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Abstract

Non-linearity is an essential factor contributing to the

success of deep convolutional neural networks. Increasing

the non-linearity in the network will enhance the network’s

learning capability, attributing to better performance. We

present a novel Wide Hidden Expansion (WHE) layer that

can significantly increase (by an order of magnitude ) the

number of activation functions in the network, with very lit-

tle increase of computational complexity and memory con-

sumption. It can be flexibly embedded with different net-

work architectures to boost the performance of the original

networks. The WHE layer is composed of a wide hidden

layer, in which each channel only connects with two in-

put channels and one output channel. Before connecting to

the output channel, each intermediate channel in the WHE

layer is followed by one activation function. In this manner,

the number of activation functions can grow along with the

number of channels in the hidden layer. We apply the WHE

layer to ResNet, WideResNet, SENet, and MobileNet archi-

tectures and evaluate on ImageNet, CIFAR-100, and Tiny

ImageNet dataset. On the ImageNet dataset, models with

the WHE layer can achieve up to 2.01% higher Top-1 accu-

racy than baseline models, with less than 4% computation

increase and less than 2% more parameters. On CIFAR-

100 and Tiny ImageNet, when applying the WHE layer to

ResNet models, it demonstrates consistent improvement in

the accuracy of the networks. Applying the WHE layer to

ResNet backbone of the CenterNet object detection model

can also boost its performance on COCO and Pascal VOC

datasets.

1. Introduction

In convolutional neural networks, the convolutional lay-

ers perform linear transformations to the feature space,

while the activation function layers provide non-linear

warping to the feature space. Both linear transformation

and non-linear warping are essential to the network’s capa-

bility of learning complex distribution.

In this work, we propose to increase the non-linearity in

the networks by massively increasing the number of activa-

tion functions with a novel Wide Hidden Expansion (WHE)

layer, which can be flexibly embedded into different net-

work architectures via appending to convolutional layers.

In the WHE layer, while the number of output channels

remains the same as that of input channels, there implic-

itly exists a large number of hidden channels connecting

the input and the output. Each hidden channel is followed

by one activation function. Therefore, the number of acti-

vation functions can grow along with that of hidden chan-

nels. Each hidden channel passes the weighted sum of two

input channels through an activation function and then ag-

gregates the result to one output channel. Such structured

sparse connectivity guarantees that the computational com-

plexity of this layer is bound to be a fraction of the tradi-

tional convolutional layer. On the other hand, hidden chan-

nels merely exist temporarily in the GPU cache during both

the forward and backward phase of the layer. Therefore,

the memory consumption (both training and inference) of

WHE is aligned with the size of the input tensor rather than

that of hidden channels.

The merit of the proposed WHE layer is straightforward:

we can increase the number of channels as well as the num-

ber of activation functions by more than an order of mag-

nitude, with minimal increase of consumed resources (both

computation and memory). Hidden channels here cannot be

considered equivalent to the channels in the traditional con-

volutional layer since they are very sparsely connected to

the much narrower input and output. However, they do in-

troduce substantial activation functions, which provide the

non-linearity that is essential for a deep network to learn the

complex distribution of visual data.

Comparing to methods that utilize channel-wise “bottle-

neck” structure like ResNet [10] and ResNeXt [31], the fun-

damental difference between the WHE layer and them is the

structured sparse connections in WHE. Because each hid-

den channel in WHE is only connected to two input chan-

nels and one output channel, a substantial increase in hidden

channels requires only minor extra computation. While in

ResNeXt, each hidden channel is connected to all the input

and output channels in the same group. With the same con-
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figuration on the input, hidden, and output channels, a mod-

ule that is built with the “bottleneck” and grouping struc-

ture as in ResNeXt consumes more than 10 times computa-

tion than WHE. Additionally, the structured sparse connec-

tion in WHE makes it possible for the hidden channels to

be computed on-the-fly and never stored on the main GPU

memory, which is difficult to be achieved by ResNeXt.

