
A “Network Pruning Network” Approach to Deep Model Compression

Vinay Kumar Verma Pravendra Singh Vinay P. Namboodiri Piyush Rai

Department of Computer Science and Engineering, IIT Kanpur, India

{vkverma, psingh, vinaypn, rpiyush}@iitk.ac.in

Abstract

We present a filter pruning approach for deep model com-

pression, using a multitask network. Our approach is based

on learning a a pruner network to prune a pre-trained target

network. The pruner is essentially a multitask deep neu-

ral network with binary outputs that help identify the filters

from each layer of the original network that do not have any

significant contribution to the model and can therefore be

pruned. The pruner network has the same architecture as the

original network except that it has a multitask/multi-output

last layer containing binary-valued outputs (one per filter),

which indicate which filters have to be pruned. The pruner’s

goal is to minimize the number of filters from the original

network by assigning zero weights to the corresponding out-

put feature-maps. In contrast to most of the existing methods,

instead of relying on iterative pruning, our approach can

prune the network (original network) in one go and, more-

over, does not require specifying the degree of pruning for

each layer (and can learn it instead). The compressed model

produced by our approach is generic and does not need any

special hardware/software support. Moreover, augmenting

with other methods such as knowledge distillation, quanti-

zation, and connection pruning can increase the degree of

compression for the proposed approach. We show the effi-

cacy of our proposed approach for classification and object

detection tasks.

1. Introduction

Recent advances in deep learning have led to an im-

pressive and significant breakthroughs in various domains,

such as computer vision [12, 44, 41, 9, 53, 18, 54], NLP

[58, 35, 3], and information retrieval [29]. Pushing the per-

formance further typically leads to models with overly com-

plex, deeper architecture, which tends to increase the model

size (number of parameters, depth, and breadth of layers),

and FLOPs enormously, and such complex models may not

be ideal to be deployed on resource-constrained devices.

This had led to considerable interest in making the model

more efficient, in terms of storage as well as computa-

tion [7, 15, 50, 25, 47, 45, 33, 52, 13, 49, 48, 59]. A popular

approach to increase the efficiency of the model is via model

compression. Among the existing model compression ap-

proaches, the filter pruning based approaches usually show

superior performance regarding FLOPs and runtime memory

compression [15, 59, 7].

Selecting the most optimal subset of filters to prune from

a Convolutional Neural Network (CNN) model is a combi-

natorially hard problem. Therefore, the existing filter prun-

ing approaches are based on some heuristics to define filter

importances. Recent works [25, 15] have shown that the

strength of the feature map (output produced by a convolu-

tional filter) dominates the output of the network. Filters

with a feature map have minimal contribution to the final

decision of the model; therefore, the corresponding filters

can be removed from the network. In these approaches, the

objective is to find the filters that are likely to produce zero

(or near-zero) feature map1. In a pre-trained model, it is rare

to get zero feature map. Therefore we optimize the network

such that a majority of the filters (which are going to be

pruned) have their feature map value close to zero, while the

rest of the filters (that remain in the model) can still achieve

accuracy close to the original network. Therefore after dis-

carding the filters that produce zero feature-maps, the model

does not incur any significant performance drop.

Most of the existing filter pruning approaches are based

on heuristics to define filter importance. Defining filter im-

portance is itself a challenging task. Also, before discarding

the less important filters from the model, the representational

capacity of the less important filters should be transferred

to the remaining part of the model. This is a challenging

task, and most of the previous approaches [27, 13, 59] ex-

hibit poor performance in doing so and, consequently, these

approaches exhibit a sharp drop in accuracy after a moderate

pruning and require a high degree of finetuning, which can

be very time consuming in practice.

Another drawback in the previous approaches [7, 32, 19,

23] is that they are unable to decide the layer importance.

Performance of a CNN model may be very sensitive w.r.t.

some of the layers, and we cannot remove a large number

of filters from such layers. In contrast, some other layers

1A feature map is said to be zero feature map if its ℓ1 norm is zero, i.e.,

all of its elements are zero.

3009

may have a high degree of filter-level redundancy. It is a

very challenging task to define layer importance precisely.

Most previous methods [7, 15, 25, 13, 59] consider this

as a hyperparameter (i.e., how many filters to prune from

each layer). Therefore, these approaches take as input the

number of filters to be pruned from each layer. To set these

hyperparameters is an arduous task since, for K layers, we

have K such hyperparameters. Therefore it is desirable to

develop an automatic method that decides where to prune in

the model, which motivates our approach.

We present a “network pruning network” approach for

deep model compression in which we learn a pruner network

that prunes a target (main) network. The pruner network is

essentially a deep multitask network that adaptively decides

which filters to prune in each layer of the target network. The

objective of the multitask network is to learn weights corre-

sponding to each output feature map of the main network

(which we are going to prune) such that most of the feature

maps are zero weighted without sacrificing the accuracy.

Therefore the filters that correspond to zero feature maps can

be safely removed from the main network without hurting

the main network performance. In the proposed approach,

the multitask network contains the same CNN architecture

as the main network (e.g., ResNet for ResNet) but contains

task-specific output layers consisting of binary outputs that

denote the filters that have close to zero feature maps. The

multitask network learns to maximize the number of zero

feature maps in the main network. The proposed approach

is end-to-end trainable using gradient descent. Our main

contributions can be summarized as follows:

• The proposed approach leverages the idea of multitask-

learning, which guides us on how to prune in each

layer. We can obtain a compressed model using just a

few epochs without any significant accuracy drop.

