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Abstract

Deep neural networks have achieved great success in

many real-world applications, yet it remains unclear and

difficult to explain their decision-making process to an end-

user. In this paper, we address the explainable AI prob-

lem for deep neural networks with our proposed frame-

work, named IASSA, which generates an importance map

indicating how salient each pixel is for the models predic-

tion with an iterative and adaptive sampling module. We

employ an affinity matrix calculated on multi-level deep

learning features to explore long-range pixel-to-pixel cor-

relation, which can shift the saliency values guided by

our long-range and parameter-free spatial attention mod-

ule. Extensive experiments on the MS-COCO dataset show

that the proposed approach matches or exceeds the per-

formance of state-of-the-art black-box explanation meth-

ods. Our source code is available at https://github.

com/vbhavank/IASSA-Saliency .

1. Introduction

It is still unclear how a specific deep neural network

works, how certain it is about the decision making, etc, al-

though deep networks have achieved remarkable success in

multiple applications such as object recognition [42, 51, 9,

18, 16, 19, 17, 10, 38], object detection [21, 5, 30], image

labeling [15, 8], media forensics [33, 20, 14], medical diag-

nosis [43, 44], and autonomous driving [23, 4, 22]. How-

ever, due to the importance of explanation in understand-

ing and building trust in cognitive psychology and philoso-

phy [12, 13, 28, 45, 31], it is very critical to make the deep

neural networks more explainable and trustable, especially

to ensure that the decision-making mechanism is transpar-

ent and easily interpretable. Therefore, the problem of Ex-

plainable AI, i.e., providing explanations for an intelligent

models decision, especially in explaining classification de-

∗Equal contributions. This work was supervised by Chengjiang Long.

Figure 1. Visual comparison between the proposed method IASSA

and two state-of-the-art black-box explanation algorithms, i.e.,

LIME [26] and RISE [27], for the importance of producing ex-

planations.

cisions made by deep neural networks on natural images, at-

tracts much attention in artificial intelligence research [34].

Rather than explainable solutions [35, 50, 40, 29, 37] to

certain white-box models via calculating importance based

on the information like the network’s weights and gradients.

We advocate a more general explainable approach to pro-

duce a saliency map for an arbitrary network that is treated

as a black-box model, without requiring details about the

architecture and implementation. Such a saliency map can

show how important each image pixel is for the networks

prediction.

Recently, multiple explainable approaches have been

proposed for black-box models. LIME [26, 1] proposes

to draw random samples around the instance for an ex-

planation by fitting an approximate linear decision model.

However, such a superpixel based saliency method may not

group correct regions. RISE [27] explores the black-box

model by sub-sampling the input image via random masks

and generates the final importance map by a linear combi-

nation of the random binary masks. Although this is seem-

ingly simple yet surprisingly powerful approach for black-

box models, the results are still far from perfect, especially
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in complex scenes.

In this paper, inspired by RISE [27], we propose a

novel iterative and adaptive sampling with spatial attention

(IASSA) for explaining black-box models. We do not ac-

cess weights or gradients of the underlying model. We only

sample the input image randomly using a sliding window

during the initialization stage. And then an iterative and

adaptive sampling module is designed to generate sampling

masks for the next iteration, based on the adjusted attention

map which is obtained with the saliency map at the current

iteration and the long-range and parameter-free spatial at-

tention. Such an iterative procedure continues until conver-

gence i.e. no substantial change in the final saliency map.

The visual comparison of explanations obtained with LIME

and RISE is shown in Figure 1.

Regarding the long-range and parameter-free spatial at-

tention module, we apply a pre-trained model trained on

the large-scale ImageNet dataset to extract features for the

input image. Note that we combine multi-level contextual

features to better represent the image. Then we calculate an

affinity matrix and apply a softmax function to get spatial

attention. Since the affinity matrix covers pixel-to-pixel cor-

relations irrespective of them being local neighbors or not,

our attention covers long-range inter-dependencies. Also,

no parameters are required to be learned in this procedure.

Such a long-range and parameter-free spatial attention can

guide the saliency values in the obtained saliency map to-

wards highly correlated pixels. This can be very helpful to

identify sampling regions for adaptive sampling in the next

iteration.