We evaluate our WHE layer on the ImageNet classifica-

tion dataset, CIFAR-100, and Tiny ImageNet datasets with

various network architectures. It demonstrates that when

adding the WHE layer to existing network architectures,

our method can consistently achieve significant improve-

ment with a marginal increase of computation and param-

eters. We also show that applying WHE to the backbone

of the object detection network can boost performance on

different datasets.

The rest of this paper is structured as follows. In sec-

tion 3, we introduce the mechanism of the proposed WHE

layer, analyze its computational complexity and memory

consumption, and discuss the implementation details; In

section 4, we explain the evaluation of our method, and dis-

cuss the experimental result; Section 5 concludes the paper.

2. Related Work

Deep Architectures

AlexNet [19] is the first deep CNN architecture applied

to large scale image classification problems. ZFNet [35]

adjusts the kernel and stride size of the first convolutional

layer in AlexNet to achieve better accuracy. VGGNet [24]

uses 3 × 3 convolutional layer exclusively, which is very

deep and computational expensive at that time but shows

the power of depth in network design. GoogleNet [26], in

contrast, takes a very different approach. While having sim-

ilar depth to VGGNet, its architecture is much more com-

plex and diverse, achieving similar accuracy with much less

theoretical computation. Batch Normalization [15] makes

it possible to train a deep network without vanishing or ex-

ploding gradients. In ResNet [10], the residual connection

reduces the length of the back- propagation path and enables

effective training of network with more than one hundred

layers. ResNeXt [31] improves the “cardinality” of the net-

work with group convolutions. In [34], extremely wide net-

works are evaluated against deep architectures. The authors

show that width can be as effective as depth regarding im-

proving network performance. DenseNet [14] inserts resid-

ual connections between each pair of convolutional layers

to improve feature propagation and reuse. In SENet [13], a

squeeze-and-excitation block is introduced to aggregate the

spatial information in each channel. In NASNet [37], an

optimized convolutional architecture is learned on a small

dataset and then applied to large scale datasets.

Novel layer designs

While most of the state-of-the-art deep architectures are

designed by reconfiguring existing layers, in recent years,

there is some research focusing on proposing new layers,

to which this work also belongs. Several new types of ac-

tivation functions [3, 5, 9, 16, 28] have been proposed to

replace the original ReLU function. In NIN [20], a micro

multiple layer perceptron network is used to scan the in-

put feature map to extract better representation. In SICNet

[27] and MobileNet[12], the expensive convolutional layer

is replaced with a combination of a novel 2D intra-channel

convolution and 1 × 1 convolutional layer, achieving simi-

lar representative power with much lower complexity. CN-

NPack [29] performs the convolution in the frequency do-

main with Discrete Cosine Transform (DCT), and achieves

high compression by discarding low-energy frequency co-

efficients. In LBCNN [17], the pre-defined sparse binary

2D kernels are convolved with the input, and then linearly

combined to replace the traditional convolutional layers.

Activation functions

The predominant approach for a higher non-linearity in

the network is to design more powerful activation functions.

The most extensively used activation function is Rectified

Linear Unit (ReLu) due to its fast convergence. In ReLU,

the non-linearity comes only at the linear path’s change at

the origin. Several ReLU variants are proposed to increase

the non-linearity of the networks. PReLU [9] introduces

learnable parameters for the slope of the negative linear part

to increase the diversity of the activation function. ELU [5]

proposes to use the exponential curve for the negative part

and makes the activation function differentiable at every lo-

cation. LuTU [28] proposes to learn the shape of activa-

tion function with a look-up table structure and observes

the peak and valley patterns widely existing in the shapes

of the learned activation function, which can be replaced by

Gaussian mixture models.

Sparse connections

The layer proposed in this work can be considered as a

hidden one, with structured sparse connections with the in-

put/output layers. Sparsity in convolutional neural networks

has been widely studied in recent years. In SCNN [22], the

convolutional kernel is decomposed along both the spatial

dimensions and the channel dimension to exploit its redun-

dancy and then sparsified by training with l1 penalty. In

[8], the weights in the kernel are pruned, quantized, and

encoded with Huffman coding to achieve high compres-

sion. In [30], structured sparsity of the convolutional ker-

nel is learned with group Lasso regularization over the fil-

ter and channel dimensions. [11] introduces sparsity along

the channel dimension by imposing Lasso regression on the

channel selection weights.In [33], the authors propose an
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exclusive sparsity regularization, which enforces the output

channels to connect to different input channels in one con-

volutional layer.

