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Figure 1: Visual comparison on Challenging DVD Dataset with DVD (noalign) [35].

Abstract

Blind video deblurring restores sharp frames from a

blurry sequence without any prior. It is a challenging task

because the blur due to camera shake, object movement and

defocusing is heterogeneous in both temporal and spatial di-

mensions. Traditional methods train on datasets synthesized

with a single level of blur, and thus do not generalize well

across levels of blurriness. To address this challenge, we pro-

pose a dual attention mechanism to dynamically aggregate

temporal cues for deblurring with an end-to-end trainable

network structure. Specifically, an internal attention module

adaptively selects the optimal temporal scales for restor-

ing the sharp center frame. An external attention module

adaptively aggregates and refines multiple sharp frame esti-

mates, from several internal attention modules designed for

different blur levels. To train and evaluate on more diverse

blur severity levels, we propose a Challenging DVD dataset

generated from the raw DVD video set by pooling frames

with different temporal windows. Our framework achieves

consistently better performance on this more challenging

dataset while obtaining strongly competitive results on the

original DVD benchmark. Extensive ablative studies and

qualitative visualizations further demonstrate the advantage

of our method in handling real video blur.

1. Introduction

Mobile phones, high internet bandwidths and social me-

dia have led to a recent spurt in video acquisition and shar-

ing. However, videos of dynamic scenes, or those captured

through hand-held devices, often display spatially and tempo-

rally varying blur patterns. The source of blur can be camera

shake, depth variation, object motions or a combination of

them, which manifest in complex patterns such as jittering,

jumping or ghosting artifacts. Restoration of spatial struc-

ture and image sharpness is an ill-posed problem, for which

single-image deblurring methods have been proposed rely-

ing on statistical [8, 12] or learned priors [24, 33, 38, 48, 19].

But video deblurring remains relatively less-studied, since

effectively and efficiently modeling the inherent temporal

dynamics among consecutive video frames is challenging.

Recent works on video deblurring usually work on a fixed

temporal scale. For example, a fixed number of blurry frames

are stacked as inputs to the network in [35, 13]. However, the
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spatio-temporal scale of blurs can vastly vary. Camera shake

usually leads to short-term, spatially uniform and temporally

uncorrelated blurs [44, 35], while object motion causes long-

term, spatially localized and temporally smooth blurs [27].

Such heterogeneity in blur patterns is unlikely to be well

represented by a single model in the above approaches, and

calls for the selection or modulation of temporal scales.

This paper proposes a Dual-Attentional VIdeo Deblur-

ring (DAVID) framework, aiming to simultaneously model

temporal dynamics among consecutive frames and handle

various levels of spatially heterogeneous blur in real videos.

We start by constructing a compact backbone module based

on a U-Net variant [32], to infer the sharp center frame from

a number of consecutive blurry frames. Using this network

module as a basic building block, we propose two levels of

attention modules to hierarchically reason about blur compo-

sitions and levels in both temporal and spatial dimensions.

We determine the optimal scale of temporal dependency

through an internal attention module that takes as input

several consecutive blurry frames, while multiple backbone

branches work on different temporal scales to generate dif-

ferent sharp frame estimates. The resultant sharp frame

estimates are adaptively aggregated according to the atten-

tion map, which is inferred by another branch in this module.

Further, an external attention module handles various lev-

els of spatially heterogeneous blur by determining how to

adaptively aggregate the outputs of multiple internal atten-

tion modules, each of which is designed for a specific blur

level. The architecture is illustrated in Figure 2. To the best

of our knowledge, this is the first work in video deblurring

that exploits hierarchical attention.

Our proposed method achieves consistently better PSNR

compared to others on public datasets such as DVD. Further,

we create a new video deblurring dataset, called Challenging

Deep Video Deblurring (Challenging DVD), to introduce

stronger blur variations by synthesis. Compared to the origi-

nal Deep Video Deblurring (DVD) dataset proposed in [35],

we witness performance drops for state-of-the-art methods

when applied to Challenging DVD. Extensive ablation stud-

ies and visual results on real blur videos further indicate that

DAVID can adaptively deal with different levels of blurri-

ness, leading to perceptible improvement in quality.

