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1Inria 2 Université Côte d’Azur 3University of Warsaw
{yaohui.wang, francois.bremond, antitza.dantcheva}@inria.fr bilinski@mimuw.edu.pl

Abstract

Generating human videos based on single images entails

the challenging simultaneous generation of realistic and vi-

sual appealing appearance and motion. In this context,

we propose a novel conditional GAN architecture, namely

ImaGINator, which given a single image, a condition (la-

bel of a facial expression or action) and noise, decomposes

appearance and motion in both latent and high level fea-

ture spaces, generating realistic videos. This is achieved by

(i) a novel spatio-temporal fusion scheme, which generates

dynamic motion, while retaining appearance throughout

the full video sequence by transmitting appearance (orig-

inating from the single image) through all layers of the

network. In addition, we propose (ii) a novel transposed

(1+2)D convolution, factorizing the transposed 3D convo-

lutional filters into separate transposed temporal and spa-

tial components, which yields significantly gains in video

quality and speed. We extensively evaluate our approach

on the facial expression datasets MUG and UvA-NEMO,

as well as on the action datasets NATOPS and Weizmann.

We show that our approach achieves significantly better

quantitative and qualitative results than the state-of-the-

art. The source code and models are available under

https://github.com/wyhsirius/ImaGINator.

1. Introduction

Generating realistic human videos based on single im-

ages brings to the fore following three challenges: (a) re-

taining of human appearance throughout the video, (b) gen-

erating (uncertain) motion, as well as (c) modeling of

spatio-temporal consistency. Finding suitable representa-

tion learning methods, which are able to address these chal-

lenges, is critical to the final visual quality and plausibility

of the rendered novel video sequences.

Existing methods predominantly treat generation of high

dimensional video as a separate two step modeling of low-

dimensional temporal and spatial generation. Such meth-

ods (e.g. MoCoGAN) [37], are grounded on the seq2seq

[35] architecture. In particular associated video generation

in such methods includes two steps: (1) motion generation

in a latent space, proceeded by (2) motion and appearance-
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Figure 1: The proposed ImaGINator architecture incorporates

Generator G, image Discriminator DI , as well as video Discrimi-

nator DV . G accepts ca, cm and noise as input, and seeks to gen-

erate realistic video sequences. While DI discriminates whether

the generated images contain an authentic appearance, DV addi-

tionally determines whether the generated videos contain an au-

thentic motion.

generation, where frames are generated individually, com-

bining the single-input-image-appearance information with

each motion vector generated in (1). These two steps aim

at decomposing video generation into the generation of in-

dividual frames, which imparts the benefit of straightfor-

ward optimization. Two step methods fail to address the

above named challenges (a) and (c), i.e. appearance is not

sufficiently retained and spatio-temporal consistency is not

modeled, as temporal consistency is not modeled in higher

level spatial spaces.

In contrast to two step methods, VGAN [39] utilized a

single step to generate future frames by leveraging on 3D

convolution to model spatio-temporal features in high and

low levels. We here note that utilizing 3D convolution di-

rectly challenges optimization. In addition, the generated

video was decomposed into foreground and background, in

two streams, which required an additional branch to model

background information, increasing the complexity of the

model.

Motivated by the above, we propose a new conditional

GAN model, referred to as ImaGINator, generating video

sequences given a single image ca, a motion class cm (i.e.

facial expression or human action), as well as noise. ImaG-

INator incorporates a Generator G, a video Discriminator
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DV , as well as an image Discriminator DI , as depicted in

Figure 1. While the Generator G, based on a fully con-

volutional ’Encoder-Decoder’-architecture, accepts ca and

cm as input to generates video sequences, the image Dis-

criminator DI and the video Discriminator DV assess the

authenticity of appearance and motion of generated videos.

ImaGINator is streamlined to exploit the joint benefits

of single and two-step methods by incorporating following

new properties.

• A novel spatio-temporal fusion mechanism, aiming at

retaining the appearance by enforcing G to employ the

spatial information in both, low and high feature levels.