Saving memory

We introduce an implementation technique to reduce the

memory consumption of the proposed WHE layer. There

are a few related works that aim at the same purpose. In

[4], sub-linear memory consumption is achieved by selec-

tively storing a subset of the intermediate feature maps, and

recover the rest by rerunning the forward operations during

the backward pass. In [7], the authors avoided storing the

activation function output by utilizing a reversible activation

function.

3. The Proposed WHE Layer

Here, we describe the proposed novel Wide Hidden Ex-

pansion (WHE) layer that can be used as a building block

embedded in a deep network. The layer’s input tensor

X ∈ R
c×h×w and output tensor Y ∈ R

c×h×w have the

same dimension, where c is the number of channels, and

h and w are the spatial dimensions. Considering the effi-

ciency of implementing its sparse connections, we first split

the input data along the channel dimension into groups of

size g so that the weight parameters for each group can be

processed in the GPU cache. The implementation details

are discussed in Section 3.2.

In each group, the input data is processed along the chan-

nel dimension at each spatial location. Therefore, we only

need to consider the input vector x ∈ R
g and output vector

y ∈ R
g in one group for simpler notation.

A wide hidden layer h ∈ R
g×g that has g2 neurons

is created to connect the input x and output y. For each

i ∈ [1, g] and j ∈ [1, g], there is one hidden channel that

connects the input x[i] and x[j] with the following linear

equation:

h(i, j) = A(i, j) ∗ x(i) +B(i, j) ∗ x(j) +C(i, j) (1)

where A ∈ R
g×g , B ∈ R

g×g and C ∈ R
g×g are weight

tensors that will be learned.

Each channel in the hidden layer is then passed through

an activation function that provides the non-linearity. Fi-

nally, the hidden channels that correspond to the same input

channel are aggregated to the corresponding output channel

as follows:

y(i) =

g∑

j=1

f(h(i, j))D(i, j) (2)

where D ∈ R
g×g is another weight tensor that is learned.

Figure 1 shows an example of a WHE layer with three

input channels and nine hidden channels. In summary, with

Figure 1. An example of the proposed WHE layer with three in-

put channels. Nine hidden neurons are created to connect with

one pair of input channels. The hidden neurons are then passed

through an activation function layer and then aggregated to the

corresponding output channels.

input in one group that has g channels, WHE layer creates

g2 hidden channels, and yields g2 corresponding non-linear

activation functions. The width of the hidden layer for all

the groups is, therefore, g times the width of the input ten-

sor. On the other hand, since each channel in the hidden

layer is connected only to two input channels and one out-

put channel, such structured sparse connections benefit the

complexity of the whole layer only a fraction of that from a

standard convolutional layer.The computational complexity

and memory consumption of the WHE layer will be dis-

cussed in detail in Section 3.1.

3.1. Complexity, Memory Consumption and Pa
rameters Analysis

Computational Complexity

We analyze the number of Multiply-Accumulate (MAC) op-

erations of the proposed WHE layer. For each input vector

x ∈ R
g at each spatial location in one group, g2 hidden neu-

rons need to be computed. Each hidden neuron involves 3

MAC operations, which include 2 MAC operations in com-

puting the neuron from the input, and 1 MAC operation

in accumulating the neuron to the output. An input tensor

X ∈ R
c×h×w is composed of chw/g vectors of length g.

Therefore, the total number of MAC operations consumed

by the WHE layer is

3chwg (3)

In comparison, the number of MACs of a standard convolu-

tional layer with a 3 × 3 kernel and the same input dimen-

sions is

9c2hw (4)

The ratio of their complexity is g

3c
. For instance, consider a

typical convolutional layer with 256 channels. If we choose

g = 16, which means the hidden layer has 4096 channels,

936



then the complexity of the WHE layer is only 1

48
the convo-

lutional layer.