In summary, our main contributions are:

• A novel Dual-Attentional Video Deblurring (DAVID)

framework, which jointly takes into account heteroge-

neous blur information in temporal and spatial dimen-

sions for video deblurring, with an external attention

and several internal attention modules.

• A new video deblurring dataset, Challenging Deep

Video Deblurring (Challenging DVD), that introduces

stronger blur composition and level variations.

• Extensive experiments on both Challenging and origi-

nal DVD datasets, to demonstrate that DAVID achieves

consistently better or competitive results, respectively.

2. Related Work

Image Deblurring: Image deblurring can be traced back

to the traditional methods using different types of priors,

such as total variation (TV) [12], sparsity [8], heavy-tailed

gradient prior [34], and l0-norm gradient prior [46]. Many

early approaches [15, 17, 9, 10] proposed to estimate the

blur kernel and then apply deconvolution, in which the esti-

mated kernel quality significantly impacted the result. [28]

presented a simple and effective dark channel prior. [30]

showed that a simple low-rank model significantly reduces

blur even without using any kernel information. Segmenta-

tion information [11] was also investigated as an accompa-

nying cue for motion.

In recently years, CNN-based image deblurring meth-

ods have achieved success [45]. [36] proposed to directly

estimate motion blur fields by CNN. [33] adopted a coarse-

to-fine manner to stack multiple CNNs to analyze the blur

formation. [47] proposed to estimated motion blur kernel

using deep learning. [24] presented multi-scale loss func-

tion that mimics conventional coarse-to-fine approaches in

training a multi-scale deblurring CNN. [18] introduced gen-

erative adversarial networks (GANs) to obtain sharp and

realistic-looking images. [38] introduced a scale-recurrent

network to exploit the multi-scale spatial information. Re-

cent works also shows that restoration of blurry image can

be used to facilitate high-level task such as object detection

[50], image classification[41] and image segmentation [42].

Video Deblurring: In the video case, temporal variations

critically determine the blur effect, and provide additional

clues for deblurring. Early video deblurring methods [23, 5]

compensated sharp details of the current frame by nearby

frames, via patch matching, motion flow and frame align-

ment. They however failed easily when dealing with large

movements. [7] applied optical flow to warp nearby frames

and fused them in the Fourier domain, but suffered from unre-

liable flow estimation when occlusions or outliers are present.

[29] proposed to simultaneously deblur stereo videos and

estimate the scene flow, where the motion cues from the

scene flow and blur information can complement each other.

In deep learning, video deblurring has so far received rel-

atively limited attentions. [35] proposed DeBlurNet (DBN)

on accumulating information across frames, where neighbor-

ing frames were stacked as inputs to predict the clean central

frame. [13] introduced a spatio-temporal recurrent network

that adaptively enforced temporal consistency between con-

secutive frames. Segmentation information has also been

incorporated with video deblurring when available [31].

Attention Model: Attention in general serves as a learnable

guidance, to re-allocate available processing resources to-

wards the most informative input components. It has shown

promise in language translation [40], object recognition [1],
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Figure 2: The overview of the proposed DAVID framework. Left: the structure of the external attention module. Right: the

structure of the internal attention module. Each internal attention module is designed for a specific blur level. Each backbone

branch in the same internal attention module works on a specific temporal scale.

image generation [51] and person re-id [4], meta-learning

[2]. For video-based applications, [49] proposed a temporal

attention network to aggregate video frames for face recogni-

tion. [20] developed attention-based temporal modulation for

video super-resolution, where the predictions made within

different temporal windows were adaptively fused with a

learned pixel-level attention map. We also note that a few

others [43, 16] discussed the concept of hierarchical atten-

tion, but with completely different contexts and motivations

from ours.