• The proposed approach uses a multitask network, which

adaptively learns the filter importance in an end-to-end

trainable manner in contrast to existing filter pruning

approaches that rely on ad hoc heuristics to calculate

the filter importances.

• Most of the existing approaches [7, 15, 25, 13, 59]

require specifying how many filters from each layer to

prune or require a threshold that is used to determine

which filters to prune. In the proposed approach, we do

not require any such input and can automatically learn

the layers importance, thereby reducing the number of

hyperparameters.

Note that, although our approach consists of two net-

works, i.e., a deep network to prune another deep network, it

is different from student-teacher based knowledge distilla-

tion approaches [16] to deep model compression where the

idea is to compress a teacher network into a simpler student

network. In contrast, our approach learns a deep multitask

network that prunes a target network.

2. Proposed Approach

2.1. Notation
Let us assume a CNN architecture with K convolutional

layers. Assume Li to be the ith layer and i ∈ [1, 2, . . .K].
The layer Li has ni filters which gives the ni feature-maps

that are used as input for the next layer. The set of filters at

layer Li is denoted as FLi
where FLi

= [f1, f2, . . . , fni
].

Similarly, the feature maps at layer Li are represented as

MLi
= [m1,m2, . . . ,mni

]. Each feature map mi is of

dimension (hk, wk), where hk, wk are height and width,

respectively, of the feature map. Therefore the shape of

MLi
is (hk, wk, ni).

2.2. Model

This section briefly describes how the multitask network

is used to prune the filters from the main network (the CNN).

The core idea of our approach is to design a multitask net-

work that learns a weight for each filter in the main network,

and optimizes the main network such that most of the filters

produce zero feature maps after being weighted by the mul-

titask network. Corresponding filters in the main network

that produce zero feature maps do not have any significant

contribution to the model performance and can be discarded

from the main network without sacrificing the model’s per-

formance.

Our approach is based on learning the weights for each

filter in the main network. However, instead of associating

weights to each filter, we associate weights with each feature

map (the output produced by a filter of the main network).

The multitask network learns these weights. The objective

of the multitask network is to maximize the number of zero

weights corresponding to output feature maps in the main

network. The multitask network has the same architecture

as the main network that we would like to prune (e.g., for

pruning the ResNet main network, the multitask network

is also ResNet architecture with a modified output layer).

Essentially, to prune a model with K layers, we have a

multitask network with K outputs, where the K outputs

themselves have dimensions of size [n1, n2, . . . , nK]. Here

ni is the number of filters at layer Li. We refer the main

network as (O) while the multitask network is called the

pruner (P). Fig. 1 summarizes the complete architecture of

our proposed model compression framework.

Suppose the main network (O) has a cost function

CO(Θo), where Θo denotes the parameters of the network

O. Also assume that the pruner network (P) has a cost

function CP (Θm), where Θm denotes the parameters of the

network P . The architecture of the pruner is the same as

the main-network (O); the only difference is that the output

layer is replaced by a multitask network that has K outputs

(number of layers in theO), with each of the K outputs itself

being a binary vector. The size of the vector at layer Li is

ni (size equal to the number of filters at Li). The complete

3010

Figure 1. The upper architecture is the main network that we wish to prune, and the lower model is the same as the original one, with the

only difference being that the multitask architecture replaces the output layer. Each has a task to prune a layer in the main network.

model is shown in Fig. 1.

2.3. Main­Network (O)

The main network corresponds to the original network

that we would like to prune. The only difference from the

original network is that feature maps MLi
on each layer

Li are replaced by weighted feature maps, and the weights

are given by the pruner network (P) (explained in the next

section). Let WLi
= [w1, w2, . . . , wni

] be the weights of

layer Li given by the P network. ThenO’s Lth
i layer feature

maps are replaced as:

Mw = [w1m1, w2m2, . . . , wni
mni

] (1)

Here m1,m2, . . .mni
are the feature maps at layer Li in

original network. Now our objective is to optimize the net-

work with the help of P such that most of the wi’s are close

to zero, without sacrificing the accuracy. The complete

objective and joint loss are described in Section 2.5. The

modified network can be easily optimized with the help of

any gradient descent based optimizer.

Therefore, in the complete network, we represent each

feature map as m̃j = wjmj , here wj ∈ [0, 1] i.e. each

feature map mj is weighted by a weight wj . The pruner net-

work learns these weights. In the main network, ∀wj : wj →
0 does not have any significant contribution to the overall

network performance, implying that mj can be pruned from

the model.

Therefore, by discarding all the filters fi corresponding to

the wi ≈ 0 (feature-maps weights) from the network O, do

not significantly degrade the model’s performance. Hence

we can remove all such filters and corresponding feature

maps from the model.

2.4. Pruner Network (P)

The pruner network is the network that is responsible for

the filter pruning in the main network. The pruner network

maximizes the number of zero feature-maps in the main

network. The corresponding filters that produce the zero

feature-maps can be discarded from the main network. The

pruner network give weights to each feature-maps in the

main network and tries to optimize weights such that most of

the wi → 0. Our pruner network P is a multitask network,

with the base network being the same as the main-network,

and the fully connected output layer replaced by multitask

output layers. The number of output in multitask output

layers is same as the number of layers in the model O, i.e.,

K. The dimension of each multitask output is ni (number of

filters on layer Li). The pruner multitask network is shown

in Fig. 2.