Another contribution of our work is to evaluate for

”goodness” of an explanation. Besides previously used met-

rics like deletion, insertion and “Pointing Game” [27], we

also choose to use F-1 and IoU . We evaluate the final

saliency maps at both the image and pixel-level to highlight

the success of our approach in maximizing information con-

tained in each pixel. We argue that such a comprehensive

evaluation should be more trustable when compared with

the human-annotated importance. In our case, we assume

ground truth masks as representative of human interpreta-

tion of an object, as they are human-annotated.

To sum up, the technical contributions are of three-

folds: (1) we propose an iterative and adaptive sampling

for generating accurate explanations, based on the adjusted

saliency map generated by combining the saliency map ob-

tained from the previous iteration and the long-range and

parameter-free spatial attention map; (2) our long-range and

parameter-free attention module that incorporates “object-

ness” and guides our adaptive sampler with the help of

multi-level feature fusion; and (3) we further introduce an

evaluation scheme that tries to estimate goodness of an ex-

planation in a way that it is reliable and accurate.

We conduct extensive experiments on the popular and

vast MS-COCO dataset [11] and compare it with the state-

of-the-art methods in the field. The experimental results

demonstrate the efficacy of our proposed method.

2. Related work

The related work can be divided into two categories, i.e.,

white-box approaches and black-box approaches for pro-

ducing explanations.

White-box approaches rely on information such as the

model parameters or gradients, as well as the intermedi-

ate feature maps. Zeiler et. al. [47] visualize the inter-

mediate representation learned by CNNs using deconvolu-

tional networks. Explanations are achieved in other meth-

ods [25, 36, 46] by synthesizing an input image that highly

activates a neuron. Class activation maps (CAM) [52]

achieve class-specific importance at each location in an im-

age by computing a weighted sum of the activation values

at each location across all channels using a Global Average

Pooling layer (GAP). Such a method prevents us from us-

ing this approach to explain models lacking a native GAP

layer without additional re-training. Later, CAM was ex-

tended to Grad-CAM [35] by weighting the feature activa-

tion values at every location with the average gradient of

the class score (w.r.t. the feature activation values) for ev-

ery feature map channel. In addition, Zhang et. al. [50]

introduced a probabilistic winner-takes-all strategy to com-

pute the relative importance of neurons towards model pre-

dictions. Fong et. al. [7] and Cao et. al. [2] learn a per-

turbation mask that maximally affects the models output

by back-propagating the error signals through the model.

However, all of the above methods assume that the inter-

nal parameters of the underlying model are accessible as a

white-box. They achieve interpretability by incorporating

changes to a white-box based model and are constrained to

specific network architectures, limiting reproducibility on a

new dataset.

Black-box approaches treat the learning models as

purely black-box, without requiring access to any details of

the architecture and the implementation. LIME [32] tries

to fit an approximate linear decision model (LIME) in the

vicinity of a particular input. For a sufficiently complex

model, a linear approximation may not result in a faith-

ful representation of the non-linear model. Even though

LIME model produces good quality results on the MS-

COCO dataset, due to its reliance on super-pixels, it is not

the best at grouping object boundaries with activation. As

an improvement over LIME, RISE model [27] was pro-

posed to generate an importance map indicating how salient

each pixel is for the black-box model’s prediction. Such

a method estimates importance empirically by probing the

model with randomly masked versions of the input image

and obtaining the corresponding output probability. Note

that sampling methods to generate explanations have been
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Figure 2. The framework of our unsupervised saliency map extraction method for an explanation of a black-box model. Given an input

image, we perform a rough pass over the image to start the iterative process with large window size. The masked images are passed to

the black box classifier that predicts logit scores for each sample, the predicted logit scores are used to weight image regions to produce a

saliency map. Then an adjusted saliency map is generated by combining with the long-range and parameter-free spatial attention module

to guide the iterative and adaptive sampling module to generate the new sampling masks, which leads to a new saliency map. Such iterative

procedure continues until convergence. Note that the spatial attention module is built based on multi-level deep learning features via an

affinity matrix.

explored in the past [27, 48, 6]. Even though they produce

explanations for a wide variety of black-box model applica-

tions, their resolution is always limited by factors like sam-

pling sensitivity and strength of classifier.