By injecting ca into the Decoder, we enable G to place

emphasis on generating solely motion. This is based

on the hypothesis that a video can be disentangled into

appearance and motion in the latent space, as well as

in multi-level spatio-temporal feature spaces. While at

each level appearance is retained, only the motion is

being altered.

• A novel transposed (1+2)D convolution, factorizing

the transposed 3D convolutional filters into separate

temporal and spatial components. This brings several

benefits: (i) an additional nonlinear rectification allows

the model to represent more complex functions, (ii) it

facilitates optimization, as transposed (1+2)D convo-

lution blocks are easier to optimize than the full trans-

posed 3D convolutional filters, and (iii) it yields sig-

nificant gains in both video quality and speed.

Towards comparing our algorithm with other video gen-

eration algorithms, we augment two state-of-the-art video

generation algorithms, namely VGAN and MoCoGAN, in

order to adhere to our image-to-video-generation-setting.

We proceed to provide a comparison, showing that our

method outperforms these methods qualitatively (based on

a human study of 30 subjects) and quantitatively on both, fa-

cial expression (MUG and UvA-NEMO), as well as human

action datasets (Weizmann and NATOPS) by presenting re-

sults pertaining to five evaluation metrics. In addition, we

conduct an ablation study, which validates the effectiveness

of components in ImaGINator.

We note that while ImaGINator can be generally applied

to many domains of computer vision, we here present ex-

periments in the language of facial expression and action

generation. Specifically, we focus on the setting, where we

provide jointly a single frame of a subject, defining the ap-

pearance, and a condition (i.e. label), determining facial ex-

pression or human action, and proceed to generate a video

exhibiting the subject from the initial frame performing the

named expression or action.

2. Related Work

Conditional Generation accepts as inputs both, latent

variables, as well as known auxiliary information, such as

class labels. The majority of works have expanded either

Generative Adversarial Networks (GANs) [9] or Variational

Auto-Encoders (VAEs) [18] in this context, by augment-

ing GANs and VAEs with the capability of generating data

samples based on class labels. Conditional generation has

been beneficial in domain transfer, super-resolution imag-

ing, video to video translation, as well as image and face

editing [13, 54, 26, 15, 20, 43, 4, 16, 45, 46, 50, 44]. Most

recently, a number of new techniques have been proposed to

stabilize the training process of conditional GANs (cGANs)

and improve the visual quality of generated images [27, 3].

Our proposed ImaGINator is a cGAN architecture, aiming

at generating facial expressions / human actions from single

images, where a category label is provided in both G and D.

Unsupervised video prediction based on multiple

frames involves the use of multiple frames as input and

the prediction of future frames by learning to extrapo-

late. Video prediction has been predominantly focused on

predicting high-level semantics in video, such as action

[33, 19, 8, 25, 38, 47, 6, 5], event [51, 12, 32], semantic

segmentation [24], as well as motion [30, 41, 40, 22]. In

contrast to such works, our model is targeted to generate a

video sequence based on a single frame. Since future mo-

tion is very uncertain under this setting, we leverage action

label as a guidance.

Video generation based on a single image is challeng-

ing and hence current methods have proposed to decom-

pose it into sub-tasks. One line of scientific works have

utilized in this additional context-information, e.g. human

key points [14, 49, 42], 3D face mesh [52] and optical flow

[21], as future motion guidance. This additional informa-

tion is either pre-computed throughout the generated video

[14, 52] or predicted based on an initial input [49, 42]. The

additional information guides a conditional image trans-

lation, which though results in lack of modeling spatio-

temporal correlations.

Deviating from the above, MoCoGAN [37], VGAN [39]

and Xue et al. [48] attempted to hallucinate future frames

directly in the pixel space. The latter proposed a proba-

bilistic model, predicting dynamic filters on the input im-

age to render next frame, leading to prediction of only one

future frame. MoCoGAN is based on a seq2seq [35] ar-

chitecture, aiming at separating spatio-temporal generation

into two steps (disentangling each video frame into motion

and appearance in different latent spaces). However, such

two-step generation omits the modeling of temporal consis-

tency in higher spatial levels, which generally fails to retain

original appearance. VGAN employs a single step method

towards modeling multi-level spatio-temporal consistency

through 3D convolution by decomposing videos into fore-

ground and background. Although it models both, low and

high level features, due to lack of frame quality constrains,

generated results are of inherently lower visual quality, i.e.

are blurry.