Let’s assume that the pruner network has the cost function

CP (Θm), where Θm denotes its parameters. We need to

optimize the model such that each of the outputs in the

multitask output layer is binary, i.e., ∀wi : wi ∈ {0, 1}. To

retain differentiability, we approximate the Bernoulli outputs

using a scaled sigmoid on the output values. This scaled

sigmoid gives a sharp change between 0 and 1. A moderate-

scale value of the sigmoid can approximate the Bernoulli

distribution. The scale of the sigmoid is increased gradually

since experimentally we found that, if initially, we set high

scale value in the network then the network is unable to

learn.

Let f(Θm) be the output of the network P . i.e.:

f(Θm) = [WL1
,WL2

, . . . ,WLK
] ∀WLi

∈ [0, 1]ni (2)

Here WLi
denotes the ith output of the multitask network

and is of size ni (number of filters on layer Li). In the next

3011

Algorithm 1 Multitask Network for Model Compression

Require: CMP (Θo,Θm): The complete model

Require: α and β: learning rate and N : #epoch

1: Initialize Θo and Θm from pretrained model

2: while epoch≤ N do

3: if epoch%2==0 then
4: Calculate Θ′

m by Eq:4

i.e. Θ′
m ← Θm − α ▽Θm

(Ct

MP (Θo,Θm) +
λ||f(Θm)||l1)

5: else

6: Update [Θo,Θm] using latest value [Θo,Θ
′
m] by

Eq:5 i.e. [Θo,Θm] ← [Θo,Θ
′
m] − β ▽[Θo,Θ′

m
]

(Ct+1
MP (Θo,Θ

′
m) + λ||f(Θ′

m)||l1)
7: end if

8: end while

9: Remove all the filters and corresponding feature maps

having w → 0 from the main network (O)

10: Finetune the pruned model with the remaining filters

section, we briefly explain how we can achieve the objective

of Eq. 2 without affecting the model performance. Eq. 2

gives the weights to each feature maps on every layer. The

output that has the zero value gives the zero weight to the

corresponding feature-map, and we can discard this feature-

map and corresponding filter from the main-network without

degrading the model performance. The objective of this net-

work is to maximize the number of zeros in the multitask

output space. The alternate optimization of the O and P
ensure that the accuracy drop is minimal in the filter prun-

ing process. In the first round, only P is optimized, while

the parameters of O are kept frozen. In the second round,

P and O is optimized jointly. Optimizing P tries to mini-

mize the number of filters/feature-maps in the main network

while optimizing O recovers the accuracy. Notably, our

proposed approach essentially transforms the model com-

pression problem as an end-to-end optimization problem.

This can be easily optimized using stochastic gradient de-

scent (SGD). The proposed approach automatically select

the filters from each layer based on the layer importance.

This fact can be easily verified since in our final compressed

model’s different layers have different compression rates.

In contrast, other existing approaches [15, 25, 13, 59] need

the number of filters to be pruned from each layer as the

hyperparameters. The multitask pruner network is shown in

Fig. 2.

Producing the Binary Weights: Generating the binary

weights on the multitask output layer is a key point that

controls the pruning rate. A high zero cardinality results in

a high pruning at the cost of accuracy drop, while low zero

cardinality produces a low pruning. We have to make a trade-

off between the number of zeros and the accuracy drop. To

produce values close to 0/1, we adopted the scaled sigmoid

Figure 2. Multitask pruner network: Multitask Network has the

same base model as main network but the output later is replaced

by layer specific multitask network.

on the multitask output space, along with l1 regularizer. The

l1 regularizer produces the sparsity on the output space, and

sparsity can be controlled by the regularization constant.

Initially, we set the scale as 1, and after a few epochs, we

changed it to 30; it helps to convert the sigmoid function to

nearly a step function for 0/1. The main advantage of the

scaled sigmoid is that it is differentiable. The more details

for each architecture are given in the experiments section.

2.5. The Complete Model

This section explains how the complete objective is de-

fined and the optimization is performed over the main net-

work O and pruner network P . The section also explains

how the multitask network learns to prune the main-network.

Let CMP be the joint loss of the main network and the

pruner network, and CO(Θo) and CM (Θm) be the cost func-

tions defined for O and P , respectively. The joint objective

can be defined as:

min
Θo

min
Θm

CMP (Θo,Θm) + λ||f(Θm)||1 (3)

Here CMP is the joint loss w.r.t parameters Θo and Θm. λ is

the regularization constant and ||f(Θm)||1 is the ℓ1 penalty

on the output of the pruner network. The epoch t updates for

the pruner network is given by

Θ′

m ← Θm − α▽Θm

(

C
t

MP (Θo,Θm) + λ||f(Θm)||1
)

(4)

In Eq. 4, the gradients are calculated only w.r.t. pruner

network parameters Θm. The optimal parameters for pruner

network Θ′
m are obtained in epoch t will be used as input

in the next epoch (t + 1) to train the main-network. The

optimization of the main network can be given as:

[Θo,Θm]← [Θo,Θ
′

m]−β ▽[Θo,Θ′

m
] (C

t+1
MP (Θo,Θ

′

m)

+λ||f(Θ′

m)||l1)
(5)

Here [Θo,Θm] denotes the joint parameters of both mod-

els and Eq. 5 uses the most recent values Θ′
m of the optimal

3012

parameters of the pruner network. α and β are the learning

rate for Eq. 4 and 5, respectively. The optimization of Eq. 5

is performed jointly w.r.t. parameters Θo and Θm. The op-

timization in Eq. 4 maximizes the number of zeros in the

output of the pruner network because of ℓ1 penalty. At the

same time, it also minimizes the loss; therefore, the model

performance is maintained. Eq. 5 optimizes the model w.r.t.

all parameters. Therefore, the main network has the flexibil-

ity to transfer representational capacity of the less important

filters to the remaining part of the model (so as to maintain

the representational capacity).

It is interesting to note that the two-step update defined

by Eq. 4 and 5 is akin to the updates of a model-agnostic

meta-learning (MAML) framework [8]. The only difference

is that, in MAML, the optimization of meta-learner and

main-learner are done over the same set of parameters. In

contrast, in our proposed model compression approach, the

pruner network parameters are a subset of the main learner’s

parameters. Unlike the original MAML [8] framework, there

is also no “task distribution” over a dataset since here the

model pruning is a single, stand-alone task that we wish to

solve.

3. Related Work

Most of the recent work on model compression can be

categorized into three broad categories: connection prun-

ing, filter pruning, and quantization. The filter pruning ap-

proach has been more popular as compared to the other

methods since it gives the maximum practical speedups and

minimizes runtime memory, without requiring special hard-

ware/software support. The other methods usually require

special hardware/software support.

3.1. Connection Pruning

In deep CNNs, most of the weights are redundant in the

model. The connection pruning is a simple method to intro-

duce sparsity in CNN model parameters. It prunes the redun-

dant connections from the model. One approach to compress

the CNN architecture is to prune the unimportant/redundant

parameters. However, it is challenging to define the impor-

tance of the parameters quantitatively. There are many ap-

proaches to rank the importance of the parameters. Optimal

Brain Damage [24] and Optimal Brain Surgeon [11] used the

second-order Taylor expansion to calculate the parameters

importance. These approaches are based on the calculation

of the second-order derivative and therefore are very costly.

Blockdrop [57] proposed the skip layer approach for net-

work compression. Using the hashing function, the method

proposed in [5] randomly groups the connection weights into

a single bucket and then finetunes the network to recover

the performance. [10] proposes an iterative approach where

absolute values of weights below a certain threshold are set

to zero, and the drop in accuracy is recovered by finetun-

ing. The connection pruning approach is very successful

when most of the parameters lie in the fully connected layer.

However, these approaches result in unstructured sparsity in

the model. Special hardware/software adds extra overhead.

Another disadvantage of these approaches is that they are

unable to save the runtime memory GPU memory.

3.2. Filter Pruning

Unlike the connection pruning approach, the filter prun-

ing approach [17, 46, 25, 59] discards the whole filter from

the model. As a result, the depth of feature maps is also re-

duced. The filter pruning approaches (which is the focus of

our work too) do not need any special hardware or software

for acceleration. Filter pruning approaches can be catego-

rized into two categories. One class of methods find out the

important filters in the model and discard the unimportant

ones. After that, at each pruning step, re-training is needed

to recover from the accuracy drop. [17] evaluates the impor-

tance of filters on a subset of the training data based on the

output feature maps. [1] used a greedy approach for prun-

ing. They evaluated the filter importance by checking the

model accuracy after pruning the filters. [37] and [25] used

a similar approach but a different metric for filter pruning.

The filter pruning approach in [25] is mostly based on the

weight magnitude of the filters. [6, 61, 20] used the low-rank

approximation which relies on matrix factorization and can

thus be costly in practice. [30] performed channel-level prun-

ing based on the scaling factor in the training process. The

pruning is done layer by layer; hence, it is very slow. The

group sparsity-based approaches have also become popular

for filter pruning. [22, 56, 62, 2] explored the filter pruning

based on the group sparsity.

In the same vein as our work, recently [26, 14, 39] pro-

posed automatic filter pruning approaches. [26, 39] proposed

a reinforcement learning-based approach; it finds a dynamic

routing path at run time to prune the model. In [14] an-

other reinforcement learning-based model has proposed that

leverage on the actor-critic model for the network pruning.

These approaches use a dynamic pruning policy, while in

the proposed approach, we use a single policy. Also, the

proposed model was not based on reinforcement learning-

based algorithms. Another popular approach are the design

the efficient CNN model that can train the network from the

scratch [60, 60, 51, 51]. Our work focus on the filter pruning

and the efficient CNN based approach are the out the scope

of this work.

3.3. Quantization

The method in [10] compressed the CNN by combining

pruning, quantization, and Huffman coding. In [34], the pro-

posed compression method was based on the floating point

value quantization for model storage. These approaches as-

sume that 32-bit float representation is redundant for the

model parameters. Here we can use a lower bit configuration

for model parameters without sacrificing the performance.

3013

The extreme case of this approach can be binary bit quanti-

zation. Binarization [40] for model parameters can be used

for the network compression where each floating point value

is quantized to a binary value. Bayesian methods [31] have

also been used for the network quantization. Most quanti-

zation methods require special hardware support to get the

advantage of the compression.