3. The Proposed Model: DAVID

3.1. Network Design

The overall architecture of our DAVID model is illustrated

in Figure 2. Taking a set of 2N − 1 consecutive blurry video

frames, DAVID aims to output the center sharp frame, i.e.,

the N -th frame. Each internal attention module determines

the optimal temporal scale for removing blur, via adaptively

aggregating multi-scale temporal information from several

backbone branches. The external attention then estimates

the spatially global blur level, and make soft assignments

for several internal attention modules, each of which is ded-

icated for a specific blur level. Finally, their outputs are

fused adaptively under the guidance of external attention, to

generate the sharp frame.

Backbone Branch: Our backbone branch adopts an

encoder-decoder U-Net, which is very popular for many

image restoration tasks [21, 22, 37, 38], as detailed in Figure

3. The encoder consists of five blocks. Each block con-

tains two consecutive convolutional layers, followed by a

max-pooling layer, which downsamples the feature maps by

half. The decoder is formulated in a mirroring way, with

five blocks. Each one contains a bilinear upsampling layer

followed by two convolutional layers. The feature maps after

each block is upsampled by a factor of two and thus the final

output achieves the same size as the input. Skip connections

are adopted to aggregate the feature maps from the encoder

to the decoder on each spatial scale, to better utilizes features

from multiple scales.

As the building block of DAVID, we carefully fine-tune

the backbone to obtain remarkable effectiveness: as shown

in experiments later, a single backbone branch is already

able to outperform [35] on the DVD dataset. Its performance

will be further boosted as the temporal information is added.

Internal Attentional Module: As shown in Figure 4, an

internal attention module An is designed to coordinate a

number of backbone branches. Each backbone branch han-

dles a different temporal scale: The Di backbone branch

takes 2i+ 1 consecutive blurry input frames (centered at the

current frame) to predict the center sharp estimate. As a re-

sult, the convolutional filters in the first layer are customized

to have (2i+ 1)× r channels, where r denotes the channel

number of each input frame.

Besides the backbone branches, we design an internal at-

tention estimation branch to learn the selectivity on different

temporal scales according to blur information, by predicting

pixel-level aggregation weights for each branch’s output. In

practice, the internal attention estimation branch takes all

2N − 1 frames as inputs, and outputs the pixel-level weight

maps on all N possible temporal scales. Considering the

computation cost and efficiency, we adopt a shallower ar-

chitecture of two downsampling blocks for the estimation

branch. Eventually, each backbone branch’s output Di is

pixel-wisely multiplied with its corresponding weight map

from the internal attention estimation branch, and these prod-

ucts are summed up to form the final output of the internal

attention module. This operation is expressed in Equation 1:

În =

NX

i=1

An,i ⊗Di (1)

An,i denotes the internal attention map for backbone branch

i. Di is the output from backbone branch i. ⊗ represents

pixel-wise multiplication. N is the total number of back-

bone branches and În is the recovered output from internal

attention module.

External Attentional Module: In DAVID, each internal

attention module focuses on one global background blur
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Figure 3: A proposed backbone branch for DAVID.

Figure 4: An internal-attentional module for DAVID.

level. The assumption on the blur level further needs to be

aggregated in a probabilistic way so that we can better model

the spatially variant blur effect. Thus, an external attention

mechanism Ae is proposed on top of the internal attention

modules An. Similar to the internal attention module, we

design an external attention branch to predict a pixel-level

weight map for each internal attention module, with all 2N−

1 frames as its input. Its implementation also refers to a

backbone branch architecture with only two downsampling

blocks. The final deblurring result by DAVID is the pixel-

wise weighted summation result of all internal attention

module outputs, as in Equation 2.

Îe =

MX

j=1

Ae,j ⊗ În,j (2)

Ae,j is the external attention map for the j-th internal atten-

tion module output În,j . M is the total number of internal

modules and Îe the final output from the external module.

