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Abstract

Preserving the semantic similarity is one of the most im-

portant goals of hashing. Most existing deep hashing meth-

ods employ pairs or triplets of samples in training stage,

which only consider the semantic similarity within a mini-

batch and depict the local positional relationship in Ham-

ming space, leading to intermittent semantic similarity p-

reservation. In this paper, we propose Deep Position-Aware

Hashing (DPAH) to ensure continuous semantic similarity

in Hamming space by modeling global positional relation-

ship. Specifically, we introduce a set of learnable class cen-

ters as the global proxies to represent the global informa-

tion and generate discriminative binary codes by constrain-

ing the distance between data points and class centers. In

addition, in order to reduce the information loss caused by

relaxing the binary codes to real-values in optimization, we

propose kurtosis loss (KT loss) to handle the distribution of

real-valued features before thresholding to be double-peak,

and then enable the real-valued features to be more binary-

like. Comprehensive experiments on three datasets show

that our DPAH outperforms state-of-the-art methods.

1. Introduction

Owing to fast retrieval speed and low memory cost,

learning to hash [11, 41, 31, 19, 16, 28, 25, 12, 35, 1]

has been widely used in large-scale image retrieval. With

CNN’s powerful representation capabilities, deep hashing

methods [48, 49, 45, 36, 2, 13, 7, 3, 30, 47] have attracted

more and more attention in recent years.

Generally speaking, hashing is a kind of function that

maps data from high-dimensional real-valued space to low-

dimensional Hamming space and keeps the semantic sim-

ilarities as good as possible. Although the existing deep

hashing methods, such as [43, 18, 22, 24, 21, 4, 37] have

reached excellent performance on benchmarks, most of

them can only give a local description to the positional rela-

tionship of samples in Hamming space. As shown in Figure

(a) pair-wise (b) triplet-wise (c) softmax (d) position awareness
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Figure 1. An illustration of Hamming positional relationship us-

ing different supervised manners. Different colors denote different

categories.

1(a)(b), the supervised manner they adopt either belongs to

pair-wise [41, 27, 32, 24, 51, 4] or triplet-wise [18, 50, 40]

which only consider the local similarity within a mini-batch

and has no communication between different batches. This

will lead to intermittent semantic similarity from the global

perspective, especially on multi-label retrieval where sim-

ilarity among samples is more continuous and the task is

more common in real world scenarios than single-label re-

trieval. A couple of works have tried to consider the global

positional relationship in Hamming space, e.g. the point-

wise methods [34, 22, 20, 44, 37]. They aim to classify

in Hamming space using softmax loss, max-margin loss or

L2-loss as the supervised signal. Nevertheless, their binary

codes will not be further optimized as soon as the classi-

fication results are all correct, which leads to insufficient

discriminability. This can be seen from Figure 1(c).

In order to preserve continuous semantic similarity as

well as to enhance the discriminability of the binary codes,

we introduce a kind of learnable class center as the global

proxy of one category. This class center is like the origin

of a coordinate system, and once the origin is fixed, then

the coordinates of each data point are determined. In other

words, the global position of all data points within one cat-

egory will be aware. It is so-called position awareness (PA)

whose learning process is vividly shown in Figure 2. Then

we constrain the Hamming distance between data points to

make the binary codes more discriminative. Specifically, a
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sample should be close to its relevant class centers (e.g. a

data point may belong to multiple categories in some sce-

narios) and be closer to them by a margin than to the n-

earest irrelevant class center. By doing so, the continuous

semantic similarity can be characterized by different Ham-

ming distance between data points and corresponding class

centers. Figure 1(d) demonstrates the target state of our ap-

proach.

Apart from semantic similarity preservation, the opti-

mization of discrete binary codes is another challenge in

hash learning. As validated in most existing methods, to

make the network trainable in an end-to-end manner, we

choose to relax the discrete codes to real-values by replac-

ing the threshold function sign by sigmoid. However, this

relaxation incurs that the variance of the real-valued fea-

tures before thresholding will become quite large, whose

distribution can be seen from the blue area of Figure 3. Each

half of the blue area will then be thresholded as discrete val-

ues (e.g. 0/1) later, which inevitably leads to heavy infor-

mation loss. On the contrary, if one can constrain the distri-

bution of the real-valued features to be within the red area

in Figure 3, the information loss can be reduced intuitively.