In this paper, unlike the existing methods, we explore a

novel method to provide precise explanations for any appli-

cation that uses a deep neural network for feature extrac-

tion, irrespective of the multi-level features. We leverage a

long-range and parameter-free spatial attention to adjust the

saliency map. We propose an iterative and adaptive sam-

pling module with long-range and parameter-free attention

to determine important regions in an image. The proposed

system can also be adapted to perform co-saliency [6] by

weighting the final saliency map using a standard feature

comparison metric like Euclidean or Cosine distance. This

makes our approach robust to the form of explanation de-

sired and produces better quality saliency maps across dif-

ferent applications with little or no overhead in training.

3. Methodology

The proposed framework is illustrated in Figure 2. Given

an input image, we perform a rough pass to initialize our ap-

proach. The sampled image regions are passed to the black

box classifier that predicts logit scores for each sample, the

predicted logit scores are used to weight image regions to

produce an aggregated response map. The response map is

combined with the attention map obtained from the long-

range and parameter-free spatial attention module (LRPF-

SA) to get an adjusted saliency map. The attention module

also guides the iterative and adaptive sampling to sample

relevant regions in the next iteration. Such an iterative pro-

cedure continues until convergence. Note that the spatial

attention module is built on multi-level deep learning fea-

tures via an affinity matrix. In the following subsections,

we further explain our approaches in detail.

3.1. Iterative and Adaptive Sampling Module

We propose a novel iterative and adapting sampler that

is guided by our LRPF-SA to automatically pick sam-

pling regions of interest with an appropriate sampling factor

rather than weighting all image regions equally. Sampling

around important regions ensures faster convergence and

finer saliency maps. The iterative quality of our approach

also allows the users to control the quality of saliency

maps, which is inversely proportional to the amount of time

needed to generate them. We believe this is crucial in real-

time applications where the same explanation generator sys-

tem needs to be scaled according to user requirements with

minimal changes.

Given an image I , a black-box model f produces a score

vector of length c, where c is the number of classes the

black-box model was trained for. We sample the input im-

age I , using masks M : Λ → {0, 1} be a sliding window

of size W and stride S. Considering the masked version
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(I ⊙M) of I, where ⊙ represents element-wise multiplica-

tion, we compute the confidence scores for all the masked

images f(I ⊙ M). We define the importance of a pixel

λ ∈ Λ as the expected score over all possible masks M

conditioned on the event that pixel λ is observed. In other

words, when the scalar score f(I⊙M) is high for a chosen

mask m ∈ M , we can infer that the pixels preserved by m

are important. We define the importance of the pixel λ as

the expected score over all possible masks conditional on

the event that λ is observed, i.e..

S(I, f, λ) =
∑

m

f(I ⊙M)P [M = m,M(λ) = 1], (1)

where

P [M = m,M(λ) = 1] =

{

0, if m(λ) = 0
P [M = m], if m(λ) = 1

(2)

With Equation 1 and 2, we arrive at

S(I, f, λ) =
1

P [M(λ) = 1]

∑

m

f(I⊙M).m(λ).P [M = m]

(3)

Considering that P [M(λ) = 1] = E[M(λ)], we rewrite

Equation 3 in matrix notation as

S(I, f, λ) =
1

E[M ]

∑

m

f(I ⊙M).m.P [M = m] (4)

Using Monte Carlo sampling, at the iteration 0, the final

saliency map is computed as a weighted average of a col-

lection of masks Mk = {M1, . . . ,MN} by the following

approximation:

S(I, f, λ) ≈
1

E[M ] ·N

N
∑

i=1

f(I ⊙Mi).Mi(λ). (5)

When the black-box model f is associated with a class

c, then we can obtain a saliency map corresponding to c ac-

cording to Equation 4. Although most applications require

only the top-1 saliency map, our approach can be used to

obtain class specific salient structures.

The initial saliency map S0 is generated based on a slid-

ing window M0. After the initialization, we take the long-

range and parameter-free attention module A to adjust the

saliency map from Sk to S′
k

at the k-th iteration by the fol-

lowing rules

S′
k
= βSk + (β − 1)A× Sk, (6)

where β is a regularizer to control the amount of influence

the attention network has towards generating the final ex-

planation. The intuition behind using both saliency and at-

tention maps is that, while the saliency map Sk is associated

Figure 3. An illustration of our LRPF-SA module that produces

attention maps used to guide the iterative and adaptive sampling

module.

with the output of a back-box model, we provide a new in-

sight with our proposed LRPF-SA (see next subsection) to

apply some spatial constraints with respect to the extracted

features. Therefore, by combining both forms of explana-

tions we hope to converge on an aggregated saliency map

that gives a complete picture of the image regions that in-

terest the system while conforming to object boundaries.