Deviating from the above, we propose a single step ar-
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Figure 2: Overview of the proposed ImaGINator. In the Generator G, the Encoder firstly encodes an input image ca into a single

vector p. Then, the Decoder produces a video based on a motion cm and a random vector z. By using spatio-temporal fusion, low level

spatial feature maps from the Encoder are directly concatenated into the Decoder. While DI discriminates whether the generated images

contain an authentic appearance, DV additionally determines whether the generated videos contain an authentic motion.

chitecture, which decomposes motion and appearance in

multi-level feature spaces for image to video generation.

The rest of the paper is organized as follows. In Sec-

tion 3 we introduce the new ImaGINator framework. Qual-

itative and quantitative analyses of our model are presented

in Section 4. Section 5 concludes the paper and provides

directions for future research.

3. Proposed Approach

Our goal is to generate a video sequence given an ap-

pearance information (as a single image frame) and a mo-

tion class (e.g. determining the facial expression). We here

assume that a video y can be decomposed into appearance

ca (originating from the input-image) and motion cm (orig-

inating from the category-label), based on which we pro-

ceed to generate videos. Hence, we formulate our task as

learning a conditional mapping G : {z, ca, cm} → y, where

z ∼ N (0, 1) denotes the random noise.

Towards achieving our goal, we propose a framework

that consists of the following 3 main components: (i) Gen-

erator G, that accepts ca, cm and noise as inputs, and seeks

to generate realistic video sequences, (ii) image Discrimi-

nator DI that determines the frame-level based appearance

quality, and (iii) video Discriminator DV , which addition-

ally discriminates, whether the generated video sequences

contain authentic motion, see Figure 1.

3.1. Network Architecture

In the following we proceed to describe the architecture

of our video prediction network, providing details on G, DI

and DV , as illustrated in Figure 2. In addition, we elaborate

on the proposed spatio-temporal fusion scheme, as well as

the transposed (1+2)D convolution.

3.1.1 Generator

Our Generator G consists of an image Encoder and a video

Decoder, see Figure 2. The Encoder extracts appearance

information in various layers, from shallow, fine layers to

deep, coarse layers. It encodes the input image ca into a

latent vector p, and then by concatenating p, cm as well

as the random noise z ∼ N (0, 1), the decoder generates a

video sequence.

In our Generator G, we extend the idea of using 2 skip

connections from the FCN-8 [23] to 4 skip connections, but

with the difference that the original skip connections are

applied to fuse predictions, whereas ours are applied to fuse

appearance and motion spatio-temporal features. Our skip

connections allow the Decoder to access low-level features

directly from the Encoder, enabling the Decoder to reuse

the appearance features at each time slice and to focus on

generating motion.

Spatio-temporal fusion. Let G have n layers and let

FH×W×C1×T
i be the feature map from the ith layer with

C1 number of channels in G, fH×W×C1

i,t , t ∈ {1, ..., T} be

the tth feature map in Fi and FH×W×C2

n−i represent the fea-

ture map from (n − i)th layer, see Figure 3. We design

the outputs of each respective layer from our Decoder and

Encoder to have the same spatial dimensions H ×W . We

propose a fusion mechanism, concatenating each fi,t with

Fn−i in a channel-wise dimension with a result of a new

feature map F
′

i
H×W×(C1+C2)×T , named spatio-temporal

fusion. Here we note that each initial feature map Fi repre-

sents spatio-temporal features of several consecutive frames

in the generated video. By spatio-temporally fusing Fi and

Fn−i directly in different feature levels, the input informa-

tion can be well preserved in the generated video.