3.2. Challenging DVD Dataset

To train data-driven video deblurring models, a large num-

ber of pairs of blurry and sharp frames are needed. Although

it is possible to use a beam-splitter and multiple cameras to

build a special capturing system, this setup would be chal-

lenging to construct robustly, and can face many calibration

issues. [35] proposed to collect real-world sharp videos at

very high frame rate, and synthetically create blurred ones by

averaging consecutive short-exposure images to approximate

a longer exposure [39]. The authors collected 71 videos at

240 frames per seconds (fps), with 3-5s average length. In

order to simulate realistic blurs at 30fps, they subsampled

every eighth frame to create the 30fps ground truth sharp

video, while averaging 7 neighboring frames (centered at the

corresponding ground truth frame) to generate the blurred

video at 30fps. The video deblurring model is then trained

to recover the 30fps ground truths from the 30fps blurred

versions. We refer to this resulting dataset as the Deep Video

Deblurring (DVD) dataset, which has been the most popular

benchmark for video deblurring algorithms.

To mimic more challenging real-world blurs, we create

a new Challenging DVD dataset, aiming to cover a wider

spectrum of blur variations. This is achieved by introducing

more stochasticity during blurry video synthesis. Using the

same high fps video of DVD, we randomly choose every 3,

7, 11 or 15 frames to average into the blurry frame,1 instead

of only averaging 7 frames as in the DVD dataset.2 We

dubbed them C-DVD-3, C-DVD-7, C-DVD-11 and C-DVD-

15, respectively. The modification leads to the new Chal-

lenging DVD dataset that contains dynamic, and often more

severe (when 11 or 15 frames averaged) blurs. Experiments

manifest that almost all video deblurring methods witness

performance drops when applied to Challenging DVD, com-

pared to performance on DVD. The value of Challenging

DVD dataset is justified later by our model’s generalization

evaluation on real-world blurry videos when trained on it.

4. Experiments

In this section, we firstly explain the detail implementa-

tion and the training protocols. Then, we compare DAVID

1We choose 3, 7, 11, 15 here, since we hope that they can represent

several different blur levels from light to severe. Those choices are empirical,

in no way unique, and may be further tuned for better practical performance.
2[35] suggest to use optical flow to interpolate additional frames in

order to smoothen the averaging. However, we observe that the classical

optical flow often introduce visible “ghost” artifacts in the synthetic blurry

frames. We thus use a neural network based frame interpolation model [26]

to replace that, observing improved blur quality.
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to several video-based state-of-the-arts on the Challenging

DVD dataset, to highlight our method’s effectiveness on

different levels of blur. The performance of DAVID on the

original DVD dataset is also reported for reference compar-

ison. We then investigate the ablative functions for each

of our proposed modules, i.e., single back bones, internal

attention modules. Visualization of our attention modules

is provided for further insightful analysis. Finally, we dis-

play qualitative results of DAVID on real blurry videos and

compare to the state-of-the-arts.

4.1. Multi-Phase Training for DAVID

To train our Dual-Attention Video Deblurring (DAVID)

framework, good initializations are needed for both back-

bone branches and internal/external attention modules. We

propose a multi-phase strategy to smoothly conduct training.

Phase 1: Pre-train each backbone branch: We first

pre-train each backbone branch Di. Specifically, the back-

bone branches D1, D2, D3, D4 are independently trained to

take in 1, 3, 5, 7 frames, respectively.

Phase 2: Pre-train the internal attention module: Af-

ter Phase 1, we assemble each pre-trained backbone branch

into the internal attention module. The internal attention

modules An,1, An,2, An,3 are trained separately, with sam-

ples from C-DVD-3, C-DVD-7, and C-DVD-11, respectively,

where each represents a different level of blur that is tem-

porally pooled from 3, 7, 11 frames. To train each Ai, we

train the internal attention branch with a learning rate 1e−5

while fixing the weight of backbone branches. After 100

epochs, we unfreeze the backbone branches and fine-tune

entire An,i and Di with a smaller learning rate 2e−6 until

convergence. In this way, we enforce each An,i to focus on a

specific level of blur. The learning rate and hyper-parameters

are grid searched based on a validation set.