Then we use S′
k

to guide the adaptive sampling for the

next iteration by

Mk+1 = HAR(S′
k
), (7)

where HAR(·) denotes the highest activated region obtained

by applying a threshold, resulting in a binary map that high-

lights all pixels containing the object of interest, i.e.,

HAR(S′
k
) = S′

k
> Tthresh (8)

With the adaptive sampling masks Mk+1, we are able

to apply Equation 5 to obtain the saliency map Sk+1 at the

(k+1)-th iteration. And then S′
k+1

is obtained using Equa-

tion 6 to get the adaptive sampling masks Mk+2 for gener-

ating the saliency map Sk+2 at the (k+ 2)-th iteration. It is

worth noting that the window size and stride can be gradu-

ally depreciated with respect to the number of iterations to

increase the resolution of saliency maps until there is very

little or no change in the quality of maps. The number of

iterations can also be fixed based on application require-

ments, when the user is willing to sacrifice the quality of

saliency maps for run-time.

3.2. Long­Range and Parameter­Free Spatial At­
tention

Obtaining an attention map from a deep learning model

is a well-researched topic [39, 49]. Recent developments

in minimizing attention generation overhead was proposed

in [41]. Inspired by [41], we propose a novel long-range and

parameter-free spatial attention (LRPF-SA) module. We
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make use of a deep network for feature extraction that en-

compasses activations from different levels of the network.

We believe by using activations from different levels of the

network we provide a true explanation about how the image

is perceived by the complete network, giving rise to hier-

archical salient concepts in the attention map. The saliency

maps are then used to choose from the hierarchical concepts

that match with image boundaries, thus giving rise to accu-

rate and reliable saliency maps.

In this paper, we use the pre-trained network learned on

the ImageNet dataset. Note that in the case of a new do-

main, the network can be adapted into the target domain

using methods proposed in [3]. Let Φ(I) be a pre-trained

deep network used to extract multi-level features that are

combined by upsampling and fusion. Finally, we use a soft-

max operation over the resulting affinity matrix to obtain an

attention map as showing in Figure 3.

Note that the Affinity matrix contains dependencies of

every pixel with all other pixels. Let Φ1(I), Φ2(I), Φ3(I)
and Φ4(I) be the the features extracted from four different

levels of the feature extractor. Since we use a Φ1(I) of H×
W × C1 dimensions, where H and W are the height and

width of the obtained feature maps and C1 is the number

of channels. The feature maps Φ2(I), Φ3(I) and Φ4(I) are

upsampled to H × W , with channel numbers C2, C3, and

C4. Upsampling the feature maps let us directly compute

an aggregated response using the following Equation

Φ(I) = Φ1(I)⊕ (Φ2(I)↑ ⊕ Φ3(I)↑ ⊕ Φ4(I)↑, (9)

where the subscript ↑ denotes an upsampling operation and

⊕ is an concatenation operation, and the long-range and

parameter-free spatial attention can be obtained by

A = softmax(Φ′(I)⊙ (Φ′(I))T ), (10)

where Φ′ is reshaped from Φ of dimension H ×W × C to

HW × C, and C =
4
∑

i=1

Ci is the number of channels in

Φ. Figure 3 shows an illustration of our LRPF-SA module

that produces attention maps used to guide the iterative and

adaptive sampling module. By using an attention mecha-

nism we hope to gain information related to the ”object-

ness”, hidden among pixels in an image.

3.3. Iterative Saliency Convergence

We propose to find the best possible saliency map that

captures the decision-making process of the underlying al-

gorithm in an iterative manner. Generating high-quality ex-

planations is a very time-consuming process and limits its

usage in real-time applications that require generating pre-

cise maps on large datasets. By gradually converging on the

optimal saliency map, we hope to let the user decide the rate

of convergence that fits their time budget, opening up possi-

bilities to use explanations in a wide variety of applications.

4. Experiments

One would wonder if we should consider an explana-

tion “good” if it represents the importance according to the

black-box classifier or if it conforms to object boundaries,

encouraging human trust in the explanation system. To ver-

ify the effectiveness of our proposed approach IASSA, we

conduct experiments on the MS-COCO dataset [11] and

evaluate explanations for their ability to best represent im-

age regions that the underlying model relies on and also

for their segmentation performance. By leveraging atten-

tion with model dependant saliency, the proposed approach

achieves better performance when evaluated for insertion,

deletion, intersection over union (IoU), F1-score, and a

pointing game score [27]. We believe we can leverage the

proposed explanation generation method to fine-tune mod-

els, especially deep learning classifiers in a closed loop us-

ing Attention Branch Networks [24].