Based on such finding, we propose a novel kurtosis loss (K-

T loss), a simple approach used for making real-valued fea-

tures distribution be a steeper double-peak. In this way, the

data structure before and after thresholding becomes more

similar, and thus the information loss can be mitigated.

In summary, this paper has three main contributions:

• We explicitly model the global positional relationship in

Hamming space to preserve the continuous semantic sim-

ilarity and enhance the discriminability of binary codes

by introducing a Hamming margin;

• Kurtosis loss is proposed to reduce the information loss

caused by thresholding and further narrow the gap be-

tween real-valued space and desired Hamming space;

• Comprehensive experiments are conducted to show that

our methodology significantly outperforms existing hash-

ing methods for fast image retrieval in both single-label

and multi-label databases.

2. Related Works

Hashing is a potent weapon for fast data retrieval. Com-

pared with real-valued feature based methods [6, 9], hash-

ing with binary codes is matching efficient and storage

free. The classical literature contains the family of method-

s known as Locality Sensitive Hashing (LSH) [11] and its

variants [31]. Comprehensive survey of traditional hashing

methods can be found in [39].

More recently, in light of the progress of deep neural net-

work, deep hashing methods gradually enter the front stage.

Simultaneously learning image feature and hash function in

an end-to-end manner is the key advantage of deep hashing

Position Awareness

learning

Figure 2. Position awareness learning: the data points’ positions in

Hamming space are rambling before learning, with the help of PA,

they gradually become organized like a coordinate whose origins

correspond the learned class centers. In the figure, different col-

or dots denote data points from different class. The dashed pen-

tagrams and solid pentagrams denote learnable class centers and

learned class centers respectively. The black dashed lines denote

the data points’ position vectors.

over traditional methods. Most deep hashing methods are

analogous in terms of feature learning module, hash func-

tion learning manner reflects difference instead. Deep based

supervised hashing methods can be divided into four cate-

gories from the perspective of semantic similarity preserva-

tion.

Pair-wise. This kind of methods intend to pull the codes

of similar images together and push the codes of dissimi-

lar images away from each other. This idea is widely used

in metric learning. Representative methods include, ADSH

[14], DPSH [21], COSDISH [15], DHN [51], DSH [24] and

HashNet [4]. The commonality of these methods are that

they do not require fully supervised information and only

needs an affinity matrix. However, they need to generate

dense pairs online, which results in much consumption of

training time. On the other hand, since deep learning is a

batch-based training method, there may be no communica-

tion between different batches, which results in insufficient

sample mining. In addition, from the perspective of bina-

ry feature distribution, this type of methods only consider

the relative positional relationship between sample pairs, so

that the original semantic relevance is not well preserved.

Triplet-wise. Compared to the previous one, this type

of methods consider the local positional relationship within

a sample triplet. Representative methods include DNNH

[18], DSRBH [50], DTSH [40]. Similar with the pair-wise

method, this one require online generation of triplets, and

even hard negative mining during training, which costs a lot

of time. And only the local position relationship between

samples is considered.

List-wise. This kind of methods are based on learning to

rank. Representative methods include [5], [38], [46]. They

decompose a sort of retrieved samples into multiple triplet-

s for processing, which is more elaborate than the triplet-

wise, but still inherits the lack of triplet-wise.

Point-wise. Different from the several previous method-

s, this type of methods need no sample pairs or triplets, only
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need aware label information for each sample to guide the

learning of the hash functions. This trait make it more scal-

able to large-scale data retrieval [44]. Representative works

include DLBHC [22], SSDH [44] and Greedy Hash [37].

Compared with the above approaches, this kind of methods

can describe the global information with the classification

hyperplanes optimized adaptively as the training data flows

and our DPAH belongs to point-wise.

