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Figure 1: Spatio-Temporal Face Inpainting. For each sequence taken from 300-VW [7] test dataset, first row shows com-
plete frames with faces inpainted by proposed STN-GAN from masked images, and the second row shows the corresponding
groups of original, anonymized (input) and synthesized (fake) faces from left to right respectively.

Abstract

In this paper, we propose to use constrained inpainting
methods to recover usability of corrupted images. Here we
focus on the example of face images that are masked for pri-
vacy protection but complete images are required for fur-
ther algorithm development. The task is tackled in a pro-
gressive manner: 1) the generated images should look re-
alistic; 2) the generated images must satisfy spatial con-
straints, if available; 3) when applied to video data, tempo-
ral consistency should be retained. We first present a spatial
inpainting framework to synthesize face images which can
incorporate spatial constraints, provided as positions of fa-
cial markers and show that it outperforms state-of-the-art
methods. Next, we propose Spatial-Temporal Nested GAN
(STN-GAN) to adapt image inpainting framework, trained
on ~200k images, to video data by incorporating temporal
information using residual blocks. Experiments on multi-

ple public datasets show STN-GAN attains spatio-temporal
consistency effectively and efficiently. Furthermore, we
show that the spatial constraints can be perturbed to obtain
different inpainted results from a single source. !

1. Introduction

Recently, image synthesis has experienced tremendous
improvements following the introduction of deep generative
models especially the generative adversarial networks [8],
with sub-tasks like image style transfer [14], context-related
image inpainting [12, 35, 18], and image super-resolution
[4], which has significantly improved the possibility to in-
paint partial or masked images for recovering usability of
corrupted images. For example, patients’ photo records are

IThis feature is based on research and is not commercially available.
Due to regulatory reasons, its future availability cannot be guaranteed.
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Figure 2: Spatial-Temporal Nested GAN (STN-GAN)). The left part shows the generator, the right part shows two discrim-
inators: global discriminator is labeled as deep color and local discriminator is labeled as shallow color. The Generator and

Discriminator for ¢; to ¢t are shared.

not allowed to be released without anonymization due to
the privacy protection regulation, while complete data is re-
quired for subsequent algorithm development, such as for
training human pose estimation or activity recognition net-
works. This anonymization can be achieved by masking the
biometric information [20] by covering the eyes, nose, and
mouth as shown in Fig. 1. The current work addresses us-
ability recovery of videos with such anonymized faces using
STN-GAN, a novel video inpainting framework.

Recent state-of-the-art image inpainting methods [12,
18, 35, 36] aim to reconstruct corrupted images by opti-
mizing L' or L? loss with respect to the original image.
However, for anonymized face completion, such pixel re-
construction loss is not appropriate as there are many rea-
sonable solutions beside the original image. Moreover, face
inpainting must satisfy certain spatial constraints, for exam-
ple, perspective consistency in pose. Furthermore, several
state-of-the-art methods focus on synthesizing the whole
face region rather than just the corrupted or masked areas.
While this benefits the holistic context, it may lead to con-
tent and color inconsistency when stitching the face region
back to the original, often much larger image (c.f. Fig. 1).
From a usability perspective, such discrepancy is not toler-
able as algorithms trained on such data may learn to exploit
them as features.

When extending from image inpainting to video inpaint-
ing, the most important step is to ensure frame-to-frame
consistency, i.e. the inpainted parts across frames should
progress smoothly over time. Thus, a video face inpaint-
ing model should not only capture the spatial context within
each frame but also the temporal context across frames. For
the video face inpainting, this implies ensuring consistency

both in inpainted facial structure such as eyes, nose, and
facial attributes such as facial hair, eye glasses (e.g. peo-
ple in speech, Fig. 1). Recent works on video inpainting
[31, 32] train only using video datasets, which limits their
performance due to lack of availability of large datasets. We
conjecture that an effective solution should be able to learn
to simultaneously enforce spatial and/or structural consis-
tency using existing image datasets with large variations
from huge amount of individuals with different attributes,
and learn temporal consistency using just a few sequences.