Note that in this paper, the input images are resized to

224 × 224 to facilitate mask reuse and ease in feature ex-

traction. The IASSA module is initialized with a window

size of W of 45 and a stride S of 8 with step size 1.5 and

0.2 respectively. We use a β of 0.5 and a Tthresh of 0.3

to generate a new saliency map at the k-th iteration. We

present results for 25 iterations.

4.1. Evaluation Metrics

Evaluating the quality of saliency maps can be subjec-

tive to the kind of explanation. We evaluate the quality of

saliency maps using five different metrics: deletion, inser-

tion, IoU, F1-score, along with a pointing game score [27].

In deletion, given a saliency map and input image I we

gradually remove pixels based on their importance in the

saliency map, meanwhile monitoring the Area Under the

Curve (AUC). A sharp drop in activation as a function of

the fraction of pixels removed can be used to quantify the

quality of saliency maps. Analogously, in insertion, we re-

veal pixels gradually in the blurred image. The pixels can

be removed or added in several ways like setting the pixels

of interest to zero, image mean, gray value or blurring pix-

els. For deletion, we set pixels of interest to a constant grey

value. But the same evaluation protocol cannot be used for

insertion as the model would be biased towards grouping of

pixels introduced on an empty canvas.

To prevent the introduction of bias towards pixels group-

ing shapes, for insertion we unblur regions of the image,

under consideration. The IoU and F1-score are calculated

by applying a threshold Tthresh of 0.3 on the aggregated

saliency maps using Equation 8 and 9 obtained at the end of

i-th iterations. We also use a pointing game that considers
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(a) Input Image (b) LIME (c) RISE (d) IASSA (e) Input Image (f) LIME (g) RISE (h) IASSA
Figure 4. Visual comparison between quality of explanations in the form of saliency maps obtained using black-box explanations LIME,

RISE and our proposed IASSA on the MS-COCO dataset.

an explanation as a positive hit when the highest activated

pixel lies on the object of interest. We average all perfor-

mance metrics at both image and pixel-level by normalizing

the performance by the number of pixels activated. The nor-

malization for per-pixel performance lets us fairly evaluate

explanations that might cover a region much larger than the

object of interest but also include the object.

4.2. Effectiveness of Iterative Adaptive Sampling
Module with LRPF­SA

We consider explanation generation as an optimiza-

tion problem, assuming there exists an optimal explana-

tion that encapsulates both model dependence and human

interpretable cues in an image. Converging on this opti-

mal explanation is conditioned upon parameters such as the

number of iterations k, regularizer β, and threshold Tthresh

(where β and Tthresh decide the convergence rate). We fix

the value for β and Tthresh, and evaluate the impact of k.

A qualitative analysis of the proposed explanation sys-

tem’s ability to converge on an optimal explanation can be

visualized in Figure 5. The obtained explanations contain

well-defined image boundaries at iteration 10 and slowly

converges to its peak performance at iteration 15. Figure 5

shows the improvement in the quality of explanations with

the increasing number of iterations. Figures 6 and 7 show

the quantitative performance both at an image and pixel-

level with increasing number of iterations. As we can ob-

serve, at the image-level, the proposed IASSA seems to

reach its peak performance at iteration 15 and deteriorate

post-peak due to oversampling. Whereas, when evaluated at

the pixel level, the proposed method IASSA’s performance

increases across all metrics but deletion, suggesting the re-

duction in the influence of model-dependent saliency.

4.3. Comparison with State­of­the­art approaches

Figure 4 shows results comparing explanations obtained

using the proposed method with LIME and RISE. The

saliency maps obtained by our IASSA highlight regions of

interest more accurately when compared to other state-of-

the-art approaches. For example, the success of our ap-

proach can be qualitatively visualized in the test image for

class “snowboard” in Figure 4 (row 4, column 5), while

there exists some ambiguity if the person in the input im-

age contributes to classification while using either LIME or

RISE. The IASSA clearly points at the snowboard to clas-

sify the image.

We also summarize the results quantitatively in Table 1.