Further, we fuse the category label (constituting a one-
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Figure 3: Spatio-temporal fusion. Blue and orange cuboids rep-

resent the intermediate feature maps in the Decoder and Encoder

respectively. Our proposed fusion scheme enforces the Decoder

reutilizing spatial information through skip connections. Based on

such operations, temporal consistency can be modeled in multi-

levels.

hot vector) directly into the Decoder, in order to provide

each layer an access to the label. To do so, we firstly project

the one-hot vector onto one-hot feature map. Then, we

spatio-temporally fuse the category label information into

different layers in the Decoder. Our final feature map Fi is

of size H ×W × (C1 + C2 + Ccategory)× T .

We note that 3D convolution, utilized in one step meth-

ods often brings to the fore generation of blurry videos, due

to hard optimization. Nevertheless, benefiting from spatial

and temporal decomposition, frames can be generated indi-

vidually in a two step method. Hence, towards incorporat-

ing such decomposition in a one step method, we design a

new convolution layer, integrating transposed (1+2)D con-

volution.

Transposed (1+2)D Convolution. We propose to ex-

plicitly factorize transposed 3D convolutional filters into

two separate and successive operations, M transposed 1D

temporal convolutional filters followed by a 2D separate

spatial components, which we refer to as transposed (1+2)D

convolution, shown in Figure 4. Such decomposition brings

to the fore several benefits. The first benefit relates to an

additional nonlinear rectification between these two oper-

ations, thus allowing the model to represent more complex

functions. The second potential benefit is that the decompo-

sition facilitates optimization, as transposed (1+2)D convo-

lution blocks, with factorized temporal and spatial compo-

nents, are easier to optimize than the full transposed 3D con-

volutional filters. Moreover, we show that factorizing the

transposed 3D convolutional filters yields significant gains

in both, video quality and speed, see Section 4. We note

that proposed transposed (1+2)D convolution is inspired by

decomposition of 3D convolutional filters [36].

3.1.2 Two-stream Discriminator

Towards improving image quality in video generation, we

here design a two-stream Discriminator architecture, con-

taining DV , as well as DI . While DV has five 3D convolu-

tion layers, DI contains only 2D convolutions with the same

w

h

t 1

1 t

M

w

h

1

Figure 4: Transposed 3D convolution (on the left) vs. proposed

Transposed (1+2)D convolution (on the right). The transposed

3D convolutional filter of size t × w × h has been decomposed

into M transposed 1D temporal convolution filters t × 1 × 1 and

a transposed 2D spatial convolution 1×w × h. The operation M

denotes the number of 1D filters, t indicates the temporal size, and

w and h indicate the spatial size.

layer numbers of DV . DV accepts the full generated video

as input, using proposed spatio-temporal fusion to fuse the

‘one-hot feature map’ of the category label and the output of

the first layer, similarly like in G. DV seeks to measure the

KL divergence between the joint distributions p(xreal, cm)
and p(xfake, cm). We randomly sample N frames out of

real and generated video respectively as input.

3.2. Formulation

Our goal is to learn the mapping function G, i.e.

G : {z, ca, cm} → y, given training samples. In addition,

we introduce two adversarial discriminators DI and DV .

Full Objective. We define our full objective function as

LF (G,DI , DV ) = LGAN (G,DI , DV ) + λLrec(G), (1)

which contains two types of terms: an adversarial loss

LGAN for matching the distribution of generated images

to the data distribution in the target domain, and a recon-

struction loss Lrec for capturing the overall structure and

coherence of a video. Due to the high dimensional video

space, we introduce the λ parameter, which controls the rel-

ative importance of the objectives and stabilizes the training

and balancing between losses. We aim to solve

G∗ = argmin
G

max
DI ,DV

L(G,DI , DV ). (2)

Adversarial Losses. We apply adversarial losses [9] to

our mapping function G and its image Discriminator DI

and video Discriminator DV . We express the objective as

LGAN (G,DI , DV ) = LI(G,DI) + LV (G,DV ), (3)

where G attempts to generate videos G(z, ca, cm), which

resemble real videos from domain Y , while DI and DV

aim to distinguish between translated samples G(z, ca, cm)
and real samples y ∈ Y . G seeks to minimize this objective

against adversaries DI and DV , which attempt to maximize

it, i.e. minG maxDI ,DV
LGAN (G,DI , DV ). The loss LI
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and the loss LV are defined as follows.