Phase 3: Joint training with the external attention

module: We load all the pre-trained internal attention mod-

ules from Phase 2 and fix the weights for each of them.

We fine-tune the external attention branch with initial learn-

ing rate 1e−5. After 200 epochs, we unfreeze the attention

branch in each of the internal attention module, jointly fine-

tune the internal/external attention branches for 200 epoch

with a learning rate 2e−6. Finally, we unfreeze all the back-

bone branches in each of the internal attention module and

jointly fine-tune the entire DAVID model with a learning

rate 2e−6 for another 200 epochs.

Implementation Details We implement our backbone

branch with PyTorch. By default, our model has 3 inter-

nal attention modules, each consists of 4 single backbone

branches, that take 1, 3, 5, 7 consecutive input frames, re-

spectively. Please refer to the detail network structure design

in the supplementary material. During training, we apply

random cropping, random horizontal and vertical flipping as

data augmentation. Batch size is set to 16 across all the train-

ing phases. We adopt Adam [14] solver with L2 loss. Initial

learning rate is set 0.0001. The momentum and weight decay

are fixed as 0.9 and 0, respectively.

4.2. Evaluation on the Challenging DVD Dataset

The original DVD dataset only considers a fixed blur

level, i.e., synthesized by averaging 7 frames. We aim to

highlight the capability of deblurring models in dealing with

different levels of blur. In Challenging DVD dataset, we

purposely synthesize the blur of multiple levels by averaging

the frames with different window size such as 3, 7, 11 or 15.

We also form a 10-fold testing split that has no data overlap

according to [35]. Our testing set consist of 297, 349, 739,

524 samples for C-DVD-3, C-DVD-7, C-DVD-11, C-DVD-

15, respectively. We compare DAVID with two state-of-the-

art video deblurring methods, WFA [6] and DVD[35]; both

are also fine-tuned on the Challenging DVD dataset.

In Table 1, PSNR is averaged over all frames for each

video. We clearly see that all the methods show performance

degradation compared to performance on original DVD set

(see Table 3), suggesting that our newly synthesized dataset

is indeed more challenging. However, DAVID shows con-

sistently superior performance as the dual attention module

can dynamically gather the temporal information and thus

handle different levels of blur.

4.3. Ablation Study on Challenging DVD

4.3.1 Effect on Different Model Components

In Table 1, under the same number of averaged frames, i.e.,

On C-DVD-11, we consistently observe that single backbone

models are always sub-optimal compared to the one with

internal attention module, indicating the effectiveness to

aggregate the temporal information across the consecutive

video frames. Meanwhile, Table 1 shows that with the same

setting, i.e. all single backbone setting or all with internal

attention setting, the larger the window size of averaging, the

better the performance is, which suggests that larger window

size is better for information gathering to conduct deblur.

Moreover, our Dual Attention model further outperforms any

internal attention model. This is achieved by further adding

an external attention module, which aims at gathering the

spatial correlation across different internal attention models.

4.3.2 Effect on Stacked Frames

We observe in Table 1 that larger temporal window size is al-

ways beneficial than smaller window size. This motivates us

to investigate how the temporal scale influences the overall

performance. We fix a single backbone model, i.e., single

backbone trained on C-DVD-11, and prepare the testing data

by stacking frames of 1, 3, 5, 7 and 9 respectively. Table 2

shows the ablative numbers with respect to the number of

stacked frames. As the stacking number increases, we ob-

serve the performance increases. The larger window size
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Methods 1 2 3 4 5 6 7 8 9 10 Average