4. Experiments and Results

To show the effectiveness of our proposed approach, we

perform extensive experiments on large as well as small-

scale datasets. We perform experiments on ResNet-50 [12]

and VGG-16 [44] architecture over the large-scale dataset

ImageNet [43]. We also conduct experiments on ResNet-

56 [12] and VGGLike [44] architecture over the small scale

dataset CIFAR-10 [21] . To show the generalization ability of

our proposed approach, we also conduct an experiment over

the large scale MS-COCO [28] dataset using Faster-RCNN

object detector. Our experimental results demonstrate that

the proposed approach yields state-of-art model compression.

4.1. Implementation Details

The proposed framework consists of two networks,

pruner network P and main network O. The pruner network

P gives the weights to the feature maps of main-network O.

The objective of P is to maximize the number of zeros in the

multitask output space, whereas O maintains the accuracy

drop because of P . The task given to P is easier than the task

given to the O. The pruner network can quickly maximize

the number of zeros in the output space, but empirically, we

find that this gives the sharp accuracy drop in the model.

Since the quick optimization is irrecoverable for O, we have

to make a balance between the two networks such that the

loss that occurs because of P can be recovered by O. To

solve this problem, we use alternating optimization; we give

an equal chance to O to recover from the loss. Hence P and

O networks are optimized by one epoch iteratively.

Our model contains binary variables. To make it differen-

tiable, we use the scaled sigmoid 1/(1 + e−αx) where α is

a hyperparameter; we increase α after a few epochs once the

weights produced by the output layer of P is uniformly dis-

tributed in [0,1]. The high α value pulls the weights close to

0/1. This helps to get the approximate Bernoulli distribution

in the pruner network output space.

4.2. Results

4.2.1 VGG-16 on CIFAR-10

CIFAR-10 is a widely used benchmark dataset, consisting of

50000 RGB images for training and 10000 images for testing.

Each image is of size 32 × 32. For the data augmentation,

we used a horizontal flip and random crop. The VGG-16

for CIFAR-10 contains the same architecture as [44]; the

only difference is that a single 512-dimensional layer is used

Method Error% FLOPs Pruned Flop%

Li-pruned [25] 6.60 2.06× 108 34.20

SparseVD [36] 7.20 – 55.95

SBP [38] 7.50 – 56.52

SBPa [38] 9.00 – 68.35

NN-1 (Ours) 6.74 6.44× 10
7 79.47

NN-2 (Ours) 7.14 5.33× 10
7 83.00

NN-3 (Ours) 7.47 4.11× 10
7 86.90

Table 1. Pruning result on the VGG-16 over the CIFAR-10 dataset

(the baseline accuracy is 93.49%).

in place of the fully connected layers. We follow the same

settings as in [25]. For the base model, the network is trained

for 120 epochs and has an error rate of 6.51%. The result of

the proposed approach is shown in Table 1.

The rate of model compression depends on the regular-

ization constant. Three different compressed models (NN-1,

NN-2, and NN-3) can be obtained by just varying the regu-

larization constant value that controls how many zeros we

want in the multitask network. We use 0.001, 0.002 and

0.005 sparse regularization constant values in the pruner net-

work to obtain NN-1, NN-2 and NN-3 compressed models,

respectively. Training of the network P and O is done in

an alternating fashion. P tries to minimize the number of

filters/feature-maps in the main network, while O recovers

the accuracy.

Table 1 shows that the proposed approach has a high

pruning rate while still maintaining accuracy. In Table 1, we

can see that SBP [38] has 7.5% error on the 56.52% pruning

while SBPa shows the 68.35% pruning with the 9.0% error.

Our proposed approach has only 7.47% error with a high

pruning rate of 86.9%.

4.2.2 ResNet-56 on CIFAR-10

Next, we experiment on ResNet-56 over the CIFAR-10

dataset. It contains three stages of convolutional layers.

Each layer is connected by projection mapping and followed

by the average pooling and one fully connected layer. We

use the same architecture and settings as described in [25].

The same alternate optimization, as described in the previous

section, is performed for maximizing the filter pruning or

maximizing the zero weights produced by the pruner net-

work. The network P is trained with the scaled sigmoid.

Initially, we use scale α = 1, and after 30 epoch, we change

the scale to α=30. This new scale forces the output space

of the pruner network to be close to 0/1. Therefore we do

not have any significant accuracy drop after discarding the

filters corresponding to zero weights.

Table 2 shows that the proposed approach achieves high

compression rates while also giving the lowest error rate.

In particular, SFP [13] has error 6.65% with the 52.6% of

FLOPs pruning while the proposed approach shows the sig-

nificantly better pruning 61.51% with the 6.61% error rate.

3014

Method Error% FLOPs Pruned Flop %

Li-A [25] 6.90 1.12× 108 10.40

Li-B [25] 6.94 9.04× 107 27.60

NISP [59] 6.99 – 43.61

CP [15] 8.20 – 50.00

SFP [13] 6.65 – 52.60

AMC [14] 8.10 – 50.00

NN-1 (Ours) 6.61 4.85× 10
7 61.51

Table 2. Pruning result of ResNet-56 architecture over CIFAR-10

dataset (the baseline accuracy is 93.1%).