Memory Consumption

With an input tensor X ∈ R
c×h×w, the full hidden layer

H ∈ R
c×g×h×w is g times the size of the input, and the

output Y ∈ R
c×h×w is the same size as the input. There-

fore, the theoretical overall additional memory consumption

of the proposed layer is

(g + 1)chw (5)

In a straightforward implementation for the proposed layer,

if all the intermediate data (H and Y here) are stored for

back-propagation, it could have much higher memory con-

sumption than a standard convolutional layer. However, in

our implementation, which will be described in Section 3.2,

the hidden layer exists only temporarily and does not con-

sume actual GPU memory. Therefore, the memory con-

sumption of our implementation of the WHE layer is the

same as a convolutional layer.

Parameters

Given a WHE layer with input tensor X ∈ R
c×h×w, and

group size g, each hidden channel is associated with 4 pa-

rameters (A, B, C and D in Equations 1 and 2). There are

gc hidden channels in total. Therefore, the total number of

parameters in the proposed WHE layer is 4gc, compared to

9c2 in a standard 3 × 3 convolutional layer with the same

input size. With 256 input channels and group size g = 16,

the number of parameters of the former is as few as 1

36
of

the latter.

3.2. Implementation Details

The forward and backward operations of the WHE layer

are implemented with CUDA kernel functions. Each CUDA

block processes the input data in one group. The weights

that correspond to this group are preloaded to the shared

memory of the block. Each block’s shared memory resides

in the cache of the Streaming Multiprocessor (SM) of the

GPU, which has much higher bandwidth and much lower

latency than the main GPU memory. In each iteration, an

input vector x ∈ R
g that corresponds to one spatial location

is processed. Thanks to the sparse connection structure of

the WHE layer, the hidden layer h ∈ R
g×g can be com-

puted on-the-fly and cached in the shared memory. Then

the hidden layer is aggregated to the output vector y ∈ R
g ,

which is then stored into the output tensor that resides in the

main GPU memory. Since the hidden layer is computed on-

the-fly and never enters the main GPU memory, the overall

memory consumption is not determined by the width of the

hidden layer. This explains the memory consumption sav-

ing in Section 3.1. The only requirement that needs to be

guaranteed is that the hidden layer can fit into the shared

memory of the block.

The backward pass is implemented similarly, except that

it involves more computation and consumption of shared

memory. First, the output of the hidden layer needs to be re-

computed so that the gradient over the aggregation weights

D can be calculated. Second, the gradients over both the

weights and the hidden layer also need to be cached in the

shared memory, which almost doubles the shared memory

consumption.

4. Experiments

We evaluate the performance of the proposed WHE layer

on ImageNet [23] LSVRC 2012, CIFAR-100 [18], and

Tiny-ImageNet [32] datasets on a computer with Nvidia

GTX 1080 Ti GPU , dual E5-2670 CPUs, cuDNN-v7.1 and

CUDA-10.0.

ImageNet classification dataset is a large scale dataset that

contains 1000 categories. It contains 1.2M training images,

50K validation images, and 100K test images. The average

resolution of the images is 482 × 415. The ImageNet

dataset is the most similar to the real-world data and is the

most accurate way of measuring the performance of deep

CNN models.

CIFAR-100 is a smaller scale image classification dataset

including 100 categories of 32 × 32 color images. Each

category has 500 training images and 100 test images. Due

to its small image size, it is suitable for fast prototyping

and evaluation.

Tiny ImageNet is a subset of the ImageNet dataset. It has

200 categories. Each category has 500 training images, 50

validation images, and 50 test images. The spatial dimen-

sions of the images are 64× 64.

Experimental Settings

We train and evaluate our networks on the PyTorch [1]

framework and follow the examples in [2]. We follow the

standard data augmentation procedures that randomly flip

horizontally and crop each training image. All the models

are trained with the “step” learning rate policy that divides

the learning rate by 10 after a certain number of epochs.