LI= Ex
′
∼pdata

[log(DI(x
′

))]

+ Ez∼pz(z),ca,cm [1−log(DI(G(z, ca, cm)
′

))], (4)

LV = Ex∼pdata,cm [log(DV (x, cm))]

+ Ez∼pz(z),ca,cm [1−log(DV (G(z, ca, cm), cm))]. (5)

LI denotes the loss function related to DI , LV represents

the loss function related to DV , and (·)
′

characterizes N
frames sampled from real and generated videos. Both

losses, encompassed in DI and DV , are based on the Cross-

Entropy loss.

Reconstruction Loss. We define our video-level recon-

struction loss as

Lrec = E[||xreal −G(z, ca, cm)||1]. (6)

The reconstruction loss is aimed at capturing the overall

structure and coherence of a video. It uses L1 loss in or-

der to generate sharp videos. By combining it with LGAN ,

it fosters G to create more realistic videos and to reconstruct

the original real ones at the same time.

Ablation study. In the supplementary material, we com-

pare our method against ablations of the full objective, in-

cluding the adversarial lossLGAN alone and the video-level

reconstruction loss Lrec, empirically showing that both ob-

jectives play critical roles in contributing to obtained accu-

racy.

Training strategy. To train the network, we firstly pro-

vide an input frame, as well as corresponding category label

to G to generate possible videos. Then DV and DI distin-

guish between real and fake videos and frames based on the

respective quality. Specifically, when training DV , we pro-

vide two types of negative samples, generated videos with

correct labels (xreal, ccorrect) and real videos with wrong

labels (xreal, cwrong). We observe that such training en-

forces DV to learn from diverse samples and at the same

time enables the generation of realistic samples. We pro-

vide details in Algorithm 1.

4. Experiments

Experimental Setup. We train the entire network end-

to-end with the standard back-propagation algorithm us-

ing only a single NVIDIA GeForce GTX 1080Ti with 11

GB of memory. We employ ADAM optimizer [17] with

β = 0.5. Moreover, we apply spectral normalization on

both DI and DV to stabilize training, as proposed by Miy-

oto et al. [27]. We observe that given the same learning rate

for DI , DV and G during training, DI and DV typically

learn faster than G. The reason for this might be that the

spatio-temporal convolution is more efficient at differenti-

ating than at generating, as pointed out by Goodfellow et

al. [9] and Radford et al. [31]. In order to circumvent this

disparity, we set the learning rate to 2e−4 for G, and 5e−5

for both DI and DV . λ is set 1e−3 to balance two types of

losses.

Algorithm 1 ImaGINator Training Algorithm

Input: minibatch x, x
′

, input image ca, correct cm, wrong

ĉm
1: for each step do

2: z ∼ N (0, I)
3: xrecon ← G(z, ca, cm)

4: sreal ← DV (x, cm) +DI(x
′

)

5: srecon ← DV (xrecon, cm) +DI(x
′

recon)

6: sw ← DV (x, ĉm) +DI(x
′

)
7: LD ← log(sr)+0.5[log(1−sw)+log(1−srecon)]
8: DV ← DV − α∂LD/∂DV

9: DI ← DI − α∂LD/∂DI

10: Lrecon ← ||x− xrecon||1
11: LG ← log(srecon) + λLrecon

12: G← G− α∂LG/∂G
13: end for

4.1. Datasets

We comprehensively evaluate our method on the follow-

ing four datasets.

The MUG Facial Expression dataset [1] contains 931

videos of 52 subjects (data of 42 subjects is employed for

training and 10 for testing), performing 7 facial expres-

sions, namely “happy”, “sad”, “surprise”, “anger”, “dis-

gust”, “fear” and “neutral”.

The NATOPS Aircraft Handling Signals dataset [34]

contains video sequences of 20 subjects (data of 15 sub-

jects is employed for training and 5 for testing), performing

24 gestures including “all clear” and “move ahead”. Each

subject repeats each gesture 20 times.