From Table 1, we can observe that our proposed method

IASSA outperforms the two black-box model explanation

approaches with the added flexibility of generating expla-
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(a) Input Image (b) k = 5 (c) k = 10 (d) k = 15 (e) k = 20 (f) k = 25

Figure 5. Visualization of our IASSA’s saliency maps with increasing iteration number k on the MS-COCO dataset.
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Figure 6. Performance of our IASSA at the image level with increasing number of iterations on the MS-COCO dataset.

nations in an iterative manner enabling its application in

speed-critical explanation systems. When averaged at an

image level, LIME is severely affected, especially in point-

ing game due to instances when the pixels with the high-

est activation were not aligned with the ground truth mask.

The proposed model not only outperforms other explanation

mechanisms when evaluated for “goodness” for the under-

lying model but also maintains human trust in explanation.

Even though RISE obtains deletion metrics close to the

proposed system, IASSA gives the best of both worlds by

explaining the model underneath and encapsulating object-

ness information at the same time. While our IASSA per-

forms close to the best when evaluated at the image level,

the true merit of our approach can only be appreciated at

the pixel level. In an ideal explanation, we would expect all

the contributing regions to carry the highest activation pos-

sible. Black box explanation approaches are prone to error

in interpretation of an explanation due to extraneous image

regions that affect human trust in explanation. Normalizing

saliency maps with the number of pixels carrying the top

30% of the activations resolve this issue, resulting in a fair

evaluation. The iterative aspect of our IASSA makes it a
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Figure 7. Performance of our IASSA at the pixel level with increasing number of iterations on the MS-COCO dataset.

Table 1. Comparative evaluation in terms of deletion (lower is better) and insertion (higher is better), F-1 (higher is better), IoU (higher is

better), and Pointing Game (higher is better) scores at both image and pixel levels on the MS-COCO dataset.

Method Deletion ↓ Insertion ↑ F-1 ↑ IoU ↑ Pointing Game ↑

Image-level

LIME 0.900967 0.99 0.15390 0.09745 0.16461

RISE 0.1847 1.0 0.13837 0.13653 0.25

IASSA 0.18803 1.0 0.23658 0.15153 0.4216

Pixel-level

LIME 10.8526e-05 10.96158e-05 1.71177e-05 1.08447e-05 0.43671e-05

RISE 5.5423e-05 28.8669e-05 4.26672e-05 2.69240e-05 8.95937e-05

IASSA 5.50534e-05 35.33639e-05 10.5960e-05 6.9282e-05 17.79331e-05

Figure 8. Explanations affected by sampling artifact that results in what can be an accurate explanation for class handbag and oven, but

causes ambiguity due artifacts in the form of lines.

perfect match for applications that require the system to be

scaled with minimal overhead.

4.4. Discussion

Fine-tuning hyper-parameters such as W and S, β and

Tthresh plays a crucial role in determining performance.

Hyperparameters help users control the quality of expla-

nations and the algorithms convergence rate. Even though

setting hyperparameters requires some knowledge about the

underlying algorithm, we limit the range of values between

a standard range of (0.0, 1.0) as opposed to it being arbi-

trary. The proposed system can result in explanations con-

taining sampling artifacts due to a mismatch between win-

dow size W of stride S. To prevent this, we plan to look

into other sampling methods that are both faster and can get

a consensus on a larger image region at a time. Some exam-

ples of sampling artifacts are shown in Figure 8. Ultimately,

the proposed system takes an average of approximately 800

milliseconds per iteration to compute explanation on an im-

age of size 224 × 224 using a ResNet-50 architecture in

batches of 256. Since a majority of the run-time is spent in

loading the deep learning feature extractor, we advice using

large batch sizes to minimize model load time.

5. Conclusion

In this paper, we propose a novel iterative and adaptive

sampling with a parameter-free long-range spatial attention

for generating explanations for black-box models. The pro-

posed approach assists in bridging the gap between model

dependant explanation and human trustable explanation by

laying the path for future research into methodologies to

define “goodness” of an explanation. We prove the above

claim by evaluating our approach using a plethora of met-

rics like deletion, insertion, IoU, F-1 score, and pointing

game, at both the image and pixel levels. We believe the

explanations obtained using the proposed approach could

not only be used for the human to reason model decision

but also contains generalized class specific information that

could be fed back into the model to form a closed loop.
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