WFA[6] 25.16 29.42 32.73 23.88 22.91 29.77 26.67 25.36 31.10 23.68 26.34
DVD (no align)[35] 27.37 32.00 34.93 25.88 25.02 31.68 28.87 27.47 33.23 25.79 28.52
Single (C-DVD-3) 26.91 32.77 37.44 24.85 24.93 31.43 28.51 26.76 32.88 24.61 28.52
Single (C-DVD-7) 29.69 35.19 39.11 27.13 26.68 34.10 31.05 29.06 36.60 27.65 31.03

Single (C-DVD-11) 29.72 35.63 38.99 28.15 26.90 34.28 31.19 29.33 36.55 28.44 31.31
Internal Att (C-DVD-3) 27.34 33.11 37.74 25.11 25.20 31.84 28.95 27.05 33.29 24.85 28.86
Internal Att (C-DVD-7) 30.05 35.57 39.25 27.45 26.95 34.41 31.37 29.27 36.85 27.93 31.32

Internal Att (C-DVD-11) 30.17 35.95 39.03 28.42 27.20 34.48 31.49 29.38 36.73 28.67 31.56
Dual Att (C-DVD-3-7-11) 30.67 36.23 39.26 28.58 27.41 34.82 31.73 29.50 37.35 28.94 31.84

Table 1: PSNR results on the full Challenging DVD testing set. Best results are shown in bold.

(1) (2)

(3) (4) (5)

(6) (7) (8) (9)

(10) (11) (12) (13)

(14) (15) (16) (17)

Figure 5: Visualization of external and internal attention maps on real-world blur dataset proposed in [35]. (1): blurry frame;

(2): Deblurred frame; (3)-(5): attention maps of external attention branch 1-3; (6)-(9): attention maps of internal attention

branch 1-3 in the first internal attention module; (10)-(13): attention maps of internal attention branch 1-3 in the second

internal attention module; (14)-(17): attention maps of internal attention branch 1-3 in the third internal attention module.
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(a) Blurry image (b) DVD (single) (c) DVD (noalign) (d) DVD (flow) (e) DAVID (DVD) (f) DAVID (C-DVD)

Figure 6: Visual result comparison on real blurry videos. The second and fourth rows depict enlarged local areas of the first

and third rows, respectively, where blur artifacts could be most easily observed and compared around the boundary of the front

fender (second row), and the texture on clothes (fourth row).

stacked frames 1 3 5 7 9

C-DVD-11 28.91 29.80 29.81 29.84 29.82

Table 2: Effect of multiple stacked frames as the input for

the single backbone branch, trained on C-DVD-11 subset,

tested on C-DVD-11 testing set.

indeed provide more temporal information for deblurring.

However, when the number continues to increase, we see

the performance is saturated. We observe the similar trend

for other single backbone models trained on C-DVD-3 and

C-DVD-7. It is because too large window size does not

provide more information as two frames far apart might be

irrelevant. Thus, we empirically find the optimal number of

stacked frames (7 in our experimental setting) and apply it

to conduct all our experiments.

4.4. Attention Map Visualization

To better understand the mechanism of our dual attention

model, we visualize the attention maps given an input frame

in Figure 5. The frame is from the real blurry video “piano”

in the qualitative testing set provided by [35]. Inside the

sample frame, there are multiple blur sources, including

hand-held camera shake (which have caused global scene

movement in video), and the local motion blurs caused by

the player’s head and hand moment. In this specific case, the

camera movement is much stronger than object movement.

Figure 5 (3)-(5) show the external attention maps for In-

ternal Att 3, Internal Att 7 and Internal Att 11 respectively.

All three emphasize different detail structural information,

which suggests that the external attention modules do not

degenerate into selecting one out of the three. Notice that

the third map shows the largest response magnitude, indi-

cating that the external attention module favors more on the

averaging 11 frames channel. We further acquire that the

blur caused by global hand-held movement is closest to the

blur by averaging 11 frames. Such selectivity also shows to

be spatially variant, which aligns with our hypothesis. For

example, the third channel (averaging 11 frames) seems to

account for most global blurs (in the majority area of the

non-moving background); meanwhile, the first channel (av-

eraging 3 frames) captures more responses in the area of the

player’s head and hands, which are moving objects.