Minimizing quantization error is another important chal-

lenge in learning to hash. ITQ [12] minimizes quantiza-

tion error by finding an optimal rotation matrix; SDH [34],

ADSH [14] and other methods optimize the binary code dis-

cretely, so that there is no quantization error; DPSH [21]

and DSH [24] control the quantization error by imposing

a regularizer; HashNet [4] approximates the sign function

by incrementing the slope of the tanh function; Greedy

hash [37] decreases the gap between binary coding learning

and feature representation learning by redefining the back

propagation of the sign function. This paper novelly re-

duces the gap by constraining the feature distribution of the

real-valued space before Hamming space. Since there is

no direct manipulation of discrete binary features, complex

and time-consuming column-by-column discrete optimiza-

tion processes are avoided, which is very beneficial for end-

to-end optimization.

3. Approach

Our goal is to learn discriminative binary codes for im-

ages such that: (a) the global continuous semantic similarity

should be preserved in Hamming space, i.e. the more se-

mantic information shared by two images, the closer they

will be in Hamming space; (b) the information loss be-

fore and after thresholding should be small. The training

pipeline is described as follow: taking into the training im-

ages from different classes, our method first extracts the

real-valued features with the stacked convolution layers and

several fully connected layers. Then with the help of the

PA (Position Awareness) module, the global positional re-

lationships among images are built to ensure continuous se-

mantic similarity in Hamming space. At the same time, the

information loss is reduced by adjusting the distribution of

real-valued features with the proposed KT loss. Finally, the

thresholded outputs are quantized to generate binary codes

for these images.

3.1. Hamming Position Awareness

Given N tuples of training points {Ii,yi}
N
i=1, each rep-

resented by image Ii ∈ RH×W×3 and a C-dimensional

label vector yi ∈ {0, 1}C (either one-hot or multi-labeled),

we aim to learn a mapping from the RGB space to Ham-

ming space: f : RH×W×3 → {0, 1}K , which encodes

Ii into K-bit binary code bi such that the more semantic

information shared by two images, the closer they will be

in Hamming space. Firstly, we model the global relation-

ship by introducing C class centers {θi}
C
i=1 (θi ∈ {0, 1}K)

which are learnable during training, i.e. they can record

the historical data information and be updated dynamical-

ly driven by the new data, thus it is suitable to capture the

global information of categories. Secondly, we embed con-

tinuous semantic similarity by constraining the distance be-

tween data points and class centers. Specifically, if Ii be-

longs to one category ci, then corresponding bi should be

very close to θci
and closer to it by a margin than the nearest

irrelevant class center. Furthermore, if Ii is multi-labeled,

i.e. label{i} = {ci1 , ci2 , ...cini
}, then corresponding bi

should be very close to the center θ̄i of the label set i.e.

θ̄i =
1

ni

∑

j∈label{i}

θj and closer to it by a margin than the

nearest one which is excluded from this label set. It is not d-

ifficult to note that the single-label case is a special example

of the multi-label case mentioned above. Such constraints

can be formulated as:

Li
inter=max{dH(bi, θ̄i)(1 + α)− min

j /∈label{i}
dH(bi,θj), 0}

s.t. bi,θi ∈ {0, 1}K , i ∈ {1, ..., N}
(1)

where Li
inter

denotes inter-class loss, dH(·, ·) is the Eu-

clidean distance, defined as dH(x, y) =
1

2
‖x− y‖

2

2
, which

is equivalent to Hamming distance between two binary

codes, α is the margin hyperparameter, and ni denotes the

size of the label{i}. It is difficult to optimize directly with

back propagation algorithm since the min(·) and max(·)
functions will easily cause the loss instable. Hence we turn

to optimize the smooth upper bound of Eq.(1) which is mag-

nified as:

Li
inter = −log{ e{−dH (bi,θ̄i)(1+α)}

e{−dH (bi,θ̄i)(1+α)}+
∑

j /∈label{i}

e{−dH (bi,θj )} }

s.t. bi,θi ∈ {0, 1}K

(2)

The detailed derivation from Eq.(1) to Eq.(2) can be

found in Appendix A. At the same time, considering the

discriminability in Hamming space and the position com-

pactness within one class clusters, we impose a tight con-

straint like [42] as Eq.(3).