The Weizmann Action dataset [10] contains 90 videos

of 9 subjects (data of 6 subjects is employed for training

and 3 for testing), performing 10 actions, e.g. “wave” and

“bend”. We augment this dataset by doubling the number

of videos using horizontal flipping transformation.

The UvA-NEMO Smile dataset [7] contains 597 video

sequences of smiling individuals. It contains 400 subjects

(data of 320 subjects is employed training and 80 for test-

ing) with 1 or 2 videos per subject. In the context of UvA-

NEMO we do not provide any category to our model, since

the dataset features only one facial expression.

In all our experiments, images are scaled to 64× 64 pix-

els. We use a time step 2 to sample frames from facial ex-

pression datasets and a time step of 1 from human action

datasets. MUG and UvA-NEMO are pre-processed by de-

tecting faces in OpenFace [2] and cropping them in each

frame.

4.2. Evaluation Metrics

The Video Fréchet Inception Distance (FID) [43] is a

video generation metric. It measures both visual quality

and temporal consistency of generated videos. We use 3D

ResNeXt-101 [11] as a feature extractor and calculate Video
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(a) VGAN

(b) MoCoGAN

(c) Proposed ImaGINator

Figure 5: Example generated video frames pertained to algorithms (a) VGAN, (b) MoCoGAN, as well as the (c) proposed ImaGINator.

For each method, we present generated video frames for the four datasets: Weizmann (top-left), label “Wave”; NATOPS (top-right), label

“Hot Brakes”; MUG (bottom-left), label “Happiness”; UvA-NEMO (Down-right), no label. All frames are sampled with a time step of

3.

FID as: ‖µ − µ̃‖2 + Tr(Σ + Σ̃ − 2
√
ΣΣ̃)), where µ and

Σ are mean and covariance matrix computed from real fea-

ture vectors, and µ̃, and Σ̃ are computed from generated

data. Lower Video FID scores represent a superior quality

of generated videos.

The Structural Similarity Index Measure (SSIM) indi-

cates the structure similarity between real and reconstruc-

tion images, Peak Signal-to-Noise Ratio (PSNR) quantifies

the image quality. High SSIM and PSNR scores indicate

higher quality of generated images.

The Average Content Distance (ACD-C) [37] measures

content consistency of a generated video. For facial

expression videos, we first use OpenFace [2], which

outperforms human performance in face recognition, to

extract a feature vector pertaining to the detected face.

Then, we compute the ACD-C as an average L2 pairwise

distance for a per-frame vector in a video. Smaller values

indicate similar faces in consecutive frames of a generated

video. However, the original ACD-C only signifies the

face-identity-consistency between each pair of frames,

lacking the information on general identity preservation.

Therefore, we also use the ACD-I measure [53], the

extension corresponding to the average of all L2 pairwise

distances between each generated frame and the respective

input frame.

4.3. Experimental Results

Transposed 3D vs. Transposed (1+2)D Convolution.

Firstly, we compare video quality and training speed of our

approach when using (i) transposed 3D convolutional filters

only, and (ii) our transposed (1+2)D convolutional filters

only, both having the same number of parameters for a fair

comparison. The quantitative and qualitative results based

on Weizmann dataset are presented in Table 2 and Figure 6.

Figure 6: Sample generated frames of ImaGINator with trans-

posed 3D (top row) and transposed (1+2)D convolutions (bottom).

The results confirm that factorizing the transposed 3D

convolutional filters into separate temporal and spatial com-

ponents brings benefits: (i) an additional nonlinear rectifi-

cation allows the model to represent more complex func-

tions, (ii) optimization is facilitated, as transposed (1+2)D

convolution blocks are easier to optimize than the full trans-

posed 3D convolutional filters, and (iii) significant gains are

yielded in both video quality and speed. Therefore, in the
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MUG NATOPS Weizmann UvA-NEMO

SSIM/PSNR FID SSIM/PSNR FID SSIM/PSNR FID SSIM/PSNR FID

VGAN [39] 0.28/14.54 74.72 0.72/20.09 167.71 0.29/15.78 127.31 0.21/13.43 30.01

MoCoGAN [37] 0.58/18.16 45.46 0.74/21.82 49.46 0.42/17.58 116.08 0.45/16.58 29.81

ImaGINator 0.75/22.63 29.02 0.88/27.39 26.86 0.73/19.67 99.80 0.66/20.04 16.16

Table 1: Evaluation of VGAN, MoCoGAN and proposed ImaGINator w.r.t. image quality (SSIM/PSNR) and video quality (FID).