For experiments on ImageNet, Top-1 and Top-5 accuracies

with center cropping are reported. For experiments on

CIFAR-100 and Tiny-ImageNet, the averages of Top-1

accuracies on 5 runs are reported.

WHE block To embed our WHE layer into different net-

work architectures with minimal modification on original
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(a) ResNet-18 (b) ResNet-34

Figure 2. Training curves of ResNet-18 and ResNet-34 models on ImageNet with input image size 150 × 150. The Top-1 accuracies are

plotted. Training accuracies are plotted with dashed lines and validation accuracies are plotted with solid lines. Blue curves represent

the original ResNet models and red curves represent models with our WHE layer. With the WHE layer, both the training and validation

accuracies outperform the original model.

Model FLOPs Param Top-1 Top-5

ResNet18 1800M 11.7M 69.37% 88.96%

ResNet18+WHE 1872M 11.9M 71.08%(+1.71%) 89.93%

SENet18 1800M 11.7M 70.03% 89.44%

SENet18 + WHE 1872M 11.9M 71.15%(+1.12%) 90.14%

MobileNet 596M 4.2M 70.6% -

MobileNet + WHE 640M 4.3M 71.60% (+1.0%) 90.13%

Table 1. Comparing Top-1 & Top-5 accuracies on ResNet-18, SENet-18 , and MobileNet models on ImageNet with the input image size

224 × 224. With the WHE layer, the Top-1 accuracy on these models are improved by 1.71%,1.12% and 1.0%, respectively, with only

a slight increase in complexity and parameters.

network structures, we designed a WHE block that con-

tains one WHE layer, one batch normalization layer, and

one residual connection.

4.1. ImageNet

We evaluate the performance of the WHE layer based

on the ResNet-18, ResNet-34, WideResNet, SENet-18, and

MobileNet. One WHE block follows one convolution layer

in the original networks.

The networks are trained with two different input im-

age sizes: 150 × 150 cropped from images with shorter

edge equal to 164, and 224 × 224 cropped from images

with shorter edge equal to 256. We train the networks for

120 epochs. The learning rate is set to 0.1 in the first 60

epochs and divided by 10 every following 30 epochs. The

weight decay is set to 1e−4 for the convolutional layer and

the batch normalization layer. For the WHE layer, we apply

an adjusted weight decay policy that sets the weight decay

to 1e−6 in the first 80 epochs, 1e−5 in the subsequent 30

epochs, and 1e−4 in the last 10 epochs. The group size g
for the WHE layer is set to 16. The parameters of the WHE

layer are initialized with uniform distribution in [-0.1, 0.1]

(In the experiments, adjusting the range from 0.01 to 0.1 re-

sulted in the marginal improvement in accuracy by 0.2%).

Table 2 shows the results of our method compared with

the original ResNet , WideResNet , SENet-18 models on

150×150 input image sizes. On the ResNet-18 and ResNet-

34 models, adding the WHE layer significantly increases

the top-1 accuracy by 2.01% and 1.25% respectively, with

only a small increase in computational complexity (<4%)

and in number of parameters (<2%) . The WideRes-

Net models that we compare with are WideResNet-18 1.25

and WideResNet-18 1.5, which are widened versions of

ResNet-18 that have 1.25× and 1.5× width, respectively.
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Model Depth FLOPs Param Top-1 Top-5

ResNet-18 Original 18 790M 11.7M 64.96% 86.19%

ResNet-18 + WHE 18 820M 11.9M 66.97%(+2.01%) 87.48%(+1.29%)

ResNet-34 Original 34 1577M 21.8M 68.84% 88.90%

ResNet-34 + WHE 34 1632M 22.3M 70.09%(+1.25%) 89.43%(+0.53%)

WideResNet-18 Original 18 1.25 1200M 17.4M 67.27% 87.79%

WideResNet-18 + WHE 18 1.25 1238M 17.7M 68.47%(+1.20%) 88.35%(+0.56%)