Li
intra =

1

2

∥

∥bi − θ̄i
∥

∥

2

2

s.t. bi,θi ∈ {0, 1}K
(3)

In Eq.(3), Li
intra denotes the intra-class loss. Actual-

ly the idea of intra compactness has been widely used in

many fields, such as metric learning, face recognition. Our

method also contains the idea of intra compactness. Dif-

ferent from [42], we consider both the intra compactness

and inter discriminability, i.e. intra-class samples are clos-
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Figure 3. Distribution of real-valued outputs before thresholding.

er and inter-class samples will be kept away from a certain

distance by introducing the margin α.

The above two loss functions will push each binary code

to its reasonable position and gradually converge to the state

shown in Figure 1(d). Combining the Eq.(2) with Eq.(3), we

get Eq.(4) as follows:

Ldis =
1

N

N
∑

i=1

(Li
inter + λLi

intra)

s.t. bi,θi ∈ {0, 1}K
(4)

However, directly optimizing Eq.(4) in an end-to-end

manner is infeasible since the binary constraints will make

it intractable to train the network with back propagation al-

gorithm. To this end, a natural scheme is used by relaxing

the integer constraint of bi to real constraint. Specifical-

ly, we adopt sigmoid as the threshold function to approxi-

mate sign, therefor bi can be relaxed as bi = σ(ui). Here

σ(·) and ui denote the sigmoid and real-valued output of

the last fully connected layer respectively. Then Eq.(4) is

rewritten as :

Ldis =
1

N

N
∑

i=1

(Li
inter + λLi

intra)

s.t. bi,θi ∈ (0, 1)K
(5)

In order to reduce the cost of relaxation, as advocated in

[44], an additional regularizer is imposed on bi as:

Lreg =
1

2N

N
∑

i=1

‖mean(bi)− 0.5‖
2

2

−
1

2N

N
∑

i=1

‖bi − 0.5I‖
2

2

s.t. bi ∈ (0, 1)K

(6)

where the first term is used for making the hash bits bal-

anced, and the second one is for controlling the quantization

error.

3.2. Kurtosis Loss

The similarity would be well preserved with Eq.(5).

However, some issues still exist caused by the approxi-

mation of the threshold function adopted in Eq.(5) which

has not been noticed in previous works. Specifically, we

find that as the training progresses, the variance of the real-

valued network output (i.e. ui) will gradually increase and

its distribution is present in the blue area in Figure 3. Each

half of the blue area will be thresholded as discrete values

(e.g. 0/1) later, which inevitably leads to information loss,

i.e. the large variance of the half of the blue area cannot be

preserved after thresholding. In order to minimize such in-

formation loss, directly optimizing the discrete binary codes

is generally NP-hard [34], we turn to constrain the variance

of ui to be smaller. In specific, a threshold t is set, once the

maximum value of ui exceeds the threshold, it will cause

loss. We form it as follows:

Lktl =
1

2N

N
∑

i=1

K
∑

k=1

[max2(ui(k)− t, 0)

+max2(−ui(k)− t, 0)]

(7)

It is not diffcult to realize from the curve of the Eq.(7)

that the real-valued feature will be pulled back with Lktl,

which presents a form, larger kurtosis of ui. The new dis-

tribution of ui is shown as the red area which is steeper than

the blue area in Figure 3. In mathematics, kurtosis is used

to describe the steepness of a distribution. Therefor we call

Lktl kurtosis loss. By doing so, the distribution structure

of features before thresholding is much like the one after

thresholding, and thus the information loss and the gap be-

fore and after thresholding can be reduced. It should be

noted that we impose an additional regularize on features

before thresholding, which is different from [24, 21] whose

goal is to constrain the real-valued feature to be binary-like.

Now, we rewrite the overall loss function as follows:

L = Ldis + βLreg + γLktl

s.t. bi,θi ∈ (0, 1)K
(8)

where β and γ are pre-defined weighting parameters to bal-

ance the Lreg and Lktl.