Architecture FID Training time

Transposed 3D convolution 110.5 16.7s

Transposed (1+2)D convolution 99.8 11.9s

Table 2: FID score and training time per epoch of our approach

with transposed 3D and transposed (1+2)D convolutions.

following evaluations we use our approach with the trans-

posed (1+2)D convolution filters only.

ImaGINator. We proceed to compare our proposed

ImaGINator to state-of-the-art video generation methods

MoCoGAN and VGAN, both quantitatively and qualita-

tively. For the latter we report results pertained to a subjec-

tive analysis comparing the three methods. We then conduct

an ablation study to prove the effectiveness of our proposed

architecture, as well as to quantitatively evaluate the contri-

bution of each part in our model.

Quantitative Analysis. For all methods, we sample 10
initial frames from each video sequence in each testing set.

Both benchmark methods have been tuned with the best pa-

rameters on all training sets. All methods are trained to

generate video sequences of 32 frames with an image size

64×64 pixels. Example generated frames of different meth-

ods are shown in Figure 5.

We firstly report reconstruction capabilities of our ap-

proach using SSIM and PSNR scores in Table 1. Our re-

sults show that the ImaGINator outperforms MoCoGAN

and VGAN, w.r.t. SSIM and PSNR metrics, indicating that

our proposed spatio-temporal fusion mechanism can well

preserve the structure information of input image in the full

generated video.

Then, we report FID scores for the three methods in

Table 1. The ImaGINator achieves the lowest numbers

on all four datasets, suggesting that videos generated by

our method have the best temporal consistency and visual

quality. This proves that modeling temporal consistency in

higher spatial level can generate more realistic videos.

Then, we evaluate the content consistency for facial ex-

pression generation using ACD-C and ACD-I scores. Our

results on the MUG dataset are presented in Table 3. The

proposed ImaGINator outperforms both MoCoGAN and

VGAN, on both ACD-C and ACD-I scores. The results

confirm the ability of the proposed spatio-temporal fusion

scheme to effectively preserve the appearance information

in the generated videos.

Controllable Video Generation. We further conduct

an experiment on the MUG and NATOPS datasets, where

Methods ACD-C ACD-I

VGAN [39] 0.272 0.932

MoCoGAN [37] 0.158 0.904

ImaGINator 0.141 0.431

Reference 0.102 0.206

Table 3: Evaluation of content consistency of VGAN, MoCo-

GAN and proposed ImaGINator on the MUG dataset, represented

by ACD-I and ACD-C scores.

Methods Rater preference (%)

ImaGINator / MoCoGAN [37] 83.32 / 16.68

ImaGINator / VGAN [39] 85.43 / 14.57

MoCoGAN [37] / VGAN [39] 70.85 / 29.15

ImaGINator / Real videos 20.82 / 79.18

Table 4: Subjective analysis. Mean user preference of human

raters comparing videos generated by the respective algorithms,

as well as originated from all the datasets.

starting from the same image, we generate various videos

associated to different labels (facial expressions / actions).

Our results are presented in Figure 7. These results confirm

the ability of our approach to generate new videos based on

single images and category-labels.

Subjective Analysis. In addition, we conduct a sub-

jective analysis, where we ask 30 human raters to pair-

wise compare videos generated by our approach with those

generated by the state-of-the-art. We report the mean user

preference in Table 4. We observe that human raters ex-

press a strong preference for the proposed framework over

MoCoGAN (83.32% vs. 16.68%) and VGAN (85.43% vs.

14.57%), which is consistent with the above listed quanti-

tative results. Further, we compare real videos from all the

datasets with generated video sequences from our method.

The human raters ranked 20.82% of videos from our ImaG-

INator as more realistic than real videos, which we find

highly encouraging.