WideResNet-18 Original 18 1.5 1690M 25.1M 68.62% 88.46%

SENet-18 Original 18 790M 11.7M 65. 64% 86.51%

SENet-18 + WHE 18 820M 11.9M 67.05% (+1.41%) 87.54% (+1.03%)

Table 2. Top-1 & Top-5 accuracies, computation complexity (measured with number of FLOPs), and number of parameters of our meth-

ods compared with the original ResNet, Wide-ResNet, and SENet models on 150 × 150 input image size. On ResNet-18, ResNet-34,

WideResNet-18, and SENet-18 models, adding our WHE layer to the networks achieves significant improvements on accuracy by 2.01%,

1.25%, 1.20%, and 1.41% respectively, with <4% computational complexity increase and <2% more parameters. Also, WideResNet-

18 1.25 with WHE layer can achieve an accuracy comparable to WideResNet-18 1.5 model, which has 40% more computational complex-

ity and more parameters than the original WideResNet-18 1.25 .

Model FLOPs Param Top-1 Top-5

ResNet18 Origin 790M 11.7M 64.96% 86.19%

ResNet18 + DepthWise 796M 11.8M 65.12% (+0.16%) 86.14%

ResNet18 + WHE 820M 11.9M 66.97% (+2.01%) 87.48% (+1.29%)

Table 3. Same depth comparison: Unlike our WHE layer, when low-cost DepthWise convolutional layers are deployed as alternative to the

WHE layer, the network performance is almost not improved.

With only a slight increase in complexity (3.2%) and pa-

rameters (1.7%), WideResNet-18 1.25 with WHE layer

can achieve 1.20% higher Top-1 accuracy than the original

WideResNet-18 1.25 model, and matches the accuracy of

WideResNet-18 1.5, which has 40% higher complexity and

parameters than the original WideResNet-18 1.25 . When

compared with the SENet-18 model, with the WHE layer,

we can boost the model by 1.41% higher top-1 accuracy

with a slight complexity increase.

Table 1 shows the comparison results based on ResNet-

18, SENet-18 ,and MobileNet models with 224 × 224 in-

put image size. Adding the WHE layer improves the Top-

1 accuracies of ResNet-18, SENet-18 , and MobileNet by

1.71%, 1.12% and 1.0%, respectively, with a slight in-

crease in computational complexity and parameters.

Figure 2 shows their training curves on both the training

and validation sets.

4.2. Same Depth comparison

To verify that the performance increase from WHE layer

is attributed to the non-linearity increase in the network

rather than the depth increase (appending WHE after con-

volutional layer), we replace the WHE layers with the

same number of low-cost DepthWise convolutional layers

that are mainly used in the efficient SICNet [27]and Mo-

bileNet [12], making a head-to-head comparison based on

ResNet-18 model with image size 150 × 150. Table 3

shows the comparison result. The improvement from only

adding DepthWise convolutional layers is trivial, with 0.1%

marginally better performance. In contrast, with the WHE

layer, we can boost network performance by 2.01% higher

accuracy.

Model Methods Top-1 Accuracy increase ↑

ResNet18

ReLU 0

ELU -2.24%

PReLU +0.18%

APL +0.27%

WHE +1.71%

Table 4. Comparison with other non-linearity increasing methods

with ResNet-18 model (Input resolution: 224×224) on ImageNet

dataset.

4.3. Comparison with other nonlinearity increas
ing methods

To compare our WHE layer with activation function

based methods like PReLU, APL , and ELU, we con-

sider their impacts on the network’s performance based on

the ResNet-18 model (image size: 224 × 224) with Ima-

geNet dataset. Models with different activation functions

are trained under the same setting as our WHE layer. Ta-

ble 4 shows the comparison result. The activation function

based methods improve the performance of ResNet-18 by
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Model Depth