3.3. Discussions

Comparison with metric learning. As mentioned in

Introduction section, semantic similarity preservation is one

of the challenges in hashing. Seeking intra compactness and

inter separability, metric learning is a nice choice for solv-

ing such problem. It has been widely adopted in many ex-

isting hashing methods, such as pair-wise methods, triplet-

wise methods which have been thoroughly introduced in re-

lated work section. Different from point-wise metric learn-

ing methods [42, 26, 10], our DPAH unifies single-label

retrieval and multi-label retrieval in one formulation and

shows distinctive superiority in multi-label scenarios, which

is verified in later experiment section. Furthermore, opti-

mization in discrete Hamming space is an extra challenge

in hashing compared to metric learning of which the analy-

sis lies in Euclidean space. To this end, we propose KT loss
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to constrain the feature distribution to be double-peak and

devote to alleviate such trouble.

Comparison with existing point-wise hashing meth-

ods. As mentioned in related work section, our DPAH be-

longs to point-wise type, which is more practical in real ap-

plications. Most recent point-wise hashing methods, such

as SDH [34], SSDH [44], Greedy Hash [37] use inner prod-

uct as metrics in Hamming space. Our DPAH adopts Eu-

clidean distance which is equivalent to Hamming distance

instead. There are two advantages using this scheme: firstly,

Euclidean distance in binary space has an intuitive meaning

and can directly reflect the role of optimization; secondly, it

becomes easier to introduce margin to enhance the discrim-

inability of binary code. Extensive experiments demon-

strate our DPAH has clear superiority over those point-wise

hashing methods.

4. Experiments

4.1. Datasets and Experimental Settings

We conduct experiments on three datasets: (1) Ima-

geNet [33] consists of about 1.2M images belonging to

1,000 mutually exclusive categories. Following the same

setting in [4], we randomly select 100 categories and use all

images of these categories in training set as the database,

using all images of these categories in validation set to form

query set. Moreover, 130 images per class randomly select-

ed from the database are used to train the deep hashing net-

work. (2) MS COCO [23] contains 82,783 training images

and 40,504 validation images. Following the same setting

in [4], we randomly select 5,000 images to form the query

set, and the rest as the database. Further, 10,000 images

were randomly selected from the database as the training

set. (3) NUS-WIDE [8] contains 269,648 images collected

from Flickr and associated with 81 concepts. Following the

similar protocols as [48], we randomly select 2,100 images

from 21 most happened semantic labels as the query set and

the rest as the training set.

Same as most of the previous hashing methods, the

ground truth is defined by class-level labels. For ImageNet,

images from the same class are considered semantically rel-

evant and vice versa. For MS COCO and NUS-WIDE, if

two images share at least one positive label, they are con-

sidered relevant, and irrelevant otherwise. As for evalua-

tion metrics, we use the mean Average Precision (mAP) for

different code lengths and precision-recall curves (48-bit).

For fair comparison with state-of-the-art, we use mAP@1K

for ImageNet, mAP@5K for MS COCO and mAP@50K

for NUS-WIDE respectively. Our DPAH method is imple-

mented with Pytorch [29] framework1. The AlexNet [17] is

adopted as our backbone. During training, we set the batch

size as 256, momentum as 0.9, weight decay as 5e-4. The

1Our source codes are available at http://vipl.ict.ac.cn/resources/codes.

Method
NUS-WIDE MS COCO ImageNet

mAP@50K mAP mAP@5K mAP mAP@1K mAP

contrastive loss 0.7056 0.6414 0.6618 0.5963 N/C N/C

triplet loss 0.7916 0.7451 0.7183 0.6406 0.5710 0.4655

maximum-margin 0.7393 0.6735 0.7193 0.5654 N/C N/C

softmax+CE 0.7544 0.6736 0.7334 0.5770 0.7014 0.6218

softmax+PA 0.8038 0.7171 0.7549 0.6266 0.7014 0.6218

HPA(λ = 0) 0.8279 0.7591 0.7731 0.6634 0.7027 0.6316

HPA(λ = 0.01) 0.8307 0.7634 0.7756 0.6682 0.7050 0.6334

Table 1. Comparison of retrieval performance with baselines. The

results are obtained with 48-bit binary codes.
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Figure 4. Comparison of the model with and without KT loss on

three databases under different code lengths.

learning rate is fixed as 0.001. We train DPAH model 200

epochs in total.