Ablation study. We here focus on showcasing the gen-

eral effectiveness of our architecture, as well as the effec-

tiveness related to each component of the proposed Gener-

ator.

Firstly, in the Generator G, we compare the performance

of fully transposed 3D convolution with the proposed trans-

posed (1+2)D convolution, and in the Discriminator D, we

mainly focus on analyzing the usage of DI . In addition,

we compare each architecture with the model of the same

architecture, but using an auxiliary classifier in D, similar
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(a) MUG (b) NATOPS

Figure 7: Controllable video generation in ImaGINator. Starting from the same image (top left for both datasets), we generate videos

associated to different labels (remaining frames). In (a) MUG, from top to bottom the labels are set as “fear”, “anger” and “happiness”.

In (b) NATOPS, from top to bottom the labels are set as “all clear”, “fold winds” and “brakes on”.

to ACGAN loss [29], which we refer as DV (ac). Our re-

sults are presented in Table 5. Our results show that given

Generator Discriminator MUG NATOPS

3D DV (ac) 37.71 65.28

(1+2)D DV (ac) 32.57 52.43

3D DV (ac), DI 33.08 57.65

(1+2)D DV (ac), DI 29.91 48.41

3D DV 36.93 50.08

(1+2)D DV 29.80 40.57

3D DV , DI 27.94 42.10

(1+2)D DV , DI 24.36 26.86

Table 5: Effectiveness of the proposed architecture. We com-

pare different architectures in both G and D to showcase the ef-

fectiveness of the proposed ImaGINator.

the same Discriminator, models using transposed (1+2)D

convolution provide consistently lower video FID scores

than models using transposed 3D convolution. The results

confirm that our proposed transposed (1+2)D layer system-

atically improves video quality. Moreover, we show that

adding DI is beneficial, as well as that concatenating label

vectors directly into spatio-temporal feature maps exceeds

the performances of using auxiliary classifier in conditional

video generation, see Table 5. This is especially true if the

number of categories is large. A similar observation has

been reported by Miyato and Koyama [28] in the context of

conditional image generation.

Furthermore, we showcase that the spatio-temporal fu-

sion contributes predominantly to video quality, see Table 6,

and hence re-injecting spatial features and modeling tempo-

ral consistency in higher spatial level is an effective way to

generate realistic videos. Finally, our results confirm that

adding noise in the latent space is beneficial, as depicted in

Table 6.

Further details w.r.t. our approach and experiments are

presented in the supplementary material.

Architecture MUG NATOPS

ImaGINator, w/o ST fusion 46.02 62.89

ImaGINator, w/o (1+2)D 27.94 42.10

ImaGINator, w/o noise 32.38 32.05

ImaGINator 24.36 26.86

Table 6: Contribution of main components in G. We evaluate

the ablation of spatio-temporal fusion, transposed (1+2)D convo-

lution, as well as noise vector.

5. Conclusions

We have presented a novel conditional spatio-temporal

GAN, namely ImaGINator, endowed with the ability to ef-

fectively generate videos based on a single image, a con-

dition (label of a facial expression or action) and noise.

Specifically, we focus on the settings, where we generate

videos representing facial expressions and human actions,

in which the human appearance is determined by a single

input image, and the facial expression or human action is

determined by a category-label, e.g. ‘smile’. Our ImaGINa-

tor incorporates (a) a novel spatio-temporal fusion scheme,

which generates dynamic motion, while retaining appear-

ance throughout the full video sequence, and (b) a novel

transposed (1+2)D convolution, factorizing the transposed

3D convolutional filters into separate transposed temporal

and spatial components, which yields significant gains in

video quality and speed. We have performed an exten-

sive evaluation of our approach on 4 datasets, outperform-

ing quantitatively and qualitatively the state-of-the-art video

prediction methods. Our results have shown the efficiency

of the ImaGINator in conditional image-to-video gener-

ation. Visualizations of the learned representation show

that similar generation might be instrumental as augmented

data, e.g. expression recognition in elderly subjects. We be-

lieve that video generation has the potential to affect many

applications including simulations, forecasting, and repre-

sentation learning.
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