Param Accuracy

Original Ours
CIFAR-100 Tiny-ImageNet

Original with dp Ours Original with dp Ours

ResNet

20 0.27M 0.28M 67.63% 68.42% 69.17% 48.15% 49.63% 50.29%

32 0.46M 0.47M 69.49% 70.29% 70.74% 49.86% 51.66% 52.61%

44 0.66M 0.68M 70.23% 71.02% 72.05% 51.24% 52.73% 53.23%

56 0.85M 0.88M 70.71% 71.83% 72.41% 51.35% 53.65% 54.17%

110 1.7M 1.76M 71.73% 73.10% 73.57% 52.60% 54.37% 54.90%

Table 5. Top-1 accuracies and number of parameters of our method compared with original ResNet models on CIFAR-100 and Tiny Ima-

geNet datasets. Since Dropout regularization is adopted in our method with the WHE layer, we also list the accuracies of original ResNet

models with Dropout for fair comparison. While adding Dropout boost the accuracies of the ResNet models, our models consistently

demonstrate further improvement on all the models for both datasets with a negligible parameters increase.

Model Top-1 accuracy Forward Time Training Memory

Original 69.37% 8.1 ms 1061 MB

WHE 71.08%(+1.71%) 8.4 ms 1105 MB

Table 6. Comparing running time and memory consumption based

on ResNet-18 for batch size 8.

less than 0.3%, while our WHE layer boosts the accuracy

of ResNet-18 by 1.71%.

4.4. Running time and memory consumption

WHE layer is implemented with efficient low level

CUDA kernel, as described in Section 3.2. In Table 6,

we evaluate the forward running time and training memory

consumption based on ResNet-18 model on 1 GPU.

4.5. CIFAR100 & Tiny ImageNet

We evaluate five different ResNet models on CIFAR-100

and Tiny ImageNet, with depths equal to 20, 32, 44, 56, and

110. Each model is trained for 150 epochs. The learning

rate is set to 0.1 for the first 80 epochs and divided by 10

every following 40 epochs. On smaller scale datasets like

CIFAR-100 and Tiny ImageNet, deep network models are

more prone to the problem of overfitting. To reduce the im-

pact of overfitting, we add dropout regularization [25] be-

tween the two convolutional layers in each basic residual

block. Since the ResNet models on CIFAR-100 and Tiny

ImageNet have much fewer channels than the ones on Im-

ageNet, we also reduce the group size of the WHE layer to

4.

Table 5 shows the Top-1 accuracies of our method com-

pared with the original ResNet models. To make a fair com-

parison, we also list the performance of the original ResNet

models with dropout added (same dropout rate and loca-

tions in the residual block as ours). In all of the five net-

work architectures, our method shows consistent improve-

ment over the original ResNet models with dropout on both

CIFAR-100 and Tiny ImageNet datasets.

Model Group size Param Top-1 Top-5

Original - 11.7M 64.96% 86.19%

Ours

4 11.7M 65.38% 86.35%

8 11.8M 66.28% 87.12%

16 11.9M 66.97% 87.48%

Table 7. Comparing performance with different group size in

WHE layers based on ResNet-18 model on ImageNet (150×150).

Accuracy increases consistently with the group size, which deter-

mines the width of the hidden layers.

Model Weight Decay Top-1 Top-5

Original - 64.96% 86.19%

Ours

Fixed (1e−4) 65.87% 86.81%

Fixed (1e−6) 66.61% 87.32%

Adjusted 66.97% 87.48%

Table 8. Performance of different weight decay policies for WHE

layers based on ResNet-18 model on ImageNet with 150 × 150

image size. The weight decay for other layers is set to 1e
−4 as in

the original model. Compared with using the same weight decay

as other layers, reducing the weight decay of WHE layers to 1e
−6

further improves Top-1 accuracy by 0.74%. Adjusting the weight

decay during the training process further improves 0.36%.