4.2. Evaluation of Hamming Position Awareness

In order to verify the effectiveness of PA module, we

compare it with several methods corresponding to differ-

ent supervised manner: (1) contrastive loss, a representa-

tive implementation of pair-wise method; (2) triplet loss,

a representative implementation of triplet-wise method; (3)

softmax+CE [44], softmax followed by cross entropy loss

which is a representative implementation of point-wise

method; (4) maximum-margin, which is proposed in [44]

and reproduced carefully by us; (5) softmax+PA, softmax

followed by PA module in which the metric is inner product,

consisting with softmax; (6) our Hamming Position Aware-

ness (HPA) module with different hyperparameter, i.e. λ.

Without loss of generality, we only test the case with 48-bit

and set β = 1 and α = 0.2 in our model according to Sec-

tion3.1. Note that we aim to verify the effectiveness of PA

independently, therefor, no KT loss is used in this section.

The performance of all methods are listed in Table 1. The

N/C in Table 1 denotes the model cannot converge under

the same experimental settings with others.

We have four observations from the comparison table:

First, with the help of PA module, HPA and softmax+PA

are generally better than their corresponding baseline meth-

ods on the three databases, which indicates that out PA mod-

ule is very effective for the semantic similarity preserva-

tion in Hamming space; Second, the superiority of HPA is

obvious compared with baselines especially on multi-label

databases, which verified our argument proposed in intro-

duction. Generally speaking, multi-label data means more

complex semantic similarities. Based on the distance con-

straint, our PA can measure the degree of similarity, i.e. the
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Method
VGG16 ResNet50 ResNet101

mAP@1K mAP mAP@1K mAP mAP@1K mAP

softmax 0.8327 0.7729 0.8134 0.7375 0.8370 0.7717

softmax+KT loss 0.8438 0.7929 0.8302 0.7613 0.8528 0.7938

DPAH\KT loss 0.8449 0.7980 0.8516 0.7944 0.8710 0.8266

DPAH 0.8487 0.8063 0.8566 0.8029 0.8765 0.8361

Table 2. Retrieval performance of the model with KT loss under

different backbones. The results are obtained with 48-bit binary

codes on ImageNet.
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Figure 5. Distribution of real-valued network outputs under differ-

ent settings of t.

number for categories shared by two images. This can be

further demonstrated in visulization part of Section 4.4. On

the contrary, pair-wise and triplet-wise methods (i.e. the

first two rows of Table 1) are based solely on a similarity

matrix so that they cannot distinguish pairs whether they

share one or more categories. Third, from the fourth row

and second last row of the Table 1, we can see that soft-

max+CE is not performing as well as HPA. This may re-

sult from that softmax+CE focuses on classification accura-

cy leading to insufficient discriminability. Fourth, from the

last two rows of the Table 1, we notice that the retrieval per-

formance will further increase with Eq.(3), demonstrating

the effectiveness of making intra-class compact.

4.3. Evaluation of the KT loss

In this part, we evaluate KT loss from the following three

aspects: multiple datasets, different network structures and

parameter sensitivity. Firstly, we test the role of KT loss

on three datasets (i.e. both single-label and multi-label

dataset). Then, we test the performance of KT loss with

VGG16, ResNet50 and ResNet101 as backbone respective-

ly. Finally, 16-bit is taken as an example to test the sensitiv-

ity of the hyperparameter t. As mentioned in Section 3.2,

the variance of the network real-valued output will gradual-

ly increase without KT loss, we use the maximum value it

can reach as the upper bound of the hyperparameter t.

Firstly, we can see from Figure 4 that KT loss will gener-

ally improve the model’s retrieval ability compared with the

baselines on all datasets; Secondly, from Table 2, in which
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Figure 6. The sensitivity to t. The dotted line indicates the result

without KT loss.
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Figure 7. The sensitivity to α. The dotted line indicates the result

without margin.