Each group of internal attention maps then tend to further

decompose the blur information into finer scales that possess

multiple-scale temporal correlations. (6)-(9) show mostly

spatial low frequency response, which indicates that the

backbone branches trained on averaging 3 frames input cap-

tures less motion. In contrast, (10)-(13) and (14)-(17) show

response maps with plenty of the edge and region structural

information, indicating that the backbone branches trained
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Methods 1 2 3 4 5 6 7 8 9 10 Average

PSDEBLUR 24.42 28.77 25.15 27.77 22.02 25.74 26.11 19.71 26.48 24.62 25.08
WFA[6] 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20 28.35

DVD (single)[35] 25.75 31.15 29.30 28.38 23.63 30.70 29.23 25.62 31.92 28.06 28.37
DVD (noalign)[35] 27.83 33.11 31.29 29.73 25.12 32.52 30.80 27.28 33.32 29.51 30.05

DVD (flow)[35] 28.31 33.14 30.92 29.99 25.58 32.39 30.56 27.15 32.95 29.53 30.05
IFI-RN[25] - - - - - - - - - - 30.80

Reblur2Deblur[3] - - - - - - - - - - 31.37
Ours (Single) 29.95 34.98 33.12 31.61 26.09 33.35 31.45 27.79 35.66 30.11 31.41

Ours (Internal Att) 30.28 35.20 33.25 31.81 26.37 33.47 31.61 28.00 35.75 30.37 31.65
Ours (External Att) 30.38 35.27 33.33 31.99 26.45 33.55 31.64 28.03 35.79 30.44 31.71

Ours (Dual Att) 30.68 35.61 33.59 32.19 26.78 33.87 31.96 28.35 36.14 30.73 31.99

Table 3: PSNR comparison on the Original DVD dataset. Best results are shown in bold.

on averaging 7 and 11 frames capture most motion and blur

information for this specific video.

4.5. Evaluation on Original DVD Dataset

Original DVD dataset provides training data synthesized

only by averaging 7 frames. It is not most suited for the

temporal-spatially varying blur case that DAVID targets.

However, as a general public benchmark, we report PSNR

performance on DVD to provide a reference comparison. As

shown in Table 3, our single backbone already outperforms

the state-of-the-art Reblur2Deblur model [3]. It also sur-

passes [35] by 2dB, and more than 3.5dB over [6]. Further

equipped with the proposed attention modules, our DAVID

model yields stronger PNSR results with a 0.58dB gain over

the single backbone. Notice that the gain is understandably

smaller compared to the Challenging DVD case, since the

blur here is not variant by averaging merely 7 frames.

4.6. Qualitative Results on Real Blurry Videos

Besides the evaluation on synthetic data, we visually il-

lustrate the effectiveness of our DAVID model on the real

videos. Figure 6 shows two examples from the qualitative

testing set provided in [35]. We compare three versions of

author-provided DVD models: single, no-align and flow;

and two DAVID versions: one trained on the original DVD

dataset, the other on the Challenging DVD (C-DVD) dataset.

As shown from the input zoom-in crop region, real videos

have rich heterogeneous blurs at local regions. We observe

that results from DVD (single) present significant ringing

artifact, i.e. on the front tire cover of the motorcycle and on

the shirt’s edge. DVD (no-align) alleviates but still with cer-

tain artifacts alongside the shirt’s edge and the front fender.

DVD (flow) for the first example still leaves unattended blurs

while for the second example produces extra fake wrinkle

at the bottom of the shirt. In contrast, DAVID (DVD) and

DAVID (C-DVD) shows far fewer artifacts while preserving

the sharp structural information.

Moreover, when comparing DAVID (DVD) to DAVID

(C-DVD), we still observe some slight artifact for the former,

i.e., blurry boundary region under the light of the first exam-

ple. Therefore with the same proposed model, training on

more complicated synthetic video blur can help real-world

generalization, which justifies the necessity of the proposed

Challenging DVD dataset.