4.2.3 VGG-16 on ImageNet

We evaluate our approach over the large-scale ImageNet

dataset [43] using the VGG-16 architecture. The same

ResNet-56 alternative optimization technique is used for

pruning VGG-16 networks. We train P network with scaled

sigmoid at the output layer. We use scale α = 1 for an

initial 10 epochs, and then we set α = 30 for the rest of

the training schedules. In Table-3, we compare our result

with various other pruning approaches. As shown in Table-3,

our approach gives 75% FLOPs pruning with 89.71% top-5

accuracy. On the other hand, CP-4x [15] gives 75% FLOPs

pruning with only 88.9% top-5 accuracy.

4.2.4 ResNet-50 on ImageNet

ResNet-50 [12] is a deep CNN architecture that has 50 lay-

ers with the residual connection. We use the same setup

as proposed by the [12]. The previous approaches, such as

[59, 13, 7], etc., are unable to prune the skip connection

filters because of the matrix addition inconsistency. These

approaches only prune the middle layer filters, resulting in

limited compression. In our approach, we also prune the

skip connections. To solve the addition inconsistency, we

give the same weights to the output filters and the skip con-

nection filters. Therefore it prunes the same number of the

filters in the output layers and the previous skip connection

layers. Hence, the proposed approach can also prune the

skip connection layers. This may be very useful to prune

complex networks, such as ResNet. Please refer to Figure 3

for more details.

In ResNet-50 Pruning, the pruner is the multitask network

with the 50 tasks, because of the 50 layers in the main-

Method Acc%(Top-1) Acc%(Top-5) FLOPs Pruned %

Baseline 71.50 90.10 –

RNP (3X)[26] – 87.57 66.67

ThiNet-Conv [32] 69.74 89.41 69.04

RNP (4X)[39] – 86.67 75.00

CP 4x[15] – 88.90 75.00

NN-1 (Ours) 70.31 89.71 75.00

Table 3. Pruning results for the VGG-16 over ImageNet. Our

approach has minimum accuracy drop as compared to state-of-

art pruning approach. We use the result reported in MatConvNet:

http://www.vlfeat.org/matconvnet/pretrained/.

Method Error%(Top-1) Error%(Top-5) Pruned Flop %

Baseline 24.7 7.8 -

ThiNet-70 [32] 25.97 7.9 36.8

CP [15] – 9.2 ∼ 50

NISP [59] 28.0 – 44.0

SFP [13] 25.39 7.94 41.8

SPP [55] – 9.6 ∼ 50

WAE [4] – 9.6 46.8

NN-1 (Ours) 24.58 7.56 40.7

NN-2 (Ours) 24.82 7.64 49.1

Table 4. ResNet-50 Pruning results over the ImageNet dataset. The

accuracy of ResNet-50 is tested using official 1-crop validation set-

ting: center 224x224 crop from resized image with shorter side=256

(https://github.com/KaimingHe/deep-residual-networks).

Figure 3. Unlike the previous approaches, our proposed method

can also prune the skip connection filters. In the first two images,

the skip connection size is fixed to 256-D, same as the original,

while in the proposed approach, we also prune this to make it

R-dimensional.

network. We optimize the model in an alternating fashion

for P and O. In the first round, only P is optimized, while

the parameters of O are kept frozen. In the second round, P
and O is optimized jointly. The output dimension of each

multitask output layer is equal to the number of filters in

that layer. To get the output close to 0/1, scaled sigmoid is

used. Initially, we set α = 1 for 10 epochs, and later we use

α = 50 to get the Bernoulli weights (outputs of the multitask

pruner network) on the feature maps.

Empirically, we found that our approach yields com-

pressed ResNet-50 models (NN-1, NN-2) having signif-

icantly better accuracy as compared to other approaches

[59, 15, 4] because of skip connections pruning support. The

proposed approach gives a significantly better pruning rate

with the negligible accuracy drop. In Table 4, we show a

detailed comparison with other baselines.

4.3. Generalization

To show the generalization ability of the compressed

model produced by our proposed approach, we experiment

on the object detection task. In this experiment, we select

the popular Faster-RCNN [42] architecture on the large-

scale MS-COCO [28] dataset. Our experimental results

demonstrate that the compressed model produced by our

proposed approach has the same generalization ability as the

original model.

4.3.1 Compression for Object Detection

MS-COCO [28] is a large-scale dataset, which contains 80

object categories. The training set contains 80K images,

3015

Model data
Avg. Precision, IoU:

0.5:0.95 0.5 0.75

F-RCNN original trainval35K 30.3 51.3 31.8

F-RCNN pruned trainval35K 30.2 51.0 31.6

Table 5. Generalization results over MS-COCO [28] dataset for Faster-RCNN object detector. In the original Faster-RCNN, we use

ResNet-50 as the base architecture while in the Faster-RCNN pruned, pruned ResNet-50 model (NN-2) from Table 4 is used. We use a

publicly available implementation (https://github.com/jwyang/faster-rcnn.pytorch) for Faster R-CNN with ResNet-50 as the base network.