DPAH\KT loss stands for dropping KT loss from DPAH,

we observe that KT loss have a stable effect with differ-

ent backbones. The above two experiments show that KT

loss is robust. Recalling that KT loss does not utilize su-

pervisory information, and it can theoretically be used for

different discriminative losses, such as softmax. The first

two rows of Table 2 shows that KT loss also have obvious

effects on softmax loss, thus indicating the versatility of KT

loss; Thirdly, Figure 6 reveals that KT loss is not very sensi-

tive to hyperparameter t. The retrieval performances can be

improved stably when setting t under a reasonable range.

(e.g. [5, 10]). These quantitative results validate that KT

loss reduces information loss caused by the approximation

of the threshold function. As shown in Figure 5, the smaller

t is, the larger the kurtosis of the real-valued network output

is, and the smaller the information loss is. However, when t

is too small, the discriminability of binary codes will be af-

fected. In other words, we should make a tradeoff between

information loss and discriminability. Fortunately, the rea-

sonable range of hyperparameter t is relatively large.

4.4. Empirical Analysis

Parameter Sensitivity Analysis: In the field of metric

learning, the use of the margin in the training of the model

tends to increase its generalization ability. Inspired by this,

we believe that once the position of binary codes in Ham-

ming space is aware, imposing a margin allows it to further

consolidate its position (the position becomes more aware),

thereby increasing the generalization ability of the retrieval

model. To verify this, we test the impact of different values

of the margin on three databases. It can be finded from the

Figure 7, compared to the baseline, the performance is sig-

nificantly improved after the margin is applied. But when

the margin is too large, optimal hash functions are diffcult

to learn.

Visualization of Hash Codes and Retrieval Samples:
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Method
NUS-WIDE MS COCO ImageNet

16-bit 32-bit 48-bit 64-bit 16-bit 32-bit 48-bit 64-bit 16-bit 32-bit 48-bit 64-bit

LSH [11] 0.3915 0.4169 0.4114 0.4323 0.4118 0.4689 0.4992 0.5076 0.0699 0.1562 0.2205 0.2732

ITQ [12] 0.5754 0.5840 0.5873 0.5943 0.6293 0.6654 0.6793 0.6903 0.3245 0.4655 0.5219 0.5539

SDH [34] 0.7019 0.7158 0.7157 0.7256 0.5447 0.5857 0.6025 0.6127 0.4001 0.5515 0.6196 0.6516

KSH [25] 0.5693 0.5736 0.5754 0.5822 0.5924 0.6180 0.6345 0.6422 0.3600 0.4803 0.5327 0.5544

SITQ [12] 0.6312 0.6693 0.6808 0.6888 0.6300 0.6760 0.7047 0.7163 0.3250 0.4750 0.5369 0.5779

DSH [24] 0.7014 0.7275 0.7261 0.7289 0.6218 0.6292 0.6383 0.6380 0.4526 0.5563 0.6062 0.6235

HashNet [4] 0.7260 0.7704 0.7797 0.7731 0.6578 0.7121 0.7316 0.7374 0.4643 0.5925 0.6558 0.6544

DHN [51] 0.7443 0.7490 0.7486 0.7482 0.6888 0.7158 0.7221 0.7274 0.2671 0.4367 0.4933 0.5347

DNNH [18] 0.7847 0.8002 0.8053 0.8062 0.6732 0.7137 0.7298 0.7362 0.4946 0.5805 0.6035 0.6143

SSDH [44] 0.7188 0.7225 0.7393 0.7460 0.6970 0.7250 0.7410 0.7440 0.6342 0.6915 0.7014 0.7069

DPAH 0.8162 0.8266 0.8346 0.8280 0.7325 0.7675 0.7777 0.7815 0.6517 0.7001 0.7149 0.7138

Table 3. Comparison of retrieval performance of our DPAH method and the other hashing methods on three benchmark datasets.
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Figure 8. Precision-recall curves (48-bit) of our DPAH method and the other hashing methods on three benchmark datasets.
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Figure 9. Comparison of 48-bit Hamming space visualization of

DNNH, HashNet and our DPAH.