4.7. Discussion on Temporal dependency

We use sets of raw frames and average them to synthe-

size the blurry central frames, which has no overlap with

each other. However, these sets still share temporal content

dependency, for which we consider the consistency across

a wider range of temporal scales, e.g. consistent motion of

foreground objects, which is commonly exploited in video

restoration literature [20]. Thus, we consider the temporal

dependency as how many of the “sets” could be involved for

restoring one central frame, rather than exposure period of

a single set. Exploiting temporal dependency means adap-

tive and selective fusion of those different scales by internal

attention. Certainly, central and neighboring frames are im-

portant. But wider temporal dependency is not negligible. In

Table 2, when stacking more blurred frames (more “sets”),

the performance improves up to 7 stacking frames. Our other

empirical results also endorses the importance of exploiting

longer temporal dependency.

5. Conclusions

This work proposed the DAVID framework for blind

video deblurring. The internal attention model is trained

to adaptively select the temporal scales, while the external

attention model further spatially aggregates the output from

each internal module at the pixel-level. Different from pre-

vious synthetic data focusing on only a single blur level,

we propose a Challenging DVD dataset (C-DVD) which in-

corporates multiple levels of blur by pooling video frames

with different window sizes. Experiments on both datasets

demonstrate that DAVID achieves better PSNR performance

compared to several state-of-the-arts. Qualitatively, we fur-

ther validate the advantage of our method in recovering sharp

appearance with fewer artifacts, on real blurry videos. Ab-

lation study shows that the dual attentions mutually benefit

with learned structurally meaningful attention maps. Our fu-

ture work will develop the unsupervised adaption of DAVID

to real-world blurry videos.

2383



References

[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. arXiv preprint arXiv:1412.7755,

2014. 2

[2] Y. Cao, T. Chen, Z. Wang, and Y. Shen. Learning to optimize

in swarms. In Advances in Neural Information Processing

Systems, pages 15018–15028, 2019. 3

[3] H. Chen, J. Gu, O. Gallo, M.-Y. Liu, A. Veeraraghavan,

and J. Kautz. Reblur2deblur: Deblurring videos via self-

supervised learning. In ICCP, 2018. 8

[4] T. Chen, S. Ding, J. Xie, Y. Yuan, W. Chen, Y. Yang, Z. Ren,

and Z. Wang. Abd-net: Attentive but diverse person re-

identification. In Proceedings of the IEEE International

Conference on Computer Vision, pages 8351–8361, 2019.

3

[5] S. Cho, J. Wang, and S. Lee. Video deblurring for hand-held

cameras using patch-based synthesis. TOG, 31(4):64, 2012.

2

[6] M. Delbracio and G. Sapiro. Burst deblurring: Removing

camera shake through fourier burst accumulation. In CVPR,

2015. 5, 6, 8

[7] M. Delbracio and G. Sapiro. Hand-held video deblur-

ring via efficient fourier aggregation. arXiv preprint

arXiv:1509.05251, 2015. 2

[8] W. Freeman, F. Durand, Y. Weiss, and A. Levin. Understand-

ing and evaluating blind deconvolution algorithms. In CVPR,

2009. 1, 2

[9] S. Harmeling, H. Michael, and B. Schölkopf. Space-variant

single-image blind deconvolution for removing camera shake.

In NIPS, 2010. 2

[10] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf.

Fast removal of non-uniform camera shake. In ICCV, 2011. 2

[11] T. Hyun Kim, B. Ahn, and K. Mu Lee. Dynamic scene

deblurring. In ICCV, 2013. 2

[12] T. Hyun Kim and K. Mu Lee. Segmentation-free dynamic

scene deblurring. In CVPR, 2014. 1, 2

[13] T. H. Kim, K. M. Lee, B. Schölkopf, and M. Hirsch. Online

video deblurring via dynamic temporal blending network. In

ICCV, 2017. 1, 2

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 5
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