4.6. Ablation study

Group Size

In the proposed WHE layer, the input is first split into

groups. Inside each group with size g, the width of the hid-

den layer is g2. Therefore, the group size determines the

width of the whole hidden layer. In Table 7, we analyze

the influence of different group sizes on the performance

of the models with our WHE layer. When increasing the

group size from 4 to 16, a consistent accuracy improvement

(0.42%, 1.32% and 2.01%) is observed. This result fur-

ther justifies the benefits of increasing implicit width with

our WHE layer.
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Input Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

512
Original 74.9 76.1 84.1 75.9 64.9 54.7 81.9 82.2 85.1 57.9 83.1 70.9 81.9 84.8 84.7 78.3 49.5 75.7 70.3 82.8 72.8

WHE 76.2 76.8 84.6 75.7 66.1 56.4 83.0 83.4 85.2 61.6 82.6 72.7 85.1 86.1 84.9 78.8 50.2 79.3 73.3 83.2 74.9

384
Original 71.6 73.0 79.6 69.7 60.8 44.3 78.5 78.2 86.1 52.3 79.7 72.6 82.2 81.6 83.1 74.3 43.7 71.4 72.5 78.3 68.9

WHE 72.8 73.4 79.0 69.6 62.8 46.7 80.2 78.7 85.2 55.4 81.1 73.2 84.5 84.5 81.5 76.6 48.6 73.9 71.5 80.1 69.5

Table 9. Comparison on Pascal VOC 2007 test set for two different input resolutions.

Input Backbone AP AP50 AP75

512
ResNet18 27.7 44.3 29.1

ResNet18+WHE 28.9 46.1 29.8

Table 10. Comparison on COCO validation dataset for input size

of 512× 512.

Weight Decay for WHE layers

We studied the impact of different weight decay policies on

the WHE layer with group size 16 and found that differ-

ent weight decays have a noticeable influence on the scale

of the parameters in WHE layer. If the same weight decay

(1e−4) is applied over all layers, a large portion of the pa-

rameters in the WHE layers turn to zero. Considering this,

we make the weight decay for WHE layers different from

other layers. On the other hand, setting the weight decay to

a smaller value will introduce slight overfitting , and the ac-

curacy increases less than expected when the learning rate

is reduced. Therefore, we adopt an adjustable weight de-

cay policy in our experiments. We set the weight decay to

a small value (1e−6) in the early phase of the training pro-

cess, and increase it to (1e−5) later. Table 8 compares the

accuracy of using such an adjusted weight decay against the

fixed one. It demonstrates that the adjustable weight decay

can introduce higher performance increase (+2.01% Top-

1) than the fixed one (+1.65% Top-1).

4.7. Object Detection

We evaluate the performance of WHE on the object de-

tection problem by applying it to CenterNet [36], the state-

of-the-art one-stage object detection CNN model. We use

the ResNet-18 backbone model as a baseline and embed

WHE as was described in the ImageNet experiment to mea-

sure its improvement. We follow the same training strategy

as the original CenterNet paper and source code. Mean Av-

erage Precision (mAP) is evaluated on MS COCO [21] and

Pascal VOC [6] datasets. We test with 512× 512 resolution

on COCO, and both 512 × 512 and 384 × 384 on Pascal

VOC.

On COCO, we list the comparison results with the orig-

inal model on mean average precision over different IoU

thresholds (AP, for all the thresholds, AP50, for IoU thresh-

old 0.5, AP75 for IoU threshold 0.75). On the Pascal VOC

dataset, we report the average precision for each category

and the mean average precision over all the categories.

Table 9 shows that with our proposed WHE layer, the

average precisions of CenterNet on most categories of the

Pascal VOC dataset are significantly higher than the original

model.

Table 10 shows that when applying the WHE layer on the

backbone of ResNet-18, CenterNet can achieve more than

1% better mAP on different IoU thresholds on the COCO

dataset.

5. Conclusion

In this work, we introduce a novel Wide Hidden Expan-

sion (WHE) layer for deep convolutional neural networks.

The WHE layer is composed of a wide hidden layer, which

has much larger number of channels than the input and out-

put. Each channel in the hidden layer is only connected

to two input channels and one output channel. WHE lay-

ers significantly increase the implicit width of the network

with a negligible increase of computational complexity and

memory consumption. With extensive experiments, we

show that adding WHE layers to existing network architec-

tures consistently boosts the accuracy on different datasets

and network architectures for both image classification and

object detection.
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