Figure 4. Practical speedup for the compressed model (NN-3) pro-

duced by the proposed approach (table-1) w.r.t. batch size on

VGG-16 architecture over CIFAR-10 dataset.

and the validation set contains 35K images in total; both

are combined as used as the training set called trainval35K

[27]. The object detection results are reported over the 5K

unused validation images (minival). The Faster-RCNN [42]

is a highly popular object detection algorithm that takes

the standard CNN as the base architecture for the feature

extraction. For our experiments, we train the Faster-RCNN

architecture with the ResNet-50 (uncompressed) [12] as the

base network and the results are reported in Table 5. To

show the generalization ability, we replace the base network

ResNet-50 with the pruned ResNet-50 (NN-2) reported in

Table 4. Repeating the same procedure of the Faster-RCNN

with the pruned base model, we achieve similar results, as

shown in Table 5. Therefore our compressed model not only

has high FLOPs saving but also better generalization ability

and can be used to higher-level computer vision tasks. In the

Faster-RCNN implementation, we use ROI Align and stride

1 for the last block of the convolutional layer (layer 4) in the

base ResNet-50 model.

4.4. Practical Speedup

In Fig-4, we demonstrate the practical speedup for VGG-

16 compressed model (NN-3) given in the Table 1. As the

Table shows, NN-3 compressed model has 7.63× theoretical

FLOPs compression. We achieve 4.84×, 6.86× practical

speedup corresponding to GPU and CPU with 512 batch size.

Therefore, practical CPU speedup is close to the theoretical

speedup, while the GPU’s practical speedup is below the

theoretical speedup. This is because of the availability of

thousands of cores for computation in GPU. Here one can ob-

serve that, with the increase in batch size, the parallelization

ability of the model also increases; therefore, the practical

speedup is close to the theoretical FLOPs compression as

shown in Fig-4.

4.5. Ablation for Regularization Parameter

In Table-[1, 4] we conduct an ablation study over the λ
parameter mentioned in Eq. 3. The λ parameter is used to

control the pruning rate in the model. If we increase the

λ value, it forces a high l1 penalty to the multitask output

vector and produces more zeros, while for lower values of

λ, we get fewer zeros. These zero weight filters can be dis-

carded from the model. In Table 1, NN1, NN2 and NN3

are compressed models for λ = 0.001, 0.002 and 0.005, re-

spectively, and we achieve pruning rate 79.47%, 83.00% and

86.90% respectively. Similarly, in table-4, NN1 and NN2 are

compressed models for λ = 0.001 and 0.002, respectively.

The detail compression rate and corresponding accuracy can

be seen in table [1, 4]. If we use too high pruning rate, it can

dominate the model by discarding a large number of filters,

and the model is unable to recover the performance.

5. Conclusion

We presented a filter pruning approach based on a multi-

task pruner network. The multitask network learns where to

prune in the main network. Alternating optimization used in

the proposed approach helps to achieve high FLOPs pruning

rate. The multitask network tries to maximize the pruning

while the main network tries to maintain accuracy during

pruning. The multitask network gives approximate Bernoulli

weights to each feature map in the main-network and tries to

maximize the number of such zero weights. Feature maps

corresponding to the zero weights produce zero-valued fea-

ture maps in the output layer; therefore, these feature maps

have no contribution in the overall model. We can safely

remove these feature maps with corresponding filters from

the main network without degrading the model performance.

One of the appealing aspects of the proposed approach is

that it can automatically decide the layer importance (where

to prune). The proposed approach is end-to-end without any

heuristics, such as an ad-hoc specification of thresholds for

filter removal. The proposed approach yields state-of-art

FLOPS pruning results with minimal accuracy drop and also

shows a good generalization ability for the object detection

task.

Acknowledgment: PS is supported by the Research-I

Foundation at IIT Kanpur. VKV acknowledges support from

Visvesvaraya PhD Fellowship and PR acknowledges support

from Visvesvaraya Young Faculty Fellowship.

3016

References

[1] R. Abbasi-Asl and B. Yu. Structural compression of convolu-

tional neural networks based on greedy filter pruning. arXiv

preprint arXiv:1705.07356, 2017.

[2] J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In NIPS, pages 2270–2278, 2016.

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,

C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question an-

swering. In Proceedings of the IEEE international conference

on computer vision, pages 2425–2433, 2015.

[4] T. Chen, L. Lin, W. Zuo, X. Luo, and L. Zhang. Learning a

wavelet-like auto-encoder to accelerate deep neural networks.

AAAI, 2018.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. In ICML,

pages 2285–2294, 2015.

[6] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.

Exploiting linear structure within convolutional networks for

efficient evaluation. In NIPS, 2014.

[7] X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced filter

pruning for efficient convolutional neural networks. AAAI,

2018.

[8] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In Proceedings

of the 34th International Conference on Machine Learning-

Volume 70, pages 1126–1135. JMLR. org, 2017.

[9] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic

meta-learning. arXiv preprint arXiv:1806.02817, 2018.

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantiza-

tion and huffman coding. ICLR, 2016.

[11] B. Hassibi and D. G. Stork. Second order derivatives for

network pruning: Optimal brain surgeon. In NIPS, 1993.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[13] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter

pruning for accelerating deep convolutional neural networks.

IJCAI, 2018.

[14] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:

Automl for model compression and acceleration on mobile

devices. In The European Conference on Computer Vision

(ECCV), September 2018.

[15] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating

very deep neural networks. In ICCV, page 6, 2017.