With the help of t-SNE, we visualize the 48-bit binary codes

generated by DNNH, HashNet and DPAH on ImageNet in

Figure 9 (for ease of distinction, we sample 20 categories).

These methods belong to triplet-wise, pair-wise and point-

wise respectively. It can be seen from Figure 9(a) that the

binary codes’ position from different class is overlapped se-

riously, which results in pool discriminative ability. Then

the overlap is weakened by HashNet in that the weight of

data pairs is considered. Finally, we can see from Figure

9(c) that binary codes from different categories are well

separated and vice versa, which validates that DPAH can

effectively preserve semantic similarity in Hamming space.

Apart from this, We can see from the Figure 10 and Figure

11 that our DPAH tends to return the images as relevant as

possible.

4.5. Comparison with the Stateofthearts

Comparative methods: We compare DPAH with ten

classical hashing methods: unsupervised methods LSH

[11], ITQ [12], supervised shallow methods SITQ [12],

KSH [25], SDH [34] and supervised deep methods DNNH

[18], DHN [51], DSH [24], HashNet [4], SSDH [44]. In or-

der to compare more recent methods, we also made a sup-

plementary experiment on CIFAR-10 in the Appendix B.

For all shallow hashing methods, we use the fc7 layer of the

AlexNet [17] pre-trained on ImageNet2012 as input. For

all deep hashing methods, we use the AlexNet model pre-

trained on ImageNet2012 as the backbone. In our DPAH,

we set the hyperparamter t as 10, α as 0.2, λ as 0.01, β as 1

and γ as 0.01 respectively.

Results: Table 3 shows the retrieval performance com-

parison of our method against the others and Figure 8 gives

the precision recall curves on three datasets with 48-bit bi-

nary codes. In general, supervised hashing method perfor-

m better than unsupervised methods, validating the impor-

tance of supervised information for learning discriminative

binary codes. In addition, those CNN-based methods out-

perform the conventional hashing methods with deep fea-

tures on both datasets by a large margin, suggesting that

learning discriminative image representations and compact

binary codes simultaneously in an end-to-end manner is ad-
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Figure 10. Two retrieval cases on MS COCO, only the top-5 feedbacks are shown due to space limitation. Results were obtained with

64-bit binary codes. The floating point number with blue background below the image indicates the Jaccard similarity between sample and

the query. The larger floating number indicates the more relevant the query is with retrieval sample.
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HashNet
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Figure 11. Two retrieval cases on NUS-WIDE, only the top-5 feedbacks are shown due to space limitation. Results were obtained with

64-bit binary codes. The floating point number with blue background below the image indicates the Jaccard similarity between sample and

the query. The larger floating number indicates the more relevant the query is with retrieval sample.

vantageous. Among the CNN-based methods, HashNet get-

s the best performance in pair-wise methods. It is because

HashNet weights the training pairs that this method is more

robust to deal with imbalanced similarity data; DNNH sam-

ples triplet online, although the training time is relatively

long, the sequence relationship of the data can be guaran-

teed, which is more consistent with the target of the im-

age retrieval. It achieves a near performance as HashNet;

It is worth noting that SSDH, as a representative method of

point-wise type, even outperforms HashNet on the single-

label database, e.g. ImageNet, but not as good as Hash-

Net on multi-label databases, e.g. MS COCO or NUS-

WIDE. Our DPAH models global positional relationships to

preserve continuous semantic similarities, showing superior

performance on both single-label and multi-label databases.

5. Conclusion

In this paper, we propose a novel deep hashing frame-

work named DPAH for image retrieval task. We attribute

the promising performance to two aspects: First, the pro-

posed Position awareness module that ensures continuous

semantic information in binary codes; Second, the novel

KT loss for reducing the information loss between the real-

valued feature space and the desired Hamming space. S-

ince DPAH is a relatively general hashing method, it has

wide potential applications in other tasks like information

retrieval.
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