As a solution to overcome aforementioned difficulties,
we propose Spatial-Temporal Nested Generative Adversar-
ial Network (STN-GAN), and demonstrate its ability to
synthesize spatio-temporally consistent results from input
videos where face is masked. In Fig. 2, we show an
overview of the STN-GAN architecture. To begin with, we
train a conditional generative network with perceptual loss
for the single-frame inpainting. Our model takes masked
images as input and learns to synthesize images that are vi-
sually and contextually consistent with the unmasked re-
gions. When facial landmark information is available, it is
used as additional input such that inpainted faces are consis-
tent with the landmarks. This not only facilitates perspec-
tive consistency but also allows inpainting different face im-
ages with different facial markers from a single masked im-
age. To learn temporal consistency without losing the spa-
tial model, we link the decoding layers in the generator of
the spatial model with 3D residual blocks [10], aim at learn-
ing correlation between the features in 7'-th frame and pre-
vious 7' — 1 frames. We demonstrate the effectiveness of
STN-GAN on multiple public datasets - CelebA [19], 300-
VW [7] and FaceForensics [24], as well as the impact of
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adding spatial and temporal constraints.

Our contributions can be summarized as:

e We propose STN-GAN, a novel generative framework
that efficiently adapts models trained on image domain
which usually has abundant data, to video domain where
data is more expensive to acquire. By linking feature spaces
using 3D residual blocks, the proposed STN-GAN learns
temporal consistency effectively.

e We apply STN-GAN to inpainting masked faces in
videos while strictly preserving the background. By using
facial markers, different inpainting results can be obtained
from one video. We demonstrate an application on recover-
ing utility of images after face de-identification.

e We provide both qualitative and quantitative compari-
son on image and video face inpainting tasks, and outper-
form the state-of-art methods.

2. Related Work

Image inpainting. Image inpainting involves filling the
missing regions of an image in a visually consistent manner.
This task was traditionally approached with intensity flow
inferences [3] and PatchMatch [33, 2] that fills the miss-
ing portions by sampling patches from surrounding image
regions. They work well on texture scratches, but fail to
recover large missing regions without a reference image.

Recent advances in deep generative learning, especially
GANSs, have enabled methods that can learn contextual as
well as semantic features at different scales and thus syn-
thesize more visually plausible images [21]. Li et al. intro-
duced face parsing loss for face completion [17]. lizuka et
al. introduced an image inpainting network with discrimi-
nators of different scales [12]. However, these methods re-
quire post-processing steps like Poisson Blending [22]. Re-
cent methods that do not need such post processing, such as
Liu et al.’s partial convolution [18] and Yu ef al.’s attention
module to model long-range spatial dependency [35, 36], do
not make use of adversarial or perceptual loss, and thus do
not perform well when large semantic contents are missing.

Image generation with spatial constraints. Several re-
cent works integrate spatial constraints into image gener-
ation task. Teixeira et al. proposed to generate synthetic
X-ray from body surface while simultaneously predicting
body markers, and in turn, use predicted markers to update
X-ray [28]. Bulat et al. integrated facial landmark detection
and face super-resolution [4]. Contrary to these methods
that formulate it as multi-task learning to learn a strong cor-
relation, we only treat spatial constraints as additional input
to be used only as guidance during inpainting, since input
landmarks may not be sufficiently accurate.

Video generation. Unlike image inpainting which has
been under active research over recent years, there are not
many references on video. Wang et al. proposed to jointly
learn temporal-spatial structure for video inpainting [31],

but masks are in a fixed shape and position across all frames,
which does not hold true for face inpainting where subject is
in motion. Recently, a general video to video synthesis was
proposed [32]; the proposed method utilizes optical flow
information across frames to ensure temporal consistency
and would require a large video dataset to ensure robustness
to fine grained face variations.

Face de-identification with usability preservation.
With the increasing privacy concerns and the need to col-
lect larger datasets for algorithm development, face de-
identification has become increasingly important. Some ex-
isting works proposed to synthesize de-identified face while
ensuring structure similarity [34, 27]. Ren et al. trains a
network to anonymize faces such that anonymization has
almost not impact on action detection task [23]. However,
these methods do not preserve the background well and the
generated faces have visual artifacts, which limits the use-
fulness of the inpainted face images.

3. Method

We present a pipeline to train a video inpainting net-
work that takes anonymized face images as input and out-
put corresponding inpainted images, while ensuring spatio-
temporal consistency. The pipeline is designed in a progres-
sive manner. First, we present spatial inpainting method,
formulated as an Image-to-Image translation [13] problem,
which ensures the inpainted image looks realistic while
strictly preserving the background (non-masked) regions.
Next, we add sparse spatial constraints, e.g., face land-
marks, to guide the structure of inpainted face. And finally,
we extend the model to address video inpainting.

3.1. Spatial Inpainting

Our goal is to train an inpainting network G that learns
a mapping, G : & — y to make the generated image y
indistinguishable from real image (domain of x), where x is
the original image, ¥ is a corrupted version of x. To obtain
stable training process, we adopt the adversarial loss with
gradient penalty (WGAN-GP) [1, 9]:

Laav(G, D) = Eynpypra () [ D(2)] — Bz Py (a) [G(2)]

“AgpEi P @ [(1VaD(E) | — 1)7],
(1)

where 7 is sampled uniformly among a straight line be-
tween a pair of real and generated images. We use Ay, = 10
for all experiments. To facilitate learning of the facial struc-
ture, we leverage the perceptual loss [14] that computes
the L' distance between features obtained using ImageNet-
pretrained VGG-16 [26], on original image, x and output
image, G(). The loss is defined as:

Lpee(G) =) |l ful@) = f(G@DI, @
1=0
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Figure 3: Spatial inpainting framework. Given a training sample, the face area is cropped and landmarks are detected. The
masked image and facial markers are provided as input to the generator to synthesize the complete face image.

where f,, is the activation map of n*” selected layer, here we
use pooll, pool2 and pool3 layers. Combining these losses
into a single objective, the optimal G* is obtained through
the min-max procedure:

G* = arg mén max (Laav(G, D) + Aot (G)).  (3)

where ) is the hyperparameters for multiple losses. We use
A = 10 in all of our experiments.

Background hard copy. The generator, G generates a
full image instead of only the masked area. Ideally, the un-
masked area in the generated image should be exactly the
same as the original image. This can be represented as a
hard constraint: L' (z® (1—m),y®(1—m)) = 0, where m
is a binary mask that takes 1 for image area to be inpainted,
and O for the background. However, most existing meth-
ods [18, 35, 23] generate the whole images using the pixel
reconstruction loss, which unavoidably causes a visual dis-
crepancy due to color shift and/or texture in the background
area. We propose to directly copy the non-masked area to
ensure seamless integration. As shown in Fig. 3, we replace
y=G(Z)byy =20 (1 —m)+ G(&) ® m, and calculate
both L.q4v and Ly, in Eq. 3.

Incorporating spatial constraints. After combining the
GAN and perception losses, the generator could synthe-
size visually reasonable image but cannot control shape and
pose of the synthesized objects in the masked area (e.g. face
and nose in the face mask) because this part of information
is typically extremely hard to infer from the background.
Thus to allow for the flexibility of manipulating the hardly-
inferable information, we add landmarks as the spatial con-
dition into the generator as soft constraints that still provides
enough variation. Our goal is then to learn G : {Z,c} — v,
here c is landmarks. As shown in Fig. 3, we concat the &
and c as our final input.

Architecture. The generator network is composed of
two convolution layers with stride size of two for down-
sampling, six residual blocks [10], and two transposed con-
volution layers with the stride size of two for upsampling
(similar to StarGAN [6]). We use instance normalization

[30] for the generator but no normalization for the discrim-
inator. We leverage PatchGANs [13] for the discriminator
network, which classifies whether local image patches are
real or fake. Similar to [12, 35], we utilize two discrimina-
tors Dgiopar and Dieeq; on both global and local scales, and
concatenate the outputs of the two discriminators for com-
puting training loss. The global discriminator is composed
of six convolution layers with the stride size of two while
local discriminator is composed of five convolution layers.

3.2. Spatial-Temporal Inpainting

For the video inpainting, we learn a mapping that gener-
ates corresponding frames given an anonymized sequence
of a temporal window, and retain the last frame as the output
during testing. To capture the temporal consistency across
frames, we insert 3D residual blocks before the last M up-
sampling layers in the generator and after the first IV layers
in the discriminator (See Fig. 2 for the complete architec-
ture). Each 3D residual block takes the outputs of its previ-
ous layers in the T" frames as its input, generates an output
of the same shape, and feeds its 7-th frame in the output
into the succeeding layer in the generator. The complete in-
frastructure of STN-GAN then consists of 7' replicas of spa-
tial inpainting network in Sec. 3.1 with shared weights, and
multiple 3D residual blocks linking the first 7" — 1 instances
to the T'-th frame in both generator and discriminator.

3D Residual Blocks. The architecture of linking mul-
tiple frames of generators with 3D Residual Blocks bene-
fits both efficiency and consistency. For efficiency, as the
Residual Block, R(-) outputs z + R(z) for input z, we can
make full use of the pre-trained model by setting the ini-
tial weights in R(-) as zeros, i.e., the spatial-temporal in-
painting is equivalent to spatial inpainting frame by frame
if 3D Residual Blocks are 0 weighted. This would ensure
that even if R(-) learns nothing, it would not be worse than
inpainting each frame separately. For ensuring consistency,
we link the feature layers in generaotr thus the feature space
in the previous 7' — 1 frames are then visible for the last
frame. For the T-th generator, taking more temporal in-
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formation constrains its variety in the sense that it needs to
keep consistency with the previous 7' — 1 frames. In ad-
dition, we only project the output of Residual Blocks onto
the 7'-th frame instead of all frames. Empirically, feeding
it to all T" frames could potentially improve the model per-
formance slightly. However, this is not naturally reasonable
as it reverse the time-line of video while our current setting,
i.e., only retain the last frame in a given time window, is
extendable to an online procedure.
Algorithm Description. In this section, we provide details
on how the STN-GAN is constructed and trained. First we
denote the input frames as 2] = {21, %,..., 27}, output
frames as y/ = {y1,¥y2,...,yr}. Next, the generator of
image inpainting is formularized as G = G, ;0 G 0G50
-0 Gy o G, Where Gy, ..., Gy are the layers in the
generator before where the 3D-Resnet blocks R, ..., R§,
are inserted, G, ,, are the layers before M layers, G, ;
are the layers after M layers, and the circle symbol repre-
sents the function composition. Similarly, the discriminator
isexpandedas D = D, ,oD,0Dy0---0DyoD, ... To
clarify the updating procedure, we further express the fea-
ture map with #; as af and aP, final output as a¢ and a,
fort = 1 : T correspondingly. In the model training, we
first initialize with pretrained model from image inpainting,
and then fine-tune the temporal parameters, i.e. the weights
in 3D-Resnet blocks. See Algorithml for detailed steps.

4. Experiments

In this section, we first introduce the image and video
datasets used in the experiments. Next, we show that the
proposed spatial inpainting method performs better than
state-of-the-art methods; we present several experiments
studying the impact of background copy as well as in-
corporating landmarks as spatial constraints. We further
evaluate our method on video inpainting task on multi-
ple public datasets, both qualitatively and quantitatively.
Lastly, we present quantitative experiments to show that
even when proposed inpainting method utilizes landmarks
as constraints, it does not recover the original face or look;
we further demonstrate that perturbing the landmarks pro-
duces different inpainting results from a single masked im-
age.

4.1. Datasets

CelebA. The CelebFaces Attributes (CelebA) dataset
[19] contains 202,599 face images of celebrities. We first
apply open source toolkit dlib [15] to detect face bound-
ing box on initial 178 x 218 unaligned images and localize
facial landmarks, followed by padding each face bounding
box with ratio 0.2 and resizing to 128 x 128. In total, there
are 197,036 faces detected. We use the first 98 identities as
testing set, which contains 2353 images.

300-VW. The 300 Videos in the Wild (300-VW) dataset

Algorithm 1: Training of STN-GAN

1 Input: Anonymous sequence with window size T:
2l = {21, %9..., 27}

2 Output: Synthesized sequence vy = {y1,v2, ..., yr}.
During testing stage, we only retain the last frame yr
as final result in each time window.

3 Initialize the generator G and discriminator D with
weights trained on image dataset only, initialize
3D-Resnet modules R“ and R” with weight 0;

4 while not converged do

5 fort=1:7Tdo

6 Compute feature maps a; < Gpeqa(2t);

7 end

8 form=1:Mdo

9 a®l' < concat {ay, as, ....ar} along time axis;

10 aT’ « RG (aT);

11 Decompose al’ to {ay/, a9, ...,ar } along
time axis;

12 Remain a1, aq, ..., ar_1 unchanged, update
ar < agv;

13 end

14 fort =1:7Tdo

15 | ag « Grai(ar):

16 end

17 Repeat the above operations for D;

18 Compute £(G, D) regarding to eq. 3 w.r.t af and
aP fort = 1: T, average loss along time axis ;
19 Back propagate the error and update parameters of
G,D,R% RP;

20 end

[7, 29, 25] contains 114 videos,with annotation of 68 land-
marks for each frame. Designed for face landmarks de-
tection task, the face images in 300-VW have large varia-
tions in pose, expression, illumination, background, occlu-
sion, and image quality. Each video has duration around 1-2
minutes (at 25-30 fps). We use 70 for training, 10 for test-
ing, and omit the remaining videos that are in low quality,
black and white, or with part of faces out of view. Faces are
cropped and resized in the same way as CelebA.
FaceForensics. FaceForensics [24] is a large-scale video
dataset which contains 704 videos for training and 150
videos for testing. Unlike 300-VW dataset, actors are gen-
erally in the same position across the frames with only small
head motions. For each video, we use the first 30 frames.

4.2, Spatial Inpainting

Experimental setting. For spatial inpainting, we trained
our models only on CelebA dataset. To study the influence
of landmarks in our model, we trained 2 models, SI-lm and
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Table 1: Spatial Inpainting testing results. We compare 4
different algorithms: 1) Regression based Partial Convolu-
tion [18]; 2) ours without hardly copying background ((SI-
Im) w/o BGCP), similar to other two GAN based methods
with extra perceptual loss [12, 35], and ours proposed S/
with and without landmarks.

CelebA dataset PSNR MS-SSIM TV FID
PartialConv[18] 27.38 0.979 12.82 4123

ours w landmarks (SI-lm) w/o BGCP | 27.30 0.979 12.66 37.10
ours w/o landmarks (SI) 27.06 0.976 12.78  38.52

ours w landmarks (SI-lm) 28.61 0.982 12.75  36.21
300-VW PSNR  MS-SSIM TV FID
PartialConv[18] 27.26 0.970 9.40 1392

ours w landmarks (SI-lm) w/o BGCP | 26.29 0.971 948  13.66
ours w/o landmarks (SI) 27.17 0.970 9.34  12.86

ours w landmarks (SI-Im) 28.67 0.976 929 11.13

SI, with and without landmarks respectively.

All models are trained using Adam [16] with 5; = 0.5
and B3 = 0.99. For data augmentation, we flip the images
horizontally with a probability of 0.5. To reduce the influ-
ence of errors in landmark detectors as well as avoid overfit-
ting to the mask shape, we perturb the shape of the mask by
randomly changing the radius of circular masks by 3 pixels.
The batch size is set to 16 and the generator is updated once
for every 5 discriminator updates; learning rate decay is set
as in [6]. Training takes ~15 hours for 200k iterations on a
single NVIDIA TITAN X.

We test on both CelebA and 300-VW dataset. For 300-
VW dataset, we sample frames from 70 video sequences at
interval of 100, resulting in 828 test images. The identi-
ties in 300-VW are completely unseen during the training
phase. We compare with PartialConv [18], a state-of-the-art
solution for irregular hole inpainting. We use the same ex-
periment setting, including data augmentation etc. and train
for 500k iterations, which took ~47 hours.

Quantitative results. As mentioned in [35], image
generation tasks lack good quantitative evaluation metrics.
Nevertheless, we report traditional measurements of image
quality including peak-signal-to-noise ratio (PSNR), total
variation (TV) loss, and Multi-scale structural similarity in-
dex (MS-SSIM). Additionally, we report Fréchet Inception
Distance (FID) [11], a widely used metric for implicit gen-
erative models to measure similarity between two datasets
of images, correlating well with human judgment of visual
quality. Here we compute FID score on the features com-
puted using Inception network.

The evaluation results are presented in Table. 1. The
proposed spatial inpainting method, both with and with-
out landmarks, significantly outperform the PartialConv on
both datasets on FID score (Fig. 4). While PartialConv
works well when mask is complex but narrow, it produces
artifacts when large regions with semantic information is
missing, as in the case in our experiments. To study the

Figure 4: Testing results of spatial inpainting trained on
CelebA. From left to right are original, anonymized (input),
inpainted results of PartialConv [18], ours w/o landmarks
(SI) and ours w landmarks (SI-Im). The first 4 rows are
examples in CelebA, the bottom 4 rows are from 300-VW.

impact of background copy, we trained a network that
generates the whole image (without background copy) us-
ing GAN based framework with perceptual loss, similar
to [12, 35]. As can be observed in Fig. 5, synthesizing
the whole image causes artifacts and inconsistencies in the
background area, e.g., the skin and hair color.

Qualitative results. Fig. 4 shows our spatial inpaint-
ing testing results. Although most inpainted images of
our S7 (the 4*" column) looks realistic without landmarks,
by adding landmarks, not only the inpainted images are
controllable and manipulable, e.g., the opened and closed
months or eyes are retained in the row 1, 3, 5, 8, the eyes
sizes are controlled in row 4, 7, but also significantly ben-
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SI-lm SI-lm w/o BGCP

Figure 5: Impact of background copy. We present two
testing examples with visual bias in the color space here,
the left one is from 300-VW, the right one is from CelebA.

Datasets SI SI-lm STN  STN-Im  Vid2Vid [32]
300-VW 8.89 695 17.14 6.02 39.61
Face Forensics | 8.08  6.34 6.82 5.28 35.17

(a) FID Scores on 2 different testing sets.

Methods
SI/SI-lm/STN/STN-Im

Human Perference Score
1.47% 1 1.96% / 12.25% | 84.31%

(b) Human preference Score on 300-VW testing set.

Table 2: Spatial-Temporal inpainting evaluation.

efit the visual quality, especially for the images with non-
frontal poses, e.g., the proper months’ angles in the row 6.
Although the landmarks constraint is not regularized in the
objective, it benefits the training and control the shapes and
locations of eyes, nose, and mouth.

4.3. Spatial-Temporal Inpainting

Experimental Setting. For spatio-temporal inpainting,
we set 7' = 3, i.e., each training sample contains a set of
3 consecutive frames. We report evaluation results on both
300-VW and FaceForensics datasets. From the 70 train-
ing and 10 videos in 300-VW, we have 126,273 training
and 20,755 testing samples. For FaceForensics, we use the
standard train-test split with 19,690 samples for training
and 4,348 for testing. We fine-tune the pre-trained spatial
models (Sec. 4.2) with a batch size of 12 and do not uti-
lize any data augmentation. We train 2 separate models,
with and without landmarks, referred as STN and STN-Im
respectively. We only need to train for 5 epochs to achieve
visually satisfying results. Training only takes ~8 hours for
300-VW and ~1.5 hours for FaceForensics on TITAN X.

Quantitative results. We compute the FID scores on
both 300-VW and FaceForensics datasets. Table. 2a shows
a comparison of STN-GAN with spatial inpainting methods
(SI, SI-Im) as well as Vid2Vid [32], a general video to video
synthesis approach. For Vid2Vid, we use the pre-trained
model provided by the authors and compute the FID score
only on cropped faces. Even on cropped faces, proposed
methods significantly outperform Vid2Vid in terms of FID
score. Furthermore, the proposed networks trains in mat-
ter of hours, compared to the Vid2Vid, a computationally

Figure 6: Examples of perturbing landmarks. (a) rep-
resents landmark switching results, the top row shows two
original face images with detected landmarks on two sides,
the bottom row represents corresponding inpainted images
with original and switched landmarks. (b) shows landmark
perturbation results, The top row shows the original face
images, the second and third row show inpainted results of
SI-Im with and without landmark perturbation.

expensive model, that takes several days to train [32].

We also performed a user-study for evaluating the visual
quality of synthesized videos on 300-VW dataset. Each user
was shown 4 synchronized videos, synthesized by proposed
algorithms (SI, SI-Im, STN, STN-Im) and asked which one
looks most realistic. We gathered responses from 20 differ-
ent subjects, where each subject went over 10 videos of 20s
each. We report the results of user study in Table. 2b. The
proposed STN-Im consistently performs better than others.

Qualitative results. Sample test results obtained using
different methods are shown in Fig. 8. Notice that the im-
age based methods (SI, SI-Im) achieve visually consistent
face inpainting results within each frame but fails to en-
sure a temporal consistency of the facial attributes, which
is properly addressed using spatio-temporal methods (STN,
STN-Im). Furthermore, the use of landmarks as spatial con-
straints clearly improves the consistency of the landmarks
with head pose. STN-Im, which incorporates all informa-
tion, clearly produces the best overall results.

4.4. ID Distance Test and Landmark Perturbation

In this section we examine whether the proposed inpaint-
ing method can restore the original identity. To this end,
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Figure 7: L2 distance on VGGFace2 representation. x-
axis represents 98 IDs, y-axis represents ID distance (mean
and std) between real / inpainted from S/ / inpainted from
SI-Im and remaining images that belong to the same person.

we propose to compare a pair of face images using the L2
distance on VGGFace2 representation [5], a state-of-the-art
face recognizer with ResNet-50 architecture [10]. For each
(original) image of each subject, we compute the mean L>
distance between the image and the remaining images of the
same subject and compare it with the distance with the in-
painted image (with and without landmarks). Fig.7 shows
the mean score and deviation for all 98 identities (2353 im-
ages) in CelebA testing set. Note that inpainted images
consistently hold larger distance, which confirms that the
inpainted image is sufficiently different from the original
regarding the identity.

Furthermore, the spatial constraints (landmarks) can be
perturbed to obtain different inpainted results from a single
source image. Fig. 6 (a) shows results by switching facial
landmarks between 2 source images. Notice that inpainted
face images for 2 subjects with different landmarks are
clearly different. Fig. 6 (b) shows different inpainting re-
sults obtained from the masked original image by using the
original landmarks as well as after a small perturbation. No-
tice the clear visual difference between the inpainted faces
generated from different landmark configurations.

5. Conclusion

We presented the STN-GAN framework to approach for
spatio-temporal inpainting and demonstrated its effective-
ness to inpaint masked facial areas, often generated during
privacy preserving or anonymization techniques. The pro-
posed framework adapts image based solution, trained on
datasets with thousands of individuals, to video based solu-
tion for which only tens of videos are available. We demon-
strate the effectiveness of the approach on 2 public bench-
mark datasets. We further go on to show that the proposed
framework can also be used for parameterized inpainting,
by adjusting the facial markers.

Figure 8: Testing results of spatial-temporal inpainting
on 300-VW. For each example shows here, from top to bot-
tom are original (real), anonymous (input), results (fake) of
SI, SI-Im, STN, STN-Im respectively. From left to right is
temporal continuously images with sampling interval 10 of
original 25fps videos.
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