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[17] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trim-

ming: A data-driven neuron pruning approach towards effi-

cient deep architectures. arXiv preprint arXiv:1607.03250,

2016.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. 2016.

[19] L. N. Huynh, Y. Lee, and R. K. Balan. D-pruner: Filter-based

pruning method for deep convolutional neural network.

[20] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-

volutional neural networks with low rank expansions. arXiv

preprint arXiv:1405.3866, 2014.

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009.

[22] V. Lebedev and V. Lempitsky. Fast convnets using group-wise

brain damage. In CVPR, pages 2554–2564, 2016.

[23] G. Leclerc, M. Vartak, R. C. Fernandez, T. Kraska, and

S. Madden. Smallify: Learning network size while train-

ing. arXiv preprint arXiv:1806.03723, 2018.

[24] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain

damage. In NIPS, pages 598–605, 1990.

[25] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. ICLR, 2017.

[26] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In

Advances in Neural Information Processing Systems, pages

2181–2191, 2017.

[27] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detection.

In CVPR, page 4, 2017.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common

objects in context. In ECCV, pages 740–755. Springer, 2014.

[29] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao. Deep sketch

hashing: Fast free-hand sketch-based image retrieval. In Proc.

CVPR, pages 2862–2871, 2017.

[30] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In ICCV, pages 2755–2763. IEEE, 2017.

[31] C. Louizos, K. Ullrich, and M. Welling. Bayesian compres-

sion for deep learning. In NIPS, pages 3288–3298, 2017.

[32] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and

W. Lin. Thinet: pruning cnn filters for a thinner net. IEEE

transactions on pattern analysis and machine intelligence,

2018.

[33] P. Mazumder, P. Singh, and V. Namboodiri. Cpwc: Contextual

point wise convolution for object recognition. arXiv preprint

arXiv:1910.09643, 2019.

[34] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Towards

unified data and lifecycle management for deep learning. In

ICDE, pages 571–582. IEEE, 2017.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

[36] D. Molchanov, A. Ashukha, and D. Vetrov. Variational

dropout sparsifies deep neural networks. In ICML, pages

2498–2507, 2017.

[37] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. ICLR, 2017.

[38] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov.

Structured bayesian pruning via log-normal multiplicative

noise. In NIPS, pages 6775–6784, 2017.

[39] Y. Rao, J. Lu, J. Lin, and J. Zhou. Runtime network routing for

efficient image classification. IEEE transactions on pattern

analysis and machine intelligence, 2018.

[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural

networks. In ECCV, pages 525–542. Springer, 2016.

3017

[41] S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Es-

lami, D. Rezende, O. Vinyals, and N. de Freitas. Few-shot

autoregressive density estimation: Towards learning to learn

distributions. In ICLR, 2018.

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, pages 91–99, 2015.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-

genet large scale visual recognition challenge. IJCV, pages

211–252, 2015.

[44] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015.

[45] P. Singh, V. S. R. Kadi, and V. P. Namboodiri. Falf convnets:

Fatuous auxiliary loss based filter-pruning for efficient deep

cnns. Image and Vision Computing, page 103857, 2019.

[46] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.

Stability based filter pruning for accelerating deep cnns. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 1166–1174. IEEE, 2019.

[47] P. Singh, R. Manikandan, N. Matiyali, and V. Namboodiri.

Multi-layer pruning framework for compressing single shot

multibox detector. In 2019 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV), pages 1318–1327. IEEE,

2019.

[48] P. Singh, P. Mazumder, and V. P. Namboodiri. Accu-

racy booster: Performance boosting using feature map re-

calibration. arXiv preprint arXiv:1903.04407, 2019.

[49] P. Singh, M. Varshney, and V. P. Namboodiri. Cooperative ini-

tialization based deep neural network training. arXiv preprint

arXiv:2001.01240, 2020.

[50] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Lever-

aging filter correlations for deep model compression. arXiv

preprint arXiv:1811.10559, 2018.

[51] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-

conv: Beyond homogeneous convolution kernels for deep

cnns. International Journal of Computer Vision, pages 1–21,

2019.

[52] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play

and prune: Adaptive filter pruning for deep model compres-

sion. International Joint Conference on Artificial Intelligence

(IJCAI), 2019.

[53] V. K. Verma, G. Arora, A. Mishra, and P. Rai. General-

ized zero-shot learning via synthesized examples. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018.

[54] V. K. Verma, D. Brahma, and P. Rai. A meta-learning frame-

work for generalized zero-shot learning. AAAI, 2020.

[55] H. Wang, Q. Zhang, Y. Wang, and H. Hu. Structured proba-

bilistic pruning for convolutional neural network acceleration.

BMVC, 2017.

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In NIPS, pages

2074–2082, 2016.

[57] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis,

K. Grauman, and R. Feris. Blockdrop: Dynamic inference

paths in residual networks. In CVPR, pages 8817–8826, 2018.

[58] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,

R. Zemel, and Y. Bengio. Show, attend and tell: Neural image

caption generation with visual attention. In International

conference on machine learning, pages 2048–2057, 2015.

[59] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning networks

using neuron importance score propagation. CVPR, 2018.

[60] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856, 2018.

[61] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and

accurate approximations of nonlinear convolutional networks.

In NIPS, pages 1984–1992, 2015.

[62] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. In ECCV, pages 662–677. Springer, 2016.

3018

