reference im-

ages. After alignment, the images had average dimensions

of 2500 × 3000. A single label was assigned to banding

defects, due to the difficulty of manually analyzing in ret-

rospect which color channel had been affected. Table 1 and

Figure 7 show the results for the real dataset.

Following the semantic segmentation literature, we eval-

uated our models with the mean intersection over union

(mIoU) over classes. Previous works on print defect detec-

tion [18, 19, 21] do not evaluate their approaches in terms

of mIoU, and each of them is evaluated differently, making

direct comparisons among works hard.

5. Discussion

Table 1 shows that the NR method outperforms FR on all

datasets and inference approaches. At first glance, this re-
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(a) (b) (c) (d) (e)

Figure 6: Sample results on the semi-synthetic dataset with patch-based inference mode: (a) reference image input, (b)

defective image input, (c) ground truth overlay, predictions from (d) no-reference and (e) full-reference model. Banding

defects are marked as magenta. Best viewed on screen.

Input Ground Truth Resized Image Patch-based

Figure 7: Sample results on the real dataset for the no-reference method with resized image and patch-based inference

strategies. Streaks are marked as green and banding defects are marked as magenta. Note that patch-based inference produces

finer results than resized image. Best viewed on screen.

sult seems surprising as the reference image could provide

cues for the model. Nevertheless, we hypothesize that it

may be difficult for the FR network to realize that it should

take into account the reference and scanned images sepa-

rately when predicting the defective pixels since concate-

nating them does not explicitly convey that.

The human eye is capable of detecting defects without

a reference image. Hopefully, a machine learning model

may be able to do the same. State of the art in computer

vision shows that deep learning methods usually work well

with minimal supervision than other methods, which may

strongly rely on handcraft features. It may be the case that

the NR method works better with DCNNs because the in-

put space (3 channels) is simpler than in the FR method (6

channels), facilitating convergence.

Figures 6 and 7 show that the patch-based inference pro-

vided more fine-grained detection compared to the resized

image mode. However, this advantage comes with the cost

of it being considerably slower (Table 1). Choosing be-

tween one of the inference methods depends on the goal
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of the problem. If the system must be fast, resized image

is the best choice, while patch-based inference is favored

when quality is more important.

Previous works [18, 21] require input images to have

specific aspects such as the ones of standard print test pages,

which are mostly solid-color filled. Conversely, our frame-

work is more general, working for documents, photos, and

combinations of both. Furthermore, our framework does

not require calibrating thresholds for different occurrences

of streak defects, as in [21].

Considering the lack of similar works, we found it suit-

able to use an intermediate step in the framework proposed

by Wang et al. [18] as a base for comparison. Their method

provides a fine defect detection map from which we could

compute the IoU and compare it with ours. Due to input

restrictions in their framework, we evaluated it only with

solid-color filled defective images, as depicted in Figure 8.

We chose patch-based inference as it provides better de-

tection of streaks, and the NR method to agree with Wang et

al.’s detection method, which does not require the reference

image. Our model was able to detect more streaks, even the

fading ones, when compared to their approach. This can be

verified by a higher IoU value of 0.299, outperforming their

mapping, which achieved an IoU of 0.183. Despite that, we

would like to emphasize that Wang et al.’s aim was differ-

ent from ours. Their defect detection was an intermediate

step to locate and get the defect features to subsequently

feed a predictor and get an overall quality assessment of the

printed image.

(a) (b) (c)

Figure 8: Comparison between methods: (a) real image

crop with streaks (b) map of our method (c) method by [18].

Best viewed on screen.

Although we use the mIoU to evaluate the performance

of our models, we realized from our experience annotat-

ing the evaluation dataset that two human annotators might

produce different segmentation masks, introducing biases

towards annotation. This problem is recurrent in other ap-

plications of semantic segmentation [13]. In print defect

mapping, since defects may be very thin, annotation agree-

ment may even be smaller. Thus, for more realistic evalua-

tion, we may use some metric relaxation in future works.

6. Conclusion and Future Works

We presented an end-to-end technique that uses DCNNs

to perform semantic segmentation for print defect mapping.

To the best of our knowledge, this is the first work to de-

scribe a fully-automated pipeline for detecting print defects

at the pixel level.

We simulated printing and scanning of documents, thus

eliminating the need for this laborious task. Moreover, our

method continuously simulates data, making our pipeline

cost-free in terms of annotation. Our results show that our

models can transfer the knowledge learned from synthetic

data to real print defects, demonstrating its applicability for

print quality assessment in industry.

We can improve our framework by updating specific

parts of the pipeline. The DCNN can be swapped to a more

modern architecture. Models may also take advantage of

attention mechanisms to improve the results by making the

network focus more on specific areas of the image. The pre-

processing pipeline can be further improved with better de-

fects simulations and with stronger data augmentation. Ad-

ditionally, performance can increase with larger datasets.

The framework can be improved by including more types

of defects so that a single approach can be used to detect a

wide range of print defects. Nevertheless, our results show

that it is possible to have two defects in the same model,

indicating that we may also get good results when adding

more defect types. Since we use synthetic defects, the hard

part would be to simulate the defects.

Alongside with the defect mapping, the framework could

also predict a global quality score in a multi-task learning

approach. A global quality score can be useful to quantify

the overall condition of a printer and can be used to discard

defective pages automatically. However, we need to define

some heuristics in order to produce synthetic scores for the